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ON NUMERICAL APPROACH TO SOLVE SOME
THREE-DIMENSIONAL BOUNDARY VALUE PROBLEMS IN
POTENTIAL THEORY BASED ON INTEGRAL EQUATION METHOD

UDC 518:517.948

YA. 5. GARASYM AND B. A. OSTUDIN

ABSTRACT. In the article we consider the calculation of electronic field formed by
a number of charged electrodes which bave to be represented as unclosed surfaces.
The effective algorithms for solving this problem can be obtained by integral equation
method. We discuss two ways to solve the obtained integral equation. To approach
the problem we combine Schwartz algorithm with Green function method. The
described numerically analytical approach to solve two-dimensional integral equation
of the first kind with weak singularity in the kernels is illustrated by numerical

experiments.

Introduction

At the planning of electron-ray devices it is necessary to define an electrostatic field
being formed by the charged electrode set, which is named as optoelectronic system.
Making a suitable mathematical model each electrode has to be reasonably represented
as unclosed surface with a given potential value. The effective algorithms for solving
this problem can be obtained based on integral equation method (IEM), as since its
application associates with the finding of unknown values only on the domain bound-
ary. Nevertheless traditional using of this method is hampered over the electrode shape
complicated sufficiently. Some difficulties emerge when electrode shape corresponds to
unbounded surface as well. This and similar cases, when accepted surfaces are presented,
demand to combine IEM with Green function means and to make domain decomposition.

Formulation of the problem

Assume that some closed separated Liapunov surfaces £ (k = 1,n) are placed in
Euclidean space R3. Let () be a domain bounded by L. Let us note that

2= UZ‘“ ;mﬂs\ﬂ—: where f“f:mn;'Uzk, and
k=1

ot =Jof, 0 =R\Q", where O =0%| 5.
k=1

Suppose S = | Ji-, S; be an aggregate of piecewise smooth open separated surfaces in
unbounded domain 027, and also S = |Ji-, S;, where S; = S;(J85;, 85; is a piecewise
smooth boundary of S; (i = 1, m). |
Let us calculate the electrostatic field, being formed by the charges distributed on
surfaces ¥ and S. It is necessary to define a potential u in domain Q; = Q~\S under

boundary conditions of the first kind. The generalized treatment of the sought solution
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has to be taken into account in the problem due to the suitable mathematical means
being used during the integral equation obtaining and investigating [1].
Thus, we define the function u € H();, A), which holds on

Au=0 in Q, Yyu=go, 6Tu=gs, lim uw(P)=0, PeQ;, (1)

| Pl—+o0y

where 5 : HY(Q7) — HY2(Z), &% : HI(Q;) — HY?(S) are the trace maps 2], and

7(Q;) = {u | u, [Vl € Lo(97)},
HYOT,A) = {u | ue HY(Q]), Aue L)}

To approach problem (1) we use Schwartz method [3, 4], supposing that it is easy
to solve Dirichlet problem in domain Q for arbitrary k € {1,2, ..., n} under conditions

on £ and S¥ = |J S, where My C M’ = {1,2,..,m}, at that {Ji., Mk = M’
1. € M, |
Then, iterative procedure on I-stage (I = 1,2, ...) leads to determination of the function

uy € HY (2 \?k, A), which holds on the following for arbitrary k

Auy =0 in Q7\S,

T n
o— - — : . =+ k
Touk =" Y Ypw-1; on Tk, Tuk=- Y | 6Fwy; on S, (9
j=1,j#k j=1,3%k
lim u;k(P) =0, PE¢€ Q;,
| Pl—s00

where ug; are the solutions of the problem resembling (1) under conditions go and g+
given onto £ and S* respectively. It is easy to verify that function

oI
n . —
U = Ui; 1 Qs
i=0 j==1

is a solution of problem (1) and convergence order of this series depends on the shape of
domain (1.
Thus, boundary value Dirichlet problem (2) for Laplace equation has to be solved by

iterations in all domains 2 \?k. Therefore, without loss of generality it can be assumed
that only surface ¥ is given. Having supposed the existence of Green function in Q7,
the solution of problem (1) can be represented as u = u; + ug [5, 6], where u; and uy
satisfy the following

Aul =0 in Q_, ’}’E'LLI = g0, lim (71} (P) = 0, Pe ﬂm, (3)

| Pl—o00

Aur, =0 in Q;,'}’gugmo, c‘iiu:di:gi—ul, u31’111'1 UQ(P)WO, PGQ;.
—+00
(4)

As is well known {7], the solution of problem (3) can be produced as

5G(P, M 3
3

where G(P, M) is a Green function of Laplace operator. That is why to define u it is
necessary to solve problem (4). As it was proved [1, 5], the latter is equivalent to the
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integral equation ~
[[e@mrandsu =ap), Pes (5)
S

where 7 € (HY/ 2(.5’))’r is a sought density of surface charge, g = 3 (d— + d) +uo, at that

wo(P) = / / 36:;: ;M ) ld_(M) — do(M)] dSps, (do — di) € HY2(S).
&

Let us note that
() = {u | ue H12(5), w7 ue La(S)}

where w is a function smooth enough and vanishing near 95 as dist (P, dS). The solution
of problem (4) can be represented as

ug(P) = /f G(P,M)r(M)dSy —uo(P), Pefl,.
S

Equation (5) has a unique solution under g € H'/2(S).

Moreover, surface ¥ can be given as open and even unbounded in space. Only the
existence of Green function is an essential condition for us. The electrostatic treatment
of problem (1) means that g = g— = g = const and d = dy = ¢@_.. Thus, g = d in
integral equation (5).

The ways to solve two-dimensional integral equations

At the establishment of equation’s kind the shape of § does not really matter. The
fact is that treatment of S as Uf__l S; makes no difficulties at the numerical analysis
of integral equation (5). Thus, S is supposed to be single surface smooth enough with

niecewise smooth contour 8S. The solution of problem (1) is often independent of one
argument, in particular, in the axially symmetric case. According to these constraints,

equation (5) can be produced in the canonical form as
/ 1
Kr=(L+ N)r= / {m P +N(:z:,t)} r(t)dt = g(z), =z € (a,b), |b—a]#4.
a

(6)
where g(z) and N(z, ) are given functions smooth enough. The solvability of equation
(8) can be analyzed in various functional spaces. Thus, if its solution belongs to Haélder-
type space, which corresponds to the nature of phenomenon and the spaces H'/2(S) and
(HY/2(S))', having been used at the numerical analysis above, then it can be proved
8] that operator L is inverted continuously and operator /V is compact. This means an

~ existence of the left regulator L. So, equation (6) can be replaced by the equivalent
integral equation of the second kind. The latter is easy to solve by one of the known

methods.
Let us consider integral equation (5) in the essential space case. Let S be represented

parametrically _

S = {:r:i(cr,ﬁ) c CHD?); i=1,2,3; (o B8) € D?, D=][-1, 1]}.

Then arbitrary point M € S has coordinates {zi(a, ,ﬁi)}f‘_,_:1 and some settled point P € S
has coordinates {z;{cy, ﬂa)}?-:p where (ag, o) € D?*. Taking into account the known
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properties of Green function it is easy to verify that kernel of integral equation (5) is a
function of the distance between P and M. Square of the latter can be presented as

3

dist2(P, M) = ¥ [wi(v, B) — @:(cw, o).

o=l

According to the type of surface S, equation (5) can be represented as

fr=(L+R)yr= f / (L(a, B; a0, B) + N{as B; o, Bo)] 7(cv, B dcrd B = glaos Bo) (7)

where D(e, B fo)
o, ) = 2 Bico,
L(Cg, ﬁ, aﬂ:ﬁO) Q(a, ﬁ; &0,,80)’

at that functions D, N aat;d g are smooth enough, and
Q(e, B0, Bo) = [Ala — a)? + 2B(a — a0)(B — o) + C(B ~ Bo)?]

Thus, equation (7) is a two-dimensional integral equation with the weak smgula,nty in
the kernel. There are some difficulties to investigate its solution with a priori properties.
Moreover, there is no way to define the left regulator in the general case. That is why
to obtain the solutions two ways have been used.

The first way is to use a priori information on the sought function response. It is some
approach of the left regulator for equation (7). This general-purpose way leads to the
solution, whieh best corresponds to phenomenon in the problems with electrode shape

complicated sufficiently.
Let us represent function 1/Q(«, 3; ayp, fo) as

1/2

]./Q(Cl', ;3; g, ﬁﬂ) —_ E(aiﬁ; g, 169) -+ F((}I, ﬁ; g, ﬁg)z (8)
where
(A1 ~ o~ ag)) - (Ag ~ |8 — Bol) 8,
E(a, B; ap, By) = { Ay - Az - Q(o, B o, Bo) (e B) € 5o
0, (Cl', ﬁ) ¢ SO;
A1 18-+ D2 ja—agl—ja—opl |8~ Bl |
Fla, 8;ap, () = { Ay - Ay - Q(e, B g, fo) (@ h) € S
1/Q(a, 3; ag, o), (o, B) & So.

Here Ay, A > 0 are some parameters, and
So={(8) € D* | la = ol < A, |- ol < Ba}.

Let function 7(c, B) - (}{a, 8) be not much modified in Sp under A; and A,, being small
enough, at that 2

[(1=Aa) (1 - pp)]

N D) = T Sa) + - o) ©
where A, ¢ € {—=1,1}, o is some physical constant. The drawing of A and u depends
on location of Sy in D?%. Note that function Q(«, 3) shows the singular response of the
sought solution closed to the contour and corner points of open surface S. Using (8) and
(9), we get an approximate analogue of {7)

7(ag, fo) - oo, Bo) - 1(cxo, Bo)+
+// (D N N) (Cif: ﬁ; aﬁ;ﬁo) . T(&,ﬂ)dadﬁ = g(aoiﬁg), (aﬁgﬁo) € -D2 (]_O}
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where

L (DF) (&’Tﬁ;aeaﬂ)
I(co, o) -—/ Mﬂ(ag,ﬁa)m doadf,

So

D.F+ N is a function smooth enough. Integral equation (10) can be treated as equation
of the second kind. Thus, the proposed way is named as self-regulating method. Its
effectiveness has been shown on the test problems [9].

The second way [6, 10] to solve integral equation (7) is to apply collocation method
approximating the sought function by piecewise-linear, piecewise-square and piecewise-
cube bases. Its effectiveness rises with the simplicity of the boundary surface system
{Si}n,. Geometry of each single surface and their relative position are important. It
guarantees the solution stability of the primary problem.

Note that the obtained linear system of algebraic equations has linear combinations
of two-dimensional proper and improper integrals in place of coefficients. The use of the
high order cubic formula to approximate the integrals slows down the process to solve
boundary value problem.

The analysis of actual optoelectronic systems shows the simplicity of their compo-
nents with respect to the making in most cases. That is why, this simulation implies
that geometrically true surfaces are made to agree with the elements comprising the op-
toelectronic systems. There are rectangular and trapezoid plates and constructions made
by cylindrical surfaces. According to these constraints, most of the integrals mentioned
above here been determined analytically.

This way does not needs the procedures with the guaranteed accuracy to approximate
integrals. The time to solve whole problem slows down together with missing error of
numerical integration. Without loss of generality let us give examples to demonstrate its
features. '

To define the charge distribution on two parallel rectangular plates 5; and S5; and
spherical surface ¥ located between them with radius R, specify Cartesian coordinates
(z,, 25, 23) in R® and assume that plates are parallel to the plane z3 = 0 and the distance
between them equals D. Let S; be represented as

S; = {2i(c.8) = o, 7i(0,B) =B, (0, f) = Cs
(O!, ﬁ) c K,; = [a,;,bf,;] X [Ci,di], b; > a;, d; > Ci; Ki - Rz; 1= 1,2}

Obviously, in this case integral equation (5) is as follows

=1

Z// G(Pj: Mt)?(Mi)dSMz = é’(Pj) — g(Pj) — U (.Py) (11)
F

. 3 —
Here M; € S, is a point of integration; P; = (a:i (o, ﬁu))kml, (aofs) € A; is an arbitrary

settled point, belonging to 9;; g is a total potential value on 53 | 8ot g(Pj) = g; = const;
7 is a total charge density on Si | JSs; dSum, = o(e, 8)dadf is an element of surface S;
with respect to the local coordinates («, 3). Green function for domain located outside

the sphere with radius R has the form

I ]

1 1 R 1
G(P; M, = . S —— — ‘
(Fs M) 47 mdzst (P;, M;)  dist (P;,0) dist (P, M;) ]
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X3
F1G. 1. The points to build Green function
where
S.r . | 2 S . 2
dist2(Py, Mi) = 3 [wl (0, o) ~ zh(en0)] 5 dlist?(P;,0) = Y [w(eo, B0)]
k=1 k=1
> [ ' 2 A z} (o, Bo)
dist *(P;, M;) = # (ag, o) — zk(a, B)| 3 E1(cw, Bo) = LA - R.
3 ;[ k A ] k dist *(P;, 0)

Assuming A; = A, and using the given parameterization, we have
dist 2(P;, M) = (o — ao)? + (B - Bo)?,  dist 2(Pj, Mi) = (@ — a0)® + (8 — Bo)* + D,

at that D = dist (51, S2). To determine U;(P;) at the right hand of integral equation
(11) we use Poisson’s integral

27

R p? — R? _
Ulpr,01,¢1) = Z_]/ —57390(0, ¢) sin(0)dbayp,
™S s (R? - 2p1Reos(y) + pi

where (p1,6:,1) are the spherical coordinates of point Fj; go (0, p) = go = const is a
boundary potential value on sphere ¥ with radius R, and

cos(v) = cos(f) cos(61) + sin(8) sin(6,) cos(w — ¢1)-

To solve equation (11) by collocation method by means of piecewise polynomial basic
functions it is necessary to calculate improper integrals such as

I( b /1/1 zMy"dzdy m,n=0,1,2,3;
1n;a'1 ;m H — ,
m 0, ¥o) \/(aa:——a:o)2+(by—yo)2+d2 a,b>0;d > 0.

——

(12)
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To unify their shape let us make a change of variables, which corresponds to displacement
of the frame center to the point (zg, yp), then

| m n €2 /2 o
iy
I(m,n;a,b;z0,y0) Ea_(m+;)b_(n+1)zsz\/_?%%dzi”ﬁ
U U

i=0 j=0

er fi
where u = az — o, v = by — Yo, €1 = —a — %o, i = —b— 0, €2 = a ~To, fa =
b - yp, Jacobian
o(z,y) _ 1
A(u,v) ab’
and C? are the coefficients of binomial formula. Thus, to determine integral (12) we have
to calculate
77 uividud
u'v?dudv
J{m,n m]/ - S— 13
(. 1) vu? + v? + d? (13)

e1 fi
assuming e; < es, f1 < f2. With respect to (13) some formulas have been obtained (10].
For example,

2
1 "
J@3,1) =% >~ (-1)(3ef - 2f] — 2d) - s,
3,7=1
where

_ [2. 202
8i5 = 6i+fj + dZ.

Note that such a formula under m = 2 and n = 0 turned out to be most complicated

2
1 Cy
J{2,0) = e Z (—1)Te; fisi5+

1,721
= Ja + 8:2
| —~1Ye: (g2 — F2 ot
+ Z k;( 1)’e; (s5; f‘)ln4f1+3ﬂ
((3 f k) t=1
f e

where k = 2, L = —1, e5; = (e2 — €1)/2, ey = —(e2 + &)/2, f5; = (fa — f1)/2, f2
”(f2+f1)/21 and

¢ _ o
3 ex farl (0, 0; €93, f21> 3;11 fzﬁ) ;

I

ba(yo) + tiz(@o, ¥o)
~b1(yo) + taa(Zo, yo) |

2
e 1
I(Oamezufzpﬂ-{pf;;) — E’b‘" Z Zai(-‘zﬁ)ln
a b zp yo) s=1
b a Y o

+2d Z (—1)**? arctg (-Z- [(=1)7b; (w0) — (~1)*ai(zo) + tij(mmyo)]),
i,7=1

ai(zo) = a + (=1)izo, bi(yo) =0~ (=1Y w0, ti;(2o, %0) = \/ﬂ?(ﬂl‘a) + b%(yo) + da.

Recurring to formulation of the problem, let us note that the described numerically
analytical approach to solve two-dimensional integral equations of the first kind with
weak singularity in the kernel has to be used, when charged plate S; (i = 1,m) is an
arbitrary quadrilateral. Really, let (zi;, 245, 247), J = 1,4 be the coordinates of the plate
corners. Then corresponding parametrical equations can be produced as
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4
931'.(051 ﬁ) -~ %Zmij(foj(aw )6)} (Pj(a,ﬁ) - (1 + (__1)pa) ' (1 -+ (_1)qﬁ) )

j=1
1y 5 i1
yile, B) = Z;yij‘ﬁj(&:ﬁ): P=|3 +1, ¢= e + 1,
1 q
zi(a, B) = 7 ZZ£jQQj(CE,ﬂ), (o, B) € [-1,1] x [-1,1].

j=1
Numerical experiments

Preferring the second way of solving the integral equation, let us estimate a potential of
electrostatic field in R3-optoelectronic system (see Fig. 2). With respect to the electrodes
potential value g = 0 on cathode S, g = ~20 on modulators S; and S3, g = 15000 on
forming plates S4 and S5, g = —1000 on forming plates Sg and S5.

‘The obtained integral equation such as (7) has been solved by collocation method by
means of bilinear and biquadratic basic functions. Each plate S; (i = I,7) has been
divided into some elements, whose number is equal to 8 x 32, 4 x 8, 4 x 8, 8 x 16, 8 x
16, 8 x 16, 8 x 16 respectively.

Some of obtained potential values are given in Table 1. Distribution of the equipoten-
tial lines is shown in Fig. 3-5.
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F1G. 2. Optoelectronic system

Conclusion

The proposed technique has prospects due to the possibility to expand it on cylindrical
surfaces and well-known advantages of integral equation method.

The error estimation of charge density and its convergence complete the problem solv-
ing. The error is estimated a posteriori by means of the boundary condition satisfaction
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in the points located between the collocation points. As is well known, the approxima-
tion of integral operator and stability of approximate scheme determine the convergence
order. When the boundary value problem is formulated correctly and surfaces are not
distorted abruptly, the scheme stability is achieved under the problem solution on the
sequence of thickened grids. Thus, the convergence order depends on the approximate

order of the sought solution substantially.
Let us note that exhaustive theoretical substantiation of the collocation method being

-£.18
2.60
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TABLE 1. The potential of electrostatic field in the points of plane z = 0

Y 2 U©,y,2z) [| z U(0,y, z)
0.100 | —0.190 552.066 0.700 | —0.190 | 14649.340
0.100 0.000 950.180 0.700 0.000 | 11133.542
| 0.200 | —0.190 1.848 0.800 0.000 | 11540.765
- 0.200 0.000 1987.060 1.000 0.000 11566.096
0.300 | —0.190 3475.004 1.300 0.000 8870.075
0.300 0.000 3915.523 1.500 0.000 5090.864
0400 | —0.190 6716.549 1.700 0.000 2594 8790
0400 | 0.000 6277.450 1.900 0.000 1248.640
0.500 | —0.190 | 13809.470 || 2.100 0.000 744.238
0.500 0.000 8588.622 || 2.300 0.000 560.734
0.600 | —0.190 | 14538.963 2.500 0.000 516.259
| 0.600 | 0.000 | 10247.443 i

used here has not existed yet. Therefore, this task has to be carried out next.
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