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ALGORITHMS WITHOUT ACCURACY
SATURATION AND EXPONENTIAL CONVERGENT
ALGORITHMS FOR OPERATOR EQUATIONS

UDC 519.62; 517.983

IVAN P. GAVRILYUK

ABSTRACT. We consider the question, how many real (rational) numbers are neces-
sary in order to represent an arbitrary element of a class of functions with a given
tolerance e. This number is the complexity measure for optimal algorithms for solu-
tion of various equations. We show that this measure is polynomial with respect to

i; or lag% provided thst the solution under consideration belongs {0 usual function
classes (Sobolev classes, classes of piece-wise analytical functions etc. ) arising in ap-
plications. The algorithms arriving at this optimal measure has possess the accuracy
automatically depending on the smoothness of the solution {algorithms without ac-

curacy saturation) or an exponential accuracy. We give examples of such algorithms.

1 Why algorithms without accuracy saturation
or exponential convergent algorithms?

The problem class which we are interesting in are various operator, differential and
integral equations from various applied fields. A suitable meta-model to describe such
equations are differential equations with operator coefficients in Hilbert or Banach spaces.
These operator coefficients can be, for example, partial differential or integral operators,

Poincaré-Steklov operators etc.
Let X be a Banach space of vector valued functions v : Ry — X, t — u(t) and A be

an operator in X. We can consider the first order differential equation
u'(t) + Au(t) = 0, u(0) = ug. (1.1)

The solution operator for this equation is per definition the operator exponential or
semigroup with symbolic notation T'(t) = e “%. Given the solution operator T'(¢) the

solution of the initial value problem (1.1) can be represented by u{t) = T'(¢t)up.
One of the simplest examples of a partial differential equation from the class (1.1) is

the heat equation (of parabolic type)
31ﬁ 32@:
ot Oxz?

This problem is of the type (1.1} if we define
D(A) = {v € H*(0,1) : v(0) = 0,v(1) =0},

d%v (1.3)
T3 Vv € D(A).

For second order differential equations it is possible to consider boundary or initial
value problems.

= 0 + initial and boundary conditions. (1.2}

Ay =

sloporl by e

Key words and phrases. Algorithms without accuracy saturation, Cayley transform, parabolic and
elliptic PDEs.

28



ALGORITHMS WITHOUT ACCURACY SATURATION 29

Let us consider the following boundary value problem

d?u
for which the solution operator is per definition the so called normalized hyperbolic

operator sine family |
E(z) = E(z; A) = sinh "} (v/A) sinh(zVA),

so that u(z) = F(z)u,. |
An example of a partial differential equation from the class (1.4) is the Laplace equa-
tion (of elliptic type)

d?u  d%u
@-1-&;"2—*0, $€[011]1 ye[oil]?

u(0,y) =0, u(l,y) = ¢(y)
u(z, ¢} =0, u(z,d) =0
which can be written down in the form (1.4) with the same operator A as above.
One can consider also the initial value problem

u’(t) + Au(t) = 0, u{0) = ug, »'(0) = 0, (1.5)

for which the solution operator is the operator cosine family C(t) = C(t; A) = cos VAL,
so that the solution of (1.5) can be given by u(t) = C(t)ug . The classical example is the
wave equation

8%u %y

2 T Bas 0,t € (0,1) + initial and boundary conditions

where the operator A is defined by (1.3).
In order to give a motivation for our future considerations let us turn to the simple

question: what do we do when solving problems of above types numerically? In fact,
the problem is to represent an element of, in general, infinite dimensional space X (con-
tinuum), say a function f(t) through some n real numbers, i.e. by an element of R™.
There are many ways to do it. For example, one can get the first n Fourier coefficients of
f, values of n linear independent functionals on f etc. But the most widely widespread
approximation method is to get n values of the function on some grid. Let X € C(D)
be a compact in the function space and w = {t1,¢s,...,t,} € D be a grid on D, then
we want to represent any function f(t) € X by the vector £ = (f(t1), ..., f{tn)) with a
given tolerance ¢. Now, the questions are: a) given a grid w and the vector £ how we can
characterize the accuracy of such approximation?; b)given ¢, how many numbers (grid
points ) we need to arrive at the given tolerance €?

Let ¢ : X — R™, f — € = (f(t1), ..., f{tn)) be the mapping corresponding to the
grid w. Then d[¢~1{£)] = SUPg neg-1(e) 19 — hloo can be a measure for the goodness
of £ = ¢(f) as an approximation of f, the number £(X,R"; ¢) = sup rex dlo™" 0 o(f)]
characterizes the accuracy of the approximation in the worst case and finally the quantity
An(X,C(D)) = infs€(X,R™ ¢) shows how good an arbitrary element of X can be
extremely well represented by its grid values. We call this quantity the grid n-width
of X (see [4]). The asymptotics for n-widthes of various classes of functions arising in
practical applications are well known (see, for example [4]).

Let X = W;(M;I) be the Sobolev class of functions defined on the interval I = [0, 1]
which possess generalized derivatives up to the order r which are bounded by the constant
M in the Chebyshev norm. It is known [4], p.232 that for this class it holds asymptotically

An{W(M; 1)} < en~™+P"" with some constant c independent of n (in thel-dimensional
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case of anisotropic Sobolev space W the parameter p = (Z;-_-.z Ty 1)1 characterizes the

so called effective smoothness [4], p.81 ). Thus, in order to approximate an arbitrary

1
function of this class with a given tolerance £ we need n{®" x const ( 1)=r+~T numbers

(grid points).
Let us look how many numbers (grid points) we need in order to arrive at the same
tolerance when solving the simple initial value problem

u”(t) = f(t),t € (0,1);u(0) = u'(0) =0

with a solution from the class W3 (M; ) by a finite difference or finite element method.
We introduce the equidistant grid

. 1
wr ={t; =1irli=1,..,n,7= ;}

with n points and consider the following finite difference scheme

Yr = y(#l+ Tq)~ ~ ¥ = f{t+7/2),t € wr. (1.6)

The following accuracy estimate is known [20], p.100
ly — ul| C(w) < erlulwze,ny = en™Hulwz(o,1) (< €). (1.7)

From the last equality we receive the asymptotical number of grid points we need to
get the solution with the given tolerance e:

' 1 1\ ¢
n! P = const (-—-) > niPY < const (-—) ,

E o £

s

One can see that with the difference method we loose a lot of information about
the solution and the distance between nF2 and n{®"" increases if the smoothness of the
solution increases. This is due to the fact that the accuracy of the finite difference method
beginning with a some threshold order remains constant independent of the smoothness
of the solution.This effect is called the accuracy saturation [4]. This discrepancy between
the theoretically needed number of grid points and the ones needed in a difference or
FEM method in order to arrive at given tolerance is more critical for analytical solutions.

Let K = Iy = [-1,1] be a real interval and F, be the domain enveloped by the ellipse
with the focal points -1 and 1 whose sum of semi-axes isequal tor > 1. Let X(E,, Iy; M)
be the compact of continuous on I functions with the usual Chebyshev norm ||}/ which
can be extended analytically into £, and are bounded by a positive constant M. For

this class of functions it holds [4], p.260
An(X(Eyp, Iny M)) < Mr™™" (1.8)

so that
nl°P?) = loge™? (1.9)

points (coordinates)are required to represent an arbitrary analytic function with the

tolerance ¢.

Solutions of many applied problems are analytic or piece wise analytic. If an algorithm
for solution of such a problem uses a constant account of arithmetical operations per
coordinate then the measure for complexity of this algorithm is of the order loge™!. Let
us suppose that an algorithm to find an analytic function u(z) as the solution of an applied
problem proceeds a vector y of n, numbers where in some norm it holds jju—y|| £ #(na).
In order to arrive at the tolerance € with the (asymptotically) optimal coordinate numbers
n, x< log 1 the function ¢(n,) must be exponential. On the other hand, in order to be

able to keep the estimate nopt X 1, < logi the algorithm must possess a complexity
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C = C(ng,) of the order n, < log ¢ with respect to the account of arithmetical operations
(we say the linear complexity). If C(n,) is proportional to n,log®n, with a independent
of n, then we say that the algorithm possesses almost linear complexity. Thus, an optimal
algorithm for analytic solutions has to be exponential convergent and possess the linear
complexity and the value loge™! is a near optimal complexity measure. As a rule, the
most frequent operations which an algorithm for solving PDE or integral equations has to
carry out is the matrix-vector multiplication and the inversion of a matrix . It is known
that the complexity of the last operation is asymptotically equal to the complexity of
the matrix-matrix multiplication {1]. There exists a hypothesis [4] that there exists
an algorithm for inversion of a general (n X n)— matrix with the complexity x n%*e
(multiplications) with an arbitrarily small positive ¢ , i.e. in general algorithms with
linear or almost linear complexity are impossible. But there are special cases important
for applied problems described by partial differential equations , for example, the FFT
algorithm of almost linear complexity [1]. A new algorithmic approach with linear or
almost linear complexity in BEM and FEM represent the so called hierarchical H -
matrix [32, 321,34].

In the analysis above we have assumed that algorithms can operate with real numbers.
Indeed, it is not the case and computer algorithms operate with rational numbers only
and we need a measure to estimate the goodness of a representation of functions from
various classes by n rational numbers.

Let X be a compact in a functional space B with the norm || - ||, and f be an element
of X. Let T's be the word from an alphabet Ap representing the element f € X and U be
the encoding algorithm U : Ty — g, gs € B which proceeds an approximation gy for f.
We call the pare (T, U) the table of the element f and the quantity e; = || f — g/|| the
accuracy of the table (T’y, U). Indeed, the length of tables which we deal with in the praxis
is bounded by some positive integer N. If we consider the set {1y : f € X, I(Ty) < N}
of all tables with length < N, then ey = sup,cx & characterizes the accuracy of the
representation of elements from X by tables of the length less or equal N.

Let N(g; X) be the minimal capacity of2c - coverings of X by closed sets, then the
value H(g; X) = log N(g; X) is called the e-entropy of X (see [4], p.245).
It is known that a method using tables of the maximal length N for representation of

elements of a Banach space possesses an accuracy € if N > H(e; X) (see [4], p. 250), i.e.
H(e; X) is the length of an optimal table to represent X with the given tolerance ¢.

For the class X (Er, Ip; M) of analytic functions it holds (4], p.256

1 M
H(e; X (Er, Io; M)) = ——log" —
logr & (1.10)
M M
+O(log — loglog —).
£ 5
Since A {X(E,, Ip; M)} < Mr~™ one needs
1 M
na(e; X) = T log —+ (1)

real numbers to represent an arbitrary element of X with the tolerance €. Thus,

H(e; X(Ey, In; M)) M M
e X (B Ty M) log . + O(loglog . ) (1.11)

bits per coordinate are necessary to represent an arbitrary element of X (E,, Ip; M)
with a given tolerance . Under the assumption that we need at least one arithmetical
operation per bit the optimal account of arithmetical operations for representation of
an analytic function by n rational numbers of the maximal length NV is asymptotically
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equal log” L. This quantity is also the minimal measure for the account of arithmetical
operations for an arbitrary algorithm computing an approximation for this function.
Taking into account that for the anisotropic Sobolev space X = W} it holds [4], p.267

1

1 1
Cl(g)l/‘“’ < H(e,X) < cz[(g)l/ﬂ + log ] (1.12)
and {4}, p.234
na < (%)”/("”"”,pp >1,1<p< oo (1.13)
we get similarly that not more then
gt/ (plep—1)) 4 gp/(PP—1) oo % (1.14)

bits per coordinate are necessary to represent an arbitrary element of X = W; with a

given tolerance &.
Considering differential equations with operator coefficients one has often to analyze |

related operator equations (see e.g. [28]) which are also of independent interest. A
classical example of such equation is the Lyapunov or Silvester equation

UX +XV =Y (1.15)

with given operators U, V,Y and unknown operator X. One can also in this case reason-
ably define the smoothness of solutions of such operator equations and expect algorithms

without accuracy saturation for their numerical approximations (see e.g. [12,28]).
The consideration above is the motivation for our aims: 1. Construction of algorithms

without accuracy saturation. 2. Construction of exponentially convergent algorithms for
analytic solutions with a complexity which is polynomial with respect to log -é—

Below we give a short but not complete survey on various results about algorithms
without accuracy saturation or exponentially convergent algorithms developed with a
significant contribution by V.L.Makarov.

2 Classes of operators

We begin this section with the definition of positive and strongly positive operators
which play a fundamental role in the theory of the first order differential equations with

an operator coefficient ( see e.g. [8, 35)).

Definition 2.1. We say that an operator A is positive, if
E+={zEC: 0<t,0£|argz|§7r}u{zec: |z|_<_7}Cg(A)

and
M

1+ |z
for some positive constants ¢, v and M. The lower bound of all such ¢, for which the
relations above hold, is called the spectral angle of the positive operator A and will be

denoted by ¢(A; E) or simply ¢(A).
A positive operator A is called strongly positive if p(A4) < 3.

I(z—A)7 < forall ze Xt

Let T be a closed path in the complex plane C which consists of two rays

St = {07 7 < 0% o0}

and of the circular arc

T
{zGC: 2| =, |argz] < ¢, p(4) < p < —2-}



ALGORITHMS WITHOUT ACCURACY SATURATION 33

The domain {Ir bounded by I contains the spectrum of A. If M = 1and ¢ = I, then — A4
is the infinitesimal generator of a Cyp-semigroup [35], p. 69. If p(A4) < %, i.e. the operator
A is strongly positive, then —A is the infinitesimal generator of an analytic semigroup
135], p. 69. For an analytic function f = f(z) in Qr one can define the operator f{A) by

1) = 5 [ 1@ - 4)as

where the orientation of I' is chosen so that the spectrum of A lies on the left. In
particular, for o > 0 we have

A =

e —af,, —1
=5 Fz (z - A) " dz

where 277 ig taken to be positive for real positive values of z. If 0 = n is an integer,
then using the residue theorem it follows that the integral equals A™". Thus, for positive
integer values of o the definition of A77 above coincides with the classical definition of
(A~1)*. The operator A° (o > 0) is defined as (477) 1.

Strongly P-positive operators were introduced in 9] and play an important role in the
theory of the second order difference equations {22}, evolution differential equations as
well as the cosine operator family in a Banach space X [9] .

Let A: X — X be a linear, densely defined, closed operator in X with the spectral set
sp(A) and the resolvent set p(4). Let T'g = {z = €+ in: £ = an® + v} be a parabola,
whose interior contains sp(A). In what follows we suppose that the parabola lies in the
right half-plane of the complex plane, i.e., 79 > 0. We denote by Qpr, = {2z =€+1in: £ >
an®* + v}, a > 0, the domain inside of the parabola. Now, we are in the position to give

the following definition.

Definition 2.2. We say that an operator A : X — X is strongly P-positive if its
spectrum sp(A) lies in the domain Qp, and the estimate

1(20 — A)~Y[xx < —1 for all z € C\Or, (2.1)

1+ /]2

holds true with a positive constant M.

In [9] it was be shown that inequality (2.1) holds true in C\Qr, for an elliptic partial
differential operator £ and the parameters of the parabola I's enveloping the spectrum
were determined by the coefficients of this differential operator (see the discussion in [[|pp.
330-331]9 and [14]). If the spectrum lies in the right half-plane then the coefficients of a
parabola I'g lying in the right half-plane and enveloping the spectrum can be determined
by the parameters of I's.

Sometimes consideration of special subclasses of operators leads to an improvement
of various algorithms. These classes are defined by functions describing the behavior of
the resolvent and the spectral set at the infinity. Let I's be a curve in the complex plane
z = £ + in defined by the equation £ = fg(n) in the coordinates £, n. We denote by

Ory ={z=8+in:£> fs(n)} (2.2)

the domain inside of I's. In what follows, we suppose that this curve lies in the right
half-plane of the complex plane and contains sp(A), i.e., sp(A) C C\Qr.. Now, we are
in the position to give the following definition.

Definition 2.3. Given an operator A : X — X. Let fg(r) and fr(z) be functions such
that
(2] — A) ix—x < fr(z) for all z € C\Qr,. (2.3)
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F1G. 1. Parabolae I's and I'g

Note that I's is defined by means of fs. Then we say that the operator A: X — X is of
(sz fﬂ)“type*

Note that a strongly P-positive operator is also an operator of (fs, fr)-type with the
special choice

fs(n) =an’ +v, fr(z)=M/1+V]z]), a>0, %>0, M>0 (24
We use also the subclags of operators with an exponential function fs(7) = acoshbn in
order to get exponentially convergent algorithms or to improve the exponential conver-

gence rate.
The Cayley transform of an operator A

T, = (yI — A)(v] + A)7, (2.5)

where I is the identity operator and v is an arbitrary complex number, is well-known
in operator theory and possesses many useful properties. For example, if A is a densely
defined, strictly dissipative unbounded operator in some Hilbert space H, then the op-
erator T, is contrative. In what follows we call also other rational transforms like (2.5)

as the Cayley transforms.

3 Algorithms without accuracy saturation based on the Cayley transform

3.1 The first order differential equations with an operator coefficient

Let us consider the initial value problem

%i;- + Au =0, u(0) =0, (3.1)
where u(t) is a vector-valued functions with values in a Banach space X and A4 is an

operator in X,
The discrete initial value problem
= To n=01,...
y"}‘,ﬂ—{'l Y y‘T:n ( ) (3‘2)
Y~,0 = X0
with the Cayley transform T, = T.,(A4) = (vI — A)(v] + A)~! and an arbitrary positive

real number ~ is regarded together with problem (3.1). It was shown in [21, 31] that the
solutions of these problems and the corresponding continuous and discrete semigroups
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{T(t)}t>0 and {T7'}n>0, respectively, are connected by the formulas

z(t) = T(t) xO_Z( 1)P0p(27t) Yy ,p

p._

-0
Yyp = T»fy'nﬂ = (wl)P‘H * / 'lﬁ*n(t) x ( ) dt + :L‘o}

T(t) = Z(*l)”%@'rt) T?
p==0
- 400 ; 4
7= cp[ [ (L) asr

where

i
ep(t) = ~— e FL2 (1), lgp(®)[ <1 forall p20
(3.4)

_t e d
Vplt) = —e 5L (1) = e 5 = LO(2)

dt

with Laguerre polynomials Lz(,“). The approximate solution 2V of problem (3.1) (and
the algorithm) is defined by

N
2V (t) = Y (~1)P0p(278) Yy (3.5)

p=0
The following error estimate holds
[z (t) — z(t)| < e N7 A%zo]| (3.6)

uniformly in ¢t € [0, 00) provided that zy € D(A7),0 > 0 and ¢ is an arbitrary number
from the interval (0, ¢). This estimate shows that (3.5) represents an algorithm without
accuracy saturation.

Assumptions: We suppose in (3.1) the operator A to be strongly positive.

3.2 The second order differential equations
with an unbounded operator coefficient

3.2.1 The elliptic case. We consider the following second order boundary value prob-
lem {the elliptic case, a partial example is the Poisson equation )

d2
3 +Au =0 u(O) 0,u(l) = u;. (3.7)
The solution can be represented by
u(z) = sinh ™! VAsinh ™! VAzu; = ) vk(z)ma (3.8)
k=: |
with
= Tyﬁc-—l = Tkuz (3.9)

where 7' = (I + A) "' A is the Cayley transform, vx(z) = ‘?’21':}1()-@ and Pp(z) is the
Meixner polynomial [19] .
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The algorithm:
N
un () = ) vk(@)yx- (3.10)
k=
The error estimate:
sup |u(z) —un(@)] <€ N 47w |, (3.11)

z€[0,1]

Assumptions: A is strongly positive, uy € D(A?).

3.2.2 The hyperbolic case. We consider the following second order boundary value
problem (the hyperbolic case, a partial example is the wave equation )

d*u ,
7 F Au = 0, u{0) = up,u (0) =0. (3.12)
The solution can be represented by |
1 )
u(t) = cos VVAtug = ze ™" S @O - LY ()ue (3.13)
k==0
with
yr = 2T1Yk—1 — ToYi—2 (3.14)

where T} = (A + (6 — )21 (A +6(8 = 1)I), Ta = (A + (8 — 1)’ 1) "1 (A + 6°1) are the
Cayley transforms, Lio) (t) is the Laguerre orthogonal polynomial, ¢ is an arbitrary real
number such that § < 0.5 {9].

The algorithm:

N
u(t) = un(t) = %e-ét SEO ) - L2, (). (3.15)
=0

The error estimate:

sup |lu(t) — un(®)f < N34 A%uq, (3.16)
t€{0,7]

e > 0 is arbitrarily small.
Assumptions: A is strongly positive, ug € D(A?).

3.3 The equation X = A’

Fractional powers of operators are used in various applications. The following repre-
sentation holds true [12]

AN =) (-0 00T A€ (0,1), (3.17)
m=0
where C}(z) are the Gegenbauer (ultraspherical) polynomials,
T, = (A —a) A7), (3.18)

is the Cayley transform, « is defined by the spectral characteristics of the operator A (the
last ones for an elliptic operator A can be explicit calculated through its coefficients).

From (3.17) we get
A = o’ Z Km m (3.19)

x ?
mt
r==()
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where : )
I'iA4+m -
(A = e AA+1D - (A+m—1),
I'(2) is the gamma function, since
\ 0 ifn = 2m + 1,
C — _1\ym "
20 ={ (D"
The algorithm:
o N - o Z ()‘)m T (3_20)
m==()
The error estimate:
|(4* — AQ)z|| < N2 A% (3.21)

with an arbitrarily small € > 0.
Assumptions: A is strongly positive, z € D(A7).
3.4 The equation UX + XV =Y

Let us consider the operator equation [28]
SX=Y (3.22)

with the elementary operator S given by

SX = Z‘ U, XV; (3.23)
J......

where U, V; are given commutative subsets of a complex Banach algebra of operators,
Yisa gwen and X the unknown operator Let the following expansion be valid

M o0
Py = ) Ajm :Z Y dmez™d, (3.24)
=1

p=0 {m|+|n|=p

where m = (ma,...,MM), N = (71, 2M ),

]m]Mth, In] = Znh 2™ = 2yt 2™

Tzl
Then the solution of (3.23) can be represented by
00 M
X=3"(-1" Y dmn [ [T UNYT (V)), (3.25)
p=0 fmi+[ni=p J=1

where T, (U;) = (w1 = Us) (v I+ Uy) 71, T5,(Vy) = (61 - V;)(6;1 + V;)~! with arbitrary
positive numbers ;, 6; are the Cayley tra.nsforms of the operators U, and V; respectively.

The algorithm:

N
XN:Z(-A Z %HT'"*:(U YT57 (V). (3.26)

p=0 mi+|ni=p j=1

The error estimate:

IX — Xnll < clYIIN*M71gY, g € (0,1), (3.27)
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provided that Uj, V; are bounded operators and
|X — Xn|| S eN-THHEEY, (3.28)

provided that ¥ = (H;?_i N )Y(H;i 1 1/;-9”) is a bounded operator (smoothness property!
} for some positive o, #;, where ¢ = min (0, 6;) and € > 0 is an arbitrarily small number.
Assumptions: U;, V; are strongly positive operators.
For the particular case of the Silvester and Ljapunov equations

UX+XVB=Y | (3.29)

we get

1 A ,
X = 5 AV + 7 + 2L, T(V) + L, U)YT,(V) (3.30)

F2TJU)YTHV) + T3 T3(V) + -+,

where Y = T, (U)Y +Y T, (V). For Xy being the sum of the V +1 terms and for bounded

U,V,Y we have
qN +1

T (3.31)

X - Xnl|| L 2IYY

with g = max {|| T, (U)|, [T (V)Il} <1,
Exponentially convergent parallel algorithms for the Silvester equation were proposed

in {17].

4 Two exponential convergent algorithms

In this section we describe two exponential convergent algorithms for approximation
of solution operators for parabolic and elliptic PDEs.

4.1 Approximation of the operator exponential

Here we outline the description of the operator exponent with a strongly P-positive op-
erator. As a particular case a second order elliptic differential operator will be considered.
We derive the characteristics of this operator which are important for our representation

and give the approximation results.
Let Tp = {z=&+1in:§ = ar® + 7o} be the spectral parabola defined as above

and containing the spectrum sp(£) of the strongly P-positive operator £. The following
assertion was proved in [24,14].

Lemma 4.1. Choose a parabola (called the integration parabola) T' = {z =€+ in: {=
an® + b} with @ < e, b < 7. Then the exponent exp(—tL) can be represented by the

Dunford-Cauchy integral [6]

1
exp(~—tL) = 57 /. e (2] — L) tdz. (4.1)

The parametrised integral (4.1) can be represented in the form

-1 o0
L) = 4.2
exp(~t0) = 5 | Fln,t)dr (4.2)
with 4
F(n,t) =e (2] - L) '&%3 2 =an’ +b—in,

for which we can use a Sinc-quadrature rule [37] with 2V + 1 nodes. This quadrature

rule possesses the convergence rate O(e=¥ m), where the constant s depends on the
parameters of the integration parabola. The exponential convergence of our quadrature
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rule allows to introduce the following algorithm for the approximation of the operator
exponent at a given time value ¢.

Algorithm 4.2,

1.Given a tolerance € choose k > 1, N = (’)(logg/ 2 Z) and determine d = (1 —

%)i&_ Zp (p=-N,...,N)byz, = %(ph)2 + b — iph, where h = \/'[slﬁwadk(N_{_ 1)-@/3

2a’
— k—1
and b = yp — &L,

2. Find the resolvents (z,I — L)™', p = —N,...,N (note that it can be done in
parallel).
9. Find the approzimation expy (—tL) for the operator ezponent exp(—tL) in the form

h

expy(—tL) = 5

N
ta O . _
Z e’ 3‘“[2};—-;}}1—-wz](:z?J—-- cy . (4.3)
p=-N

Remark 4.3. The above algorithm possesses two sequential levels of parallelism: first, one
can compute all resolvents at Step 2 in parallel and, second, each operator exponent at
different time values (provided that we apply the operator exponential for a given time
vector (tl, ta, ... ,tM)).

in the case when the spectrum of £ lies inside of a curve like £ = acoshbn a similar
algorithm of the complexity (’)(lmg”“s 3’;) with an arbitrarily small positive 6 was proposed
in (16]. Combining the algorithm above with the approximation of resolvents by data -
sparse H —matrix one can get data sparse approximations of the operator exponential
with almost linear costs of matrix-vector multiplication {14].

4.2 Approximation of the normalized sinh

Let £ be a linear, densely defined, closed, strongly P-positive operator in a Banach
space X. The operator value function {(hyperbolic sine family of bounded operators [19])

E(x) = E(z; L) := sinh™! (\/E) sinh(zv/'L)

satisfies the elliptic differential equation®

d’E

dx?
where I is the identity and © the zero operator. Given the normalized hyperbolic operator
sine family F(z), the solution of the elliptic differential equation (elliptic equation)

d*u
— - Lu=0, u(0)=0, u(l) = w (4.5)
dx

with a given vector u; and unknown vector valued function u(z) : (0,1) — X can be

represented as

LE=0, E@0) =0, EQ1)=I (4.4)

u(z) = E(z; L)ur. ' (4.6)

Let Tp =4z =&+ip: €= an® + v} be the parabola (called the spectral parabola)
defined as above and containing the spectrum sp(L) of the strongly P-positive operator
L.

Lemma 4.4. Choose a parabola (called the integration parabola) ' = {z = {+1p: { =
in? + b} with b € (0,7). Then the operator family E(z; L) can be represented by the

iThe operator ginh—! A 1= (sinh A)~! means the inverse to the operator sinh A
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Dunford-Cauchy integral [6]

E(z; L) =

1
,/sinhﬁl(ﬁ) sinh(zv/z)(z] — £) " dz
r

271
(4.7)
/ F(n,z)dn,

= o
where
F(n,z) = —sinh ™' (V2) sinh(zv/2)(2dn — i) (2 - £)7}, z=an*+b—in. (4.8)
Applying the quadrature rule T with the operator valued function
F(n,z; £) = (2an — i)e(n)(p(mI - £)7, (4.9)

where
() = —sinh™" (v/y(n)) sinh(z\/9(n)), ¥(n) =an® +b —in, (4.10)
we obtain for the integral (4.1) that

N
E(z)~En(z)=h ) F(kh,z;L). (4.11)
k=—N
The error analysis is given by the following Theorem (see [15] for the proof).
Theorem 4.5. Choose k > 1, & = a/k, h = T me:f& b}N‘“I/"’ b=blk) =~ — (k —

1)/(4a) and the integration parabola Tyxy = {2 = an? + b(k) —in:n € (~o00,00)}. Then
there holds -
e—sVN

|E(z) — En(z)| < c '1 g, he—*(l"ﬂ\/f‘_’] | (4.12)

L]

where

g = \/57}—&\/[4]min{-z-, b},

= (1

(4.13)

1 ) k
Vi’ 2a’
with some positive constant ¢ independent of N.

The exponential convergence of our quadrature rule allows for a given tolerance € to

introduce the following algorithm for the approximation of the normalized hyperbolic
sine family at a given space-variable value z € (0,1) with the complexity ((log? 1).

Algorithm 4.6.
1.Give € choose k > 1, N = O(log? 1). Determine d = (1 - 71-,;)'2%,2;: (p =

=N,...,N) by z, = £(ph)? + b — iph, where h = 714]\;?:& GV and b=y - K2
2. Find the resolvents (2,1 — L)™', p = —N,...,N (note that it can be done in
parallel).

3. fFind the approzimation En(z; L) for the normalised hyperbolic operator sine
E(z; L) in the form

En(z; L) 2m Z sinh™* (,/Zp) sinh(z,/Z,) [2 ph——z](sz c)y 1. (4.14)

Remark 4.7. The above algorithm possesses fwo sequential levels of parallelism: first,
one can compute all resolvents at Step 2 in parallel and, second, each operator exponent

at different values of = (provided that we apply the operator function for a given vector
(1,22, ... ,ZMm)).
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The above approximation of the normalized hyperbolic sine family can be used in order
to get explicit approximations to the Poincaré-Steklov operators [15]. Representing the
resolvents by H-—matrix one can get data sparse approximations to all these operators
(see [15]).

Further algorithms without accuracy saturation for various applied problems were
proposed in {16, 2, 3, 10,13,18], {23]-[31]. Note, that methods developed in the papers
cited above have also contributed to the solution of various other problems from the field
of numerical analysis. It is worth mentioning the related (by investigation methods )
paper [22] where for the first time the conditions of the stability of three-level difference
schemes with unbounded operators coefficients were pointed out. The principal stability
condition is the strong P-positivity of these operators.
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