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ON THE NUMERICAL METHODS BASED ON INTEGRAL
EQUATIONS FOR INVERSE PARABOLIC PROBLEMS

UDC 518:517.948

R. CHAPKO AND O. IVANYSHYN

ABSTRACT. The paper presents some existing and new results for the numerical
solution of some inverse parabolic problems. We focus our attention on the using of

the integral equation method by the numerical solution.

1 Introduction

The inverse problems for a parabolic equation can be divided into the following prin-
cipal groups [15,23]: 1) the problems of the estimation of the heat flux history along a
boundary part of a domain from a known temperature measurements on the rest of the
boundary and at interior locations; 2) the problems of determining the initial condition if
the temperature distributions inside a domain are known at some time; 3) the problems
recovering the diffusion coefficient from boundary measurements of the solution of a par-
abolic equation [22,24]; 4) the problems determining a boundary part for the bounded
domain from a knowledge of the rest of the boundary, the heat and the heat flux on it.

In this paper we consider the inverse problems from some of the enumerated groups.
Primarily we are interested in the aspects of the numerical solution of these problems
with using of the integral equation method. In Section 2 we describe the numerical
solution of inverse boundary value problems for heat equation. These problems are
actual in non-destructive testing of materials. In this case, one tries to investigate the
interior structure of a body using only some given information on the boundary. Among
the strategies followed is the thermal imaging technique, where inclusions or interior
cracks are detected by controlling the heat flux on the boundary body and monitoring
the boundary temperature response over an appropriate time interval [1,2,3,4,5,6]. This
inverse problem is solved by using Newton or Landweber method and boundary integral
equation method (7,10, 11,12]. Section 3 contains the case of the identification of the
heat conductivity. Here are used regularized Newton method for the inverse problem and
Rothe method with integral equation for direct problems. In Section 4 we discuss some
kind of parametric identification problems. Here it is identified the thermal diffusion
coefficient of a body by exposing to a temperature field and then by measurement of the
temperature in some points outside of body. The materials of this section is based on

the papers [14,17,18,20).

2 Boundary reconstruction

Let D; and D5 be two simply connected bounded domains in R? such that Dy C Ds.
We assume that the boundaries of Dy and D5 are of class C? and denote them by I';
and Ty, respectively. Further denote D := D, \ D;. Let T > 0 and ¢ a given function
on 8D x (0,T). Define ¢; and o as restrictions of ¢ on I'y x (0,T) and I'; x (0,7),
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respectively. Let 17 > Ty, [T, 77} € (0,7), ¥ C I'; by nonempty open subset and v is
the outward unit normal to 8D,
A function u(z, t) satisfies the heat equation

%ft-"- =Au in D x (0,T) (2.1)

and the homogeneous initial condition
u(-,0) =0 in D, (2.2)

We consider the following inverse problems:
¢ Inverse Dirichlet boundary value problem Ia. Under the assumption that

v=0 onli X (O,T) and u= Yo onl’s X (O,T), (23)
to determine the interior boundary I'y from a knowledge of the heat flux du/dv
on X X [Tg,Tl].

¢ Inverse Dirichlet boundary value problem Ib. Under the assumption that u = 0
onI'y x (0,T) and 0u/0v = g3 on I's x (0, T) to determine the interior boundary
I'; from a knowledge of the temperature v on ¥ x [Tp, T3]

o Inverse Neumann boundary value problem Ila. Under the assumption that
Ou/Ov =0onT; x (0,7) and u = ¢ on I'y x (0,T), to determine the interior
boundary I'; from a knowledge of the heat flux du/0v on X x [Ty, T1].

¢ Inverse Neumann boundary value problem IIb. Under the assumption that
Ou/Bv = 0 on I x (0,T) and Ou/Ov = @y on Ta x (0,T) to determine the
interior boundary I'; from a knowledge of the temperature u on ¥ x [Ty, T1].

The formulated inverse parabolic problems can be rewritten as some operator equa-
tions with nonlinear operators that map the curve I'y onto the heat flux or temperature
on the curve I';. For example we have in cases Ia and Ila

Ou | |
EX[T{),T}_]
These equations are ill-posed, since the construction of the solution to the heat equation
from the Cauchy data is ill-posed linear problem, and they are nonlinear, since the
solution to the initial boundary value problem depends nonlineary on the boundary

CUrves.
Let us assume that I'y is starlike, i.e.

z(s) = r(s)(coss,sins), 0<s< 27

with a some positive function . Clearly r is to be found. Then we transform the operator
equations into the parametric form

Ag(r) = va(5,8), An(r) =m(s,), (s,t) € T, (2.4)

where 4 and -, are given data and ¥* := [gg,01] X [To, T1].

2.1 Newton method

We describe shortly the algorithm for numerical solution of first nonlinear equation
that is based on Newton method. We assume that the curve I'y, with the parametric
representation z(s) is an approximation for the curve I'y and let h(s) be the unknown
correction such that Z(s) = z(s) + h(s) is a new approximation. We look for & in the

form
h(s) = q(s)(cos s, sin s),
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where ¢ is an unknown function . After the linearization in (2.4) we get the following
approximating linear equation with respect to h:

Ag(r) + Ay(r; h) = va(s,t), (s,t) € I (2.5)

We approximate ¢ in the form
K
q(s) = ) a;g;(s)
—7

with basis functions ¢;. The collocation method for (2.5) with respect to the colloca-
tion points (8x,%;) € X*, k = 1,... ,Mipy, ¢ = 1,..., Nipy, yields the system of linear

equations
K

> oy Ai(ri hy) (e, 1) = va(8k, B) ~ Aa(r) (8, B, (2.6)
3=1
where h;(s) := (g;(s) cos s, g;(s)sins) and Mgy Niny > K.
The following theorem about the domain derivative of operator A4 is proved (see [10]).

Theorem 2.1. Let D; be a bounded domain with the boundary Ty and D := Dy \ Dy.
Let o € L2(T3 x [0,7)), h € C%(T'1;R?) and u be a weak solution of the initial boundary
value problem (2.1)- (2.8) in D x (0,T). Then the domain derivative A)(r; h) exists and

i3 given by
aui

ik = 5|

where u’ solves the heat equation

ou’ _—
s =Av' in D x(0,T)
with the homogeneous initial condition and the boundary condition
/ Ou - /
uw =—h- v == onTy x (0,T) and uw' =0 onTy x{0,T)

Here v s the outward unit normal on f‘l.

For the case of inverse Neumann boundary value problems see [11]. Due to the linear
equation (2.5) being an ill-posed equation, we use Tikhonov regularization to stabilize
our problem. Hence, we replace (2.6) by the following least-squares problem to minimize

the penalized residual

Minv Ninv | K

= Q’Zwkak + 3> D arAd (r3hi)(3i,5) — a3, 85) + Aa(r)(5i, ;)

i=1 =1 tk=1

with some regularization parameter o > 0 and some positive weights wy, ... ,wg. Mini-
mizing of T" with respect to ay, . .. , ax is equivalent to solving the following linear system

K Minv Ninv

owpay + Y ek ¥ ¥ Ad(ri ki) (3, 55)Ad (i hp) (31, )

k=1 gm=l j==l

(2.7)
MIHV II'IV

= }.4 L{7d(3‘*t ) — Aa(r)(&, 3)}Ad ('*"1 hp)(Szaty) p=1,...,K.

=1 y=I1
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We choose the weights w, as in the Levenberg-Marquardt algorithm

Minv Ninv
wp =Y Y Ad(ri9p)(5:, 1;)Ad (r ) (31,85), p=1,... K
=1 j=1 | o
Finally, we summarize the description of one step of the Newton method as follows

1. With the radial function r, given, solve the direct problem (2.1)- (2.3) by the
boundary integral equation method and compute %"5 on I's.

9. Compute numerical solutions for the sequence of the direct initial boundary value
problems (2.1)~ (2.3) with the corresponding boundary conditions via boundary
integral equation method. |

3. Solve the system of linear equations (2.7).

4. Compute the correction A and find new approximation ri4; = 7i + ¢ for the
boundary I';.

As a stopping rule for the number of iterations we use the condition

H‘IHLF__ )

il

where 6 is a given precision. |
In 7] we apply the described method for the reconstruction of some bounded inclusion in

the semi-infinite region. In contrast with previous case we have used the Green’s function
approach for direct initial boundary value problems and these are reduced to boundary
integral equations with integrals over infinite axis. Then the quadrature method with
combination of trigonometric and sinc approximation [25] is used. Note that numerical
experiments indicate the feasibility of our method in all cases.

2.2 Landweber methad

The main ingredient for an efficient implementation of Landweber iteration is the
adjoint operator of A4(I'y,a). In [12] it was proved the following result.

Theorem 2.2. Let v € H 7:71(I'y x (0, T)). Then the corresponding adjoint operator
A (Ty,a)* : H 37 1(T x (0,T)) — C*('1;R?) is given by

T 9y v
! 2 = d ,
ATnav=v | Zo 2 (2.8)
{FQX(O,T)
where v solves the initial boundary value problem
%i;- = —Av nD x (0,7), (2.9)
v(-, T)y=0 i D, (2.10)
v=0 onTy x(0,T) and v=v onT2x(0,T) (2.11)

Here we used the anisotropic Sobolev spaces
HP*(Ty x (0,T)) := L2((0, T); H?(T'2)) N H*((0, T); L*(T'2)).
We assume that the boundary curves have parametric representations

Iy := {z1(s) = r(s)(cos s,8in 5),0 < s < 2m}

and
Ty := {z2(s) = (z21(s), T99(8)),0 < s < 27}.

Here r > 0 is the unknown radial function and we assume r, 21, Z22 € C*[0, 27].
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Now we have in this cage the following representation for the adjoint operator Aj(r)’
according to (2.8)

(A (r)*)(s, 1) = r(s) / O (a(s), ) o (@a(s), it (2.12

Denote by r! the exact solution of (2.4) and assume that the input data 4 are given by
noisy data + with the known noise level 4, i.e. |75 — 7al| < 6. Due to [4] we define the
iterative Landweber method as follows

rd =18 4 pAL(ra)Y (g — Aa(rs)), (2.13)

where 2 > 0 is an appropriate scaling parameter, that has to be chosen such that
1AL (r)|l < 1/p for all r in a neighborhood of r¥, This method can become a regu-

larization property if it stopped ”at the right time”, i.e. only for a suitable stopping
index k.
We assume that the condition

14a(r) = Aa(F) = Ag(r)(r = )| < nllAda(r) — Aa(F] (2.14)

holds for all r, 7 in a neighborhood of rf and some 1 < . In [4] it is proved that in this
case the Landweber iteration together with the discrepancy principle as stopping rule

IV — Aa(ri )Nl < 6 < ||vg — Aa(ro)]I; (2.15)

forn=1,...,k, and with fixed 7 > 25 ~L is a regularization method.
Now we summarize one step of the Landweber iteration of the following parts.

1. With the radial function ¢ given, solve the direct problem (2.1)- (2.3}, evaluate
Aq(r?) in term of the heat flux on I'y and compute the heat flux on I'; entering

the first term in the integral of (2.12) for the adjoint A}(r5)*.
2. Solve the adjmnt direct problem (2.9)- (2.11) with the boundary function 9 =
— Ag(r8) on I'; x (0,T) and compute the heat flux on I'; entering the second

term in the integral of (2.12) for the adjoint A} (r5)*.
3. Compute A,(r’)*vy as (2.12) by using the quadrature formula, for example tra-

peciodal rule.
4. Find new approximation for the radial function by (2.13). If for new approxi-

mation a stopping criterion (2.15) (or other suitable condition) is satisfied, then
terminate, otherwise go back to 1.

2.3 Boundary integral equation method for direct problem

We use the indirect variant of boundary integral equation method and seek the solution
in the form of a single-layer potential

u(z,t) = Z/ / q,(y, Gz —y,t - 1)ds(y)dr, (z,t) € D x (0,7). (2.16)

t==]

Here ¢; are unknown densities on I'; x (0,7}, 1 = 1,2 and G is the fundamental solution
of the heat equation in R2. Then the problem (2.1)- (2.3) can be reduced to the system
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of integral equation of the first kind

47rzf/q* (¥, 7)G(z — y,t — 7) ds(y)dr = 0,

i=1
(ﬂ:,t) € I'y x (O,T],
(2.17)

Ly [ [ atwncte-v.e- 1) ds(u)dr = pa(a 1),
=1
(CE, t) € I'z X (O, TJ,

This system of integral equations is well posed in the corresponding anisotropic Sobolev
spaces (see [13]).
We assume that the boundary curves are given through parametric representations

Ty = {zx(s) = (xx1(8), 2k 2(8)) : 0<s <27}, k=12, (2.18)

where z; : R — R?, z;, € C?[0,2x] with |z} (s)| > 0 for all s. After the transformation
of (2.17) into the parametric form and by application of the collocation method with
respect to time variable with piecewise constant basis functions we reduce (2.17) to the
sequence of Fredholm integral equations of first kind

2 2
f?‘; Zf #k,n(a)1{§g)(s, o)do = Fpn(s), s€[0,2r], £=1,2,n=1,... N, (219)
—1 V0

with the right-hand sides

n—1 2

Fypn(8) = fen(s) — L ZZ ] tkm(OV K™ (s, 0) do, (2.20)

m_l k=1

where we have denoted pin(s) = qlzk(s),tu)lzi (s}, fin(stn) = 0, fan(s tn) =
wa(za(s),tn) and where the kernels are given by

t‘l"ﬂu
K(n ™) (5,0) := Glze(8) — zx(0), ty — T) dT. (2.21)
L1
Here t,, = nT /N, n=20,..., N are the collocation points in time. The exact integration

in (2.21) yields to explicit representation of all kernels {10]. The kernels K, ( ) have
logarithmic singularities and they can be written in the form

Kég)(s,a) = —In (4 sin? 2 0) +K§?‘U(s,a), s# 0

e 2

and can also be shown that the functions K}}l) and Kéf), {=12,p=1...,N, are
continuous.

For the numerical solution of the sequence of integral equations (2.19) we propose
the discrete collocation method based on trigonometric interpolation. This method was
suggested and analyzed for one integral equation of the type (2.19) in [8]) in a Holder
space setting and in {21} in a Sobolev space setting.

For this method we choose an equidistant mesh by setting s; = jn/M , j =

0,...,2M — 1, and use the trapeciodal quadrature and the following quadrature rule
1 [ 4 8 —0O - 2MA
5 g(o)1n (; sin? < 5 ) do = ; Ryj_x; 9(3k) (2.22)
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with the weights

M-—1 ,

1 1 (—1)

Rj,-—— §M {1"}‘22;8{}5?’&35"‘ M }
me=1

Now we approximate the integrals in (2.19) using the quadrature rules and then dis-

cretize the resulting approximate equations by trigonometric collocation using the quad-

rature points as collocation points. As a result we obtain the sequence of linear systems

2IM—1 2
Z Zﬁk,n;jazk;ij =Feni, 1=0,...,2M~1,£=1,2,n=1,...,N, (2.23)
=0 k=1

with the matrix elements

1
. — i + oM I{tggjl)(si!‘g:i)r £=k,

Qek;is = 1 )
mﬁ" ka (Si,Sj), 14 -}{: k,
and with the right-hand sides Fg‘mi corresponding to (2.20). As to be expected, the nu-
merical approximations show a linear convergence with respect to the time discretization
and exponential convergence with respect to the discretization of the boundary integral
equation provided that the boundaries and the boundary data are analytic.

For evalugtion of A(T';), the boundary condition of the derivative 4’(T';;a) and the
adjoint operator A’(I';;a)* we need approximations for the normal derivative of the
single-layer potential (2.16) on I'; and I';. From the jump-relations for the normal

derivative we have

EW (z,8) = ) 1 (z, t)+
1 [ 8
'*"Z;;/o Jr, #007) Gy Gte =t =) dsd, s €
. : (2.24)
‘5‘; (37} ) == '2" Q‘Q(E, t)+

1 <[t 0
+Z’;§'/o 4/1_; %’(y: T) 81/(:8) G(m — Y, b - T) dS(y)dT, LS P2

for t € (0, 7). Next we apply to (2.24) the collocation for the semidiscretization in time
and then use the trigonometrical quadrature rules.

3 Identification of the heat conductivity

These problems arise by non-contact detection and evaluation of defects in materials.
The goal is to receive the information about the interior or another inaccessible part
of material object boundary after exterior measurements. These methods are used in
various industrial applications (for example the corrosion and cracks detection in aircraft)
and in the medical field (infrared thermography). Very often thermal imaging technique
is used which consists of applying a heat flux to a part of the boundary of the object and
observing of resulting boundary temperature. From these Cauchy data one attempts to
identify the shape of some unknown inaccessible part of the boundary.

The inverse problem consists in the identification of the geometry (location and bound-
ary) of discontinuities in a material body from the boundary measurements. These dis-
continuities are characterized by thermal diffusion coefficient.

The problem can be formulated as follows. Let D and D; be two simply connected
bounded domains in R? such that D; C D and denote the boundaries of domains by I';
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and I'y, respectively. We assume that f is a given function on 9D x (0, T), where T > 0.
Let Ty > Ty, [To, A} € (0, T), X C Iy is nonempty open subset and v, is the outward

unit normal to I's.
Then consider the solution u(x, t) of the second initial boundary value problem

ou

5 dijr(a,grad u) =0 inDx [0, 1Y, (3.1)
u=0  on D x {0}, (3.2)
u=f onTy x(0,T), - (3.3)

where thermal diffusion coefficient a has the form

ks meDla
a(z) =

1, RJEDsz\b1

with known constant k > 0 and k # 1.
The presence of discontinuos coefficients requires us to specify in which sense solutions
of (3.1)- (3.3) exist, If u is sufficiently smooth then it satisfies the parabolic differential

equation (3.1) in Dy x (0,T) and Dy x (0, T') with boundary conditions
By

A - ={ on I'y x (0, T), (34)
. O 14

[u]:;: ={ and

where 1, denotes the unit outward directed normal vector at I'; and the notation [+
abbreviates the difference of the traces of a function at I'y approaching the boundary

from Dy and from D; respectively.
The inverse problem is to determine the region [y from the known temperature f on

I'; x (0, T) and heat flux 5‘-9-% on X x [Ty, T3]

3.1 Newton method for the inverse problem

The solution of the direct initial boundary value problem (3.1)- (3.4) defines a non-
linear operator
- Ou
Ovy £ X [Ty, T]
which maps the curve I'; onto the heat Aux on the curve I'3. In this sense the solution
of our inverse problem consists in the solution of the nonlinear equation

A1) =g,

where g(z,t) = %($, t), (z,t) € X x [Tp, T1].
We use the regularized Newton method, described in section 2.1, to find an approxi-
mation of I'y by given some noisy data ¢°, a bound ¢ on the error 1g° ~ gl| and an initial

guess on I'y. _
To compute the domain derivative we use the theorem suggested by Hettlich and

Rundell (see [16]).
Let @ C RN N = 2,3, be a bounded domain with smooth boundary in the clags C2.
In the interval (0, 7) C R we consider the initial boundary value problem

A:Fl

Ou ~div(aVu)+cu=f in Q=0 x0,T), (3.5)
u=0 on 0x0, and u=0 on 89 x(0,7T),
5y

ule =0 and |a—| =0 on 6D x (0,T),
' ‘9"’“:1:
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and initial condition
u(z,0) = 6(z — z*) in R? (4.2)
Here a(z) is the thermal diffusion coefficient and we assume that a(z) = 1 + f(z) with

supp f(z) € D, ¢ is the Dirac function and 7" > 0 is a given constant.
The inverse problem consists in the following: from the given final temperature measure-

ment u(z*, T) it is necessary to find the function f.
The coefficient a in (4.1) is not continuously and for the riddance of the singularity in

(4.1) the fundamental solution of heat equation

1 T -
Gz, t;y) 1= 17 &P | 4tyl

is subtracted from u. Then the difference v(z,t) := u(z,t) — G(z,t;z*) satisfies the
following initial value problem

%;i(:z:, t)—div((1+ f(z)) grad v(z, t)) = div(f(z) grad G(z, t; z*)) in R?*x(0,7), (4.3)

v(z,0) =0 in RZ? (4.4)
The formulated inverse problem is equivalent to solving the nonlinear operator equation
F(f) =g, (4.5)

where F : H*(D) — L?(D") is the parameter-to-data mapping and ¢ is the given data.
For s > 0 the-operator F' is compact and therefore the equation (4.5) is ill-posed and the

regularization is needed.

4.1 Linearized version and its Tikhonov regularization

In {14] it is shown that for "e-small” f the nonlinear term div(f grad v) is small relative
to the term div(f grad G). Therefore for f with || f||co p < € we get the linearized Cauchy
problem related to (4.3), (4.4)

%g'(m, t) — Av = div(f(z) grad G(z, t;z*)) in R? x (0,7), (4.6)

v(z,0) =0 in RZ (4.7)
If f is sufficiently smooth then according to the integral representation of the solution
to the Cauchy problem we have the integral approach for the solution of (4.6), (4.7)

L
'u(a";, t} :I?*) — / " f(y)(gra‘dy G(:I?,t = T; y)‘l gra'd‘y G(y} T, ‘T*))dyd?_
_ 0 2

Thus the linearized inverse problem can be written as integral equation

(Af)(z) = g(z), =z € D7, (4.8)

where

1 T x — yl|? x —yl*T
AN@) =~z [ [ 10 sz enp (- Z M) ayar

and g is the given measurement in D* x {T'}.
In [14] it is proved uniqueness of the solution f € L*(D) for the integral equation (4.8).
Due to the classical Tikhonov regularization the integral equation of the first kind (4.8)

is replaced by the following integral equation of the second kind

(ol + A*A)fa = A*g, (4.9)
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Ou;,  Ous |
1.2 “n _ Y :
u, =u. and k o = oo on I, (3.9)
ut, =0 in D; i=1,2, (3.10)
where 1
_ ‘ 2 k, 1= 1, . L
fn-—f(,tﬂ),, h,i--—-:;{l, 1.:21 Z-—1,2,nw0,“.,Nt“1.

The numerical solution of the sequence of the boundary value problems (3.7)- (3.10)
is based on an indirect variant of the boundary integral equation approach (see {19}).
Note here, that in [9] the fundamental solution to the sequence of equations (3.7) is to
be found. Therefore, we seek the solution in such integral form:

@) = / &, (1) (K1, 7, 5)dS (W),

n(.’L‘ Z Z / f]m(y} 6V,( nmm("‘zﬁs P y)ds(y):

$=—1 m=—=0

where ¢t, i = 1,2, 3, n = 0, N; are unknown densities,
¢, (K, 2, y) = Ko(rir)on(ks,r) + Ky (kjr)wn(ks,7), 7 = |z — y|, z # y - fundamental so-
lution of the recurrence sequence of elliptic equations, Kp, K; ~ modified Bessel functions,
Un, Wn - polynomials.

Then the problem (3.7)- (3.10) can be reduced to the sequence of system of integral
equations of the second kind, which can be rewritten as such operator equation

mn—1

L) + (A0 =@ - L T n®) - S (AmE)@), (321
m=0 m={)
where

(AZR)E) = (D [ w@) o=l 2 )dS@), s €Ts, 0,5 =12

rj ayj(y) ¥ 3 3 H ? 3 3
UB)E) = - [ p@)®n,2.0)dS@). zeli, (FW@ =0, zels
A = ~F 5y . M0 gy Bmlen 2045w, =Ty, =12

(UB) () = g [ W)Bmlir,2,)dS0), 2 €Ty,

Gn = (25,92, )T, ¥n=(—fn,0,0)T.
Note that the integral operator A7 has a hypersigular kernel and operators AT, A7, A%
and A7 have logarithmic smgula.rlty Full discretization of (3.11) is made by Nystrom

method based on trigonometric quadrature rules (for details see [19]).

4 Parametric identification

In this case we need to identify the thermal diffusion coefficient of a body by exposing
to a temperature field and then by measurement of the temperature in some points

outside of body.
Let D and D* € R? be bounded simple connected domains that are separated. The

point sources are placed at the position z* € D*. The temperature u formally satisfies
the heat equation
ou

-—gz(a:,t) ~div(a(z) gradu(z,t)) =0 in R* x (0,T) (4.1)
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where v denotes the unit outward directed normal vector at 8D, the coefficients do not
depend on time and a = ap + xpa1 = v > 0, c = cp + xpe1, f = fo+ xpfi with smooth
functions a;, ¢;, f; € C'(Q),7 = 0,1, xp denotes the characteristic function of D.

Multiplying the differential equation (3.5) by a test function v € C*°(@Q) which van-
ishes on O} x (0, T), Greens theorem yields

L(u,v) = AT/‘lfv@dt (3.6)

with the bilinear form L(u,v) = fDT Jo(@Vu - Vu + 8uv + cuv)dzdt.

The variational problem (3.6) is considered in the usual anisotropic Sobolev spaces
Hy?(Q) = {L2((0, ), Hy (W)Y n H*((0,T), L*(Q))} for r, s > 0. For the case of homoge-
neous Dirichlet boundary values the subspaces are defined.

H*(Q)={u=Ul|g:Ue H*(Q xR),U(t,-)=0, for t<0},
A Q) ={u=Ulg:Ue H*(Q xR),U(t,") =0, for t>T}

Theorem 3.1. Let f = fo+ xpfi, fo.f1 € C'(Q) and u € ﬁ;’%(Q)) denote the

solution of (3.6) for all v € flé'%(Q). Analogously uy, s defined replacing D by the
perturbed domain D). Then u on Of) s differentiable at 0D sn the sense that there erists

w € ﬁé’%(Q)) linearly depending on h such that

1
lim up —u —w|| =0.
gtey; ”hHCl ” h ”

Furthermore w = u’ + h - Vu, where the domain derivative u'|p € ﬁé ’%(D x (0,T))

and u'|o\p € FIS’%(Q \ D x (0,T)) is defined by the solution of the initial boundary value
problem
O’ — div(aVu')+cu' =0 in Q

with o
(u']y. = —h, — on 0D x (0,T),
Ov ]
 aur”
a% = Div(h,[a]4+ Vru) — ([Bsuly + [claw — [flo)h on 8D x (0,T),
L Jdx

u =0 on 90 x(0,7),
v =0 on x0.

Here, V., u 13 the tangential (surface) gradient of a scalar valued function u, DivV -
the tangential divergence of a tangential field V.

3.2 Rothe’s method and the integral
equation method for the direct problem

Rothe’s method for parabolic initial boundary value problems consists of a time dis-
cretization by a finite difference approximation. We choose N; € N and with the stepsize
T = T /Ny consider the grid points ¢, = (n + 1)7,n = 0,1, ..., N; — 1, Then we replace
the initial boundary value problem for the heat equation (3.1)- (3.4) by the sequence of
the NV, Dirichlet boundary value problems:

i 2.4 . _ .2 4 - :
Aul, — Kiuy, = —Kjuy,_{, in Dy, 1=12, (3.7)

ui:fn on Fg, (3.8)
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where a is a regularization parameter and 4* : L*(D) " L?(D) is an adjoint operator
for A.

The numerical solution of this integral equation (4.9) can be realized for example by the
finite element method.

4.2 Newton-type methods

An alternative to Tikhonov regularization of the linearized problem are regularized
iterative methods. In this case we linearize the equation (4.5) in each step around the
current f, and find new approximation f,,1 as a solution of the linear equation

F;(fn)(fn+1 ~ fa)y =9 — F(fa). (4.10)

In general the linearized equation (4.10) will not have the continuous inverse and the
linear regularization method for its solution is to be used. As we see we need to calculate
the Frechet-derivative of the parameter-to-data mapping F.

Theorem 4.1 [18,20]. The operator F : H¥(D) — L*(D*) with s > 1 has the Frechet-

derivative F'(f) given as
F'(f)h = 0(z, T; %),
where w 18 the solution of the inittal value problem
20 (. ti*) — din((1 + /(=) grad iz, )
' (4.11)

= div(h(z) grad G(z, t; z*)) + div(h(z) gradv(z, t;2*)) in R?Z x (0,T),
W(z,0;2%) =0 in R> (4.12)

Now we can solve the linear equations (4.10) by collocation method with the future
regularization of the received linear system (see Sec. 2). On the other hand the nonlinear
equation can be solved by iterative regularized method. Some aspects of these procedures
are discussed in [20]. Note that solutions of the initial value problems (4.8)- (4.4) and
(4.11)- (4.12) have integral representations according to the classical potential theory for

the heat equation. For example
T
w(z, T;z*) = - / / h(y)(grad, u(y, 7; z), grad, u(y, T — 7;2%))dydr.
0 4D
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