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ON SOLVABILITY OF THE FINITE DIFFERENCE SCHEMES FOR
A PARABOLIC EQUATIONS WITH NONLOCAL CONDITION

UDC 518:517.944 /947

M. SAPAGOVAS

ABSTRACT. The article deals with the problem of existence and uniqueness of the
solution of parabolic equations subject to the nonlocal condition. First of all, we
consider a one-dimensional parabolic equation with constant coefficients. Afterwards,
the results of investigation are generalized to a two-dimensional case. The article ends
with the discussion on possible ways of generalizing the results.

During the past two decades there was a significant increase in a number of research
publications devoted to differential equations of various types subject to nonlocal condi-
tions.

The reason of such an interest towards the equations mentioned above is unveiled by
the fact of permanently emerging new areas of applications of these equations.

One of the earliest publications on the application of parabolic equations subject to
nonlocal conditions describes a certain phenomenon in plasma physics [1]. This article
deals with the one-dimensional heat equation subject to the conditions

2(0,1) = o, 311,(%(;, t) _ aué:ls, t) (1)

Some other publications discuss the applications in the field of nonlinear diffusion
in semiconductor devices [2]. One- and two-dimensional nonlinear diffusion equations
subject to integral condition is discussed here. The monograph [3] considers various ap-
plications in biotechnology of the equation subject to different nonlocal conditions. A lot

of nonlocal conditions are used in various problems of mathematical biology, as well [4].
The articles [5] ~ [6] deal with the quasistatic theory of thermoelasticity, while [7] con-
siders atmosphere pollution problems. Publications {8] - [10] deal with one-dimensional

parabolic equation subject to nonlocal conditions

u(0,t) = fa(m)u(m, tydx + po(t),
: (2)

u(l,t) = /6(3:)11,(93, tYdz + w1 ().
0

The majority of authors in the field assume that functions ofz) and B(z) satisfy a
kind of ”smallness” assumption, e.g.

ja(z)] €1, |B(x)| <1 (3)

Key words and phrases. One- and two-dimensional parabolic equation, nonlocal condition, existence
and uniqueness.
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For a detailed discussion on this question see, e.g. [10]. A lot of theoretical problems
and solution methods for parabolic equations subject to nonlocal condition are revealed
in publications {11} — [21].

The author of this article substitutes assumption (3) for an assumption which is con-
siderably more general, i.e. both functions a(z) and G(z) are bounded. Throughout
the paper, the difference approximation of the differential problem appears as the main
research object rather than the differential problem itself. The main issue of the inves-
tigation is the conditions under which there exists a unique solution of approximating

system of difference equations.

1. One-dimensional case. First we consider a linear parabolic equation with constant
coeflicients

du  B%u
"-B“Emé*;:—f—q&mf(m,t), (4)
g>0, 0<z <1, 0<t<T subject to the initial condition
u(z,0) = p(z) - (5)
and nonlocal conditions
i
w(0,6) = [ afe)u(z, Odz + o) (6)
0
1
u(1,0) = [ Be)ulz, ddz +m 0 (7
0

One of the most important points is the implications of nonlocal conditions to the
existence and uniqueness of the solution of a differential problem. In the case of an
ordinary differential equation this issue can have different answers. Let us consider an

equation

d du
—(p@)3) - alau = f(a) 8)
subject to either single boundary condition and single nonlocal condition
u(0) = po, '(0) =u'(1) (9)
or
u(0) = po, u(l)=culf), 0<E<L (10)

In both cases we rose the same question: Is there a number A such that equation (8)
subject to classic boundary value conditions

u(0) = po, u(l)=p (11)

have a solution, coincidental with the solution either of problem (8), (9) or (8), (10).
For this purpose we put the general solution of equation (8) into the form

u(z) = cywy (z) + cowa () + wo(2) (12)

where w; (z), wa(z) are fundamental solutions of the corresponding homogeneous equa-
tion, and wg is a partial solution of non-homogeneous equation. Let us define wp(z),

wy (x), wa(x) in the following way:

d dw
—(p(@) ) —a@)wr =0, wi(0) =1, ws(1) =0,

a dws
2; (p(m)‘a‘;—) — Q(:If)‘IU2 — O, wz(O) = 0, ﬂ&(l) — 1,
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2 (p() 22 - glzyun = /@), w(0) = wo(1) = 0.

For solution (12), conditions (10) hold, if the following is true:

€1 == Ko,
0ty (1) + wh(1) — o (0) — uh(0)
w; (0) — wy(1)

Since wy(x) is a strictly increasing function in the interval [0, 1], we have wg(0) < wq(1)
and both c¢;, ¢ exist. Thus, problem (8), (9) subject to nonlocal condition is always
equivalent to the problem (8), (11). Now let us consider problem (8), (10). Solution (12)
will be a solution of the problem (8), (10), if following holds:

.A.:Cgm

C1 = Mg,
\ = o = CHowr(§) + cwo(€)
A== Lo = .
1 — cup(£)
Thus, the problem (8), (10) is equivalent to the classic boundary value problem (8), (11)
if and only if
cwy (€) # 1. (13)

This is the necessary and sufficient condition for the existence of a unique solution of

problem (8), (10). There exists a single value of ¢, (¢ = 1/wy(€) > 1), for which equation
(8) subject to nonlocal condition has no unique solution. If we substitute the nonlocal

condition u{1) = cu(£) in conditions (10) with the expression
u(1) = cru(§1) + cawa(€a), (14)

then inequality (13) would be transformed into the following necessary and suflicient
condition |

ciws (§1) + cowa(§2) # 1. (15)
In this case, equation (8) subject to both the boundary value condition u(0) = ux and
nonlocal condition (14), has no unique solution for all values of ¢1, ca, if the point (c1, c2)
lies on a straight line

wa (&1)x + we(f2)y = 1.

Here we confront about natural question with a the influence of nonlocal conditions on

the existence and uniqueness of the solution of parabolic differential equations. This ar-
ticle deals with the conditions of a existence of unique solution of the system of difference

equations, which corresponds to differential problem (4) - (7).
Let us approximate differential problem (4) — (7) by the following difference problem

of approximation order O(h% + 7):

w] —ud 7wl — 2u) Uy, oI F
e aui ~ 11, (16)
i=T N=1, j=1M,
gl + Ny pdly 4 . ..
u h( L ; Z aguf) + w1 = (o, u?) + 14, (17)
$xz
N -1
Bou + B
J G 1 N ¥ J — 7 7
wy = h( 2% +£};5¢ut)+u1m(ﬁ,u)+m, 18)
J=1M,

W=y, i=0,1,...,N, (19)
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where h = 1/N, 1 =T/M.
Let us consider the solution of equation (16) with a fixed value of j. This is the second

order difference equation with respect to the discrete variable function ul,i = 0, N.
Therefore, its general solution has the form
ul = c1(w1)i + c2(wa)i + (wo)]. (20)

Let us define w;, we, ws in the following way:

(wy )i-1 — 2(w1)s + (w1)it1 (q + i::)(‘!.Ul):‘ = (),

w (21)
(w1)o=1, (wi)n =0;
wp)i—1 ~ 2 i T \W2/i+1
(wadios = 2m)s t Wdeer _ (g 1y, =, (22)
(w2)o =0, (w2)~y =1
wo) . — 2(w ! w ! | | u{f“l
(wolu-y = 2un) + 10diss _ (g4 )(uol] = 57 - (23)

(wO)o = 0, (WO)N = (.

Lemma 1. The system of equations (16) — (19) has a unique solution if and only if

_|1=(ew) —(o,un)
D= “(ﬁ:wl) 1- (ﬂiw‘l) | # 0 (24)

Proof. Let us take a fixed value of j,j = 1,2,... , M. Let us determine the conditions
allowing to find unique values of ¢;, ca such that solution (20) satisfies the nonlocal con-
ditions (17) and (18). We put (20) into (17) and (18) and taking into account boundary
value conditions of systems (21) — (23), we obtain

(1 — (C!, 'wl))cl — (a, ‘IUQ)CQ = (a,wg),
{ _(.61 wl)cl - (1 - (ﬁ, wg))CQ — ('6” wg) (25)

Therefore, a unique solution of the system (25) there exists if and only if D # 0. Thus,

the Lemma is proved.
On the ground that both wy and w, are defined in terms of difference equations with

constant coefficients, let us put w; and we into the explicit form:

aa'(N——-'i)h . e-——a(N——i)h B ShO’(N . i)h

(wi)i = e —e 0 sho
( )i = e?th _ g—oih B sh oih
W2)i= Tee “e=¢  “gho °

where the number o is defined by the formula

1+ 7g T
S g— 2

choh=1+

We will refer to the following statement.
Lemma 2. If 7 — 0,h — 0, then independently of the value of v = T/h?,

i =0 i=1N-1 s=12
rﬂéf}z;wo(ws) 0, < 3

For the function (ws):, this lemma is proved in [21]. For the function (w1); the proof
is analogous.
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Lemma 3. As7 — 0 and h — 0, then

(1, ws) —» 0,8=1,2.

Proof. Since
1

/ shoz . Lin %

sh o o
0

in accordance with formula (17), we get

1

[ shox oy _ 1.0 9
(1, wp) _.f 2% 45+ O(?) = ~th T + O(h?), (27)

0

Let us find the value of the function
l . o
Zth —
o*t 2’
where o is defined by equality (26), as h — 0, and 7 — 0. We consider the next three
cases:
1) If h - 0 and 7 — 0O in the way that

V(o) =

’
0<m15-}?2—§M1 < &0

where constants m;, M; do not depend on h, and 7 then (26) implies, that oh
is also bounded by the constants, independent of h, i.e., 0 = O(h™1), as h — 0.

Therefore,
lim (o) =0.
r—0,h—0
2) If 7/h? — 0, as h — 0 and 7 — 0, then (26) implies that och — o0, i.e. g — 00.
Thus, again,
im (o) =0.
r—0,h—0

3) If 7/h® — o0, as h — 0 and 7 — 0, then (26) implies that ch — 1, i.e., ch — 0.

Therefore,
choh =1+ "22"2 - O(hY).
Equating this to (26), we get within the accuracy of O(h?) that
o =0(r"1?).
Therefore, again,
im (o)=0.

h—0,7—0
In accordance with the expression of (1, ws) and formula (27), we obtain
lim (1, w;_)) = (.

h—so00,7—0

The equality
lim (1, wl) = (.

h—co, 71—0

is proved analogously.
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Theorem 1. Let functions o(z) and B(z) be bounded in the interval [0,1]. Then there
exist numbers 19 > 0, hg > 0 such that for all 7 € (0, 79] and h € (0, hgl, the system of
equations (16) — (19) has a unique solution.

Proof. According to Lemma 1, it is enough to prove, that D # 0. In accordance with
Lemma 3, there exist 7o and hg such that (1,w,) < 1/2M, s = 1, 2. For particular values

of 7 < 715 and h < hy, we evaluate:

D= (1 o (C‘t, wl))(l - (ﬁ,?ﬂg)) - (ai wz)(a?wl) >
>(1-MQ,w))(1 - M(Q,w)) —MA —w))M(1 —w) =

—1-2mMithZ >0
o 2
Thus, the theorem is proved.

Remark. The expressions of both (1, w;) and (1, we) can be evaluated not only by means
of Lemmas 2 and 3, but also directly by means of systems (21) and (22). Dropping the

terms (q + %)(ws)i, s = 1,2, we have a trivial estimates '
0< (1,ws) < 1/2.

Next, by evaluating the value of determinant D in the same way as in the theorem, we
obtain

D>1-M >0,
if M < 1. The same kind of sufficient conditions on the existence of the solution
Jal < 1, !,Bl <1 (28)

or very close to them were obtained in a series of articles (see, e.g. [5,6], {8] — [10]).
Estimating w; and ws, in accordance to Lemmas 2 and 3, we get conditions much weaker

than (28): functions a(z) and B(z) have to be bounded.
Example. We will apply the obtained theoretical results for an equation (4) subject to
conditions of type (10):
U(O, t) = uo (t):
u(l,t) = cu(t,€) + m(t), 0<E<L

Assuming that £ = kh, where k is a integer, 1 < k < N — 1, we put equation (16) into a
difference form subject to the following conditions:

uh = 4, (17a)
nﬁv = cui, + . (18a)

For any fixed 7, (j = 1, M), we get the following necessary and sufficient condition on
the uniqueness of the solution of equation (16) subject to conditions (17a) and (18a):

c{we)x # 1 (29)
The sufficient condition of the existence of the solution is
—00 < ¢ < € (30)

where the value ¢* is defined by the equality
1
(wa)k

ct =
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According to Lemma 2,
(wo)ry — 0, as7—0,h—0.

Therefore,
c* 00, as7T—0,h—0.

In contrast to the ordinary differential equation, for the parabolic equation in the
difference form the constraint (30) is insignificant, because cx — oo, as 7 — 0 and
h — 0.

2. Two-dimensional parabolic equation. We will consider the ways of generalization
of the foregoing results in a case of the two-dimensional parabolic equation. Let us
consider the differential equation

ou _ H%u + u

Bt Oz2 = Oy?
over the domain D = {0 <z < 1, 0 <y <1, 0 <t < T} subject to boundary value,
nonlocal and initial value conditions:

qu — f(wl Y, t) (31)

u(0,y,t) = uo(y,t), (32)

?.L(L Y, t) — CU(&, Y t) + (ya t)l (33)
u(z,0,t) = golz,t), ulz,1,t) =ag(z,t), (34)
u(z,y,0) = ¢(z,y). (35)

Let us approximate this differential problem by a difference one, using the implicit
scheme:

Uij m,ruij = (ugm)z‘g + (ugy)gj o qufj - fz*kja (36)
ufij = (ND)?: (37)

“i’j = mij + (1 )?, (38)

ufp = (90)f,  uim = (91)is (39)

ugj = Pij (40)

where h = 1/N, 7 = T/K, i, =1,N =1, k=1,K,£ = sh, s is a integer, (1 < s <
N — 1),

k 0.k k
(ut,). = Uiy, — SUiy T Uiy
Tx /44 h2 )
ko 2yk k
(uk ) — Uigj—1 " 2“*3 U1
gy /i5 h2 '

We put the difference scheme in the following form. Let us take a fixed number k and
define:

k
R

— !
vy = (’U,ﬁ;,ﬂ;ﬁ'g, Lo }vi,Nﬂl) 3

(Vzz)i = ((Um)ih (vzz)iz, - - ;(vm)w—-l)’:

Uig = U

1
A is an (N — 1)-dimensional tri-diagonal matrix, built by the pattern 73 ( —1,2+h*(g+

1/7), —-1). Now, for a fixed k, we put the difference scheme (36) ~ (40) into the form

(D) = AT; + ?«;—,, 1= 1N -1, (36a)
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Ug = Ho, (373’)
Dy = CU. + U1; (38&)
- - ‘. . k k
where fio, i; and are (N — 1)-dimensional vectors, whose components are (Ho)5, (1)7,
and F, is (N —1)-dimensional vector, built of the values of the function, boundary values
(39) and initial values (40).

Note, that A is symmetric positive definite matrix. Denote its eigenvalues as A; (j =

1, N — 1). We refer to the following results [22]. |

Lemma 4. FEigenvalues of matriz A are given by

4 . ,imh 1 .
/\jmz—g—r31n2——a—-+—7_—+q, j=1N-1 (41)

For a fixed number 7,(j = 1,N — 1) define the difference function wf,z = Q,N in
terms of the solution of the following problem:

w?

1

h2

(42)
wg =0, wj’;, =],

Theorem 2. The system of difference equations (36) - (40) has a unique solution if

and only if | |
cw £1, j=12,...,N -1 (43)

Proof. Let Q be a matrix whose columns are the eigenvestors of matrix A, A be a diagonal
matrix whose diagonal elements are the eigenvalues of matrix A. Then

Q1AQ = A

Put the system of difference equations (36) — (40) into the form of (36a) — (38a). Make
the following substitution of the variables in the latter:

f,' = leﬁg.
The substitution and (36a) — (38a) yield
(zm) =An+F, i=1,N-1 (36b)
20 = pO: (37b)
ZIN = CZg + [1; (38b)

where F; = Q7' fi, fio = Q' jdo, i1 = Qfi;. Since A is a diagonal matrix, (36b) is
a system of N — 1 mutually independent equations. Therefore, the system of equations
(36b) — (38b) written down for vector z; can be expressed in terms of N — 1 separate
systems, corresponding every to j-th component of vector Z;. Thus, for any fixed 7 =
1,2,...,N — 1, we obtain

(zm)ij Nz =Fy, i=T,N-1, (36¢)
<05 — Loj (37¢)
ZNj = CZg5 + ﬁlj- (38(!)

To solve of this scalar system, the necessary and sufficient condition of existence and
uniqueness is as follows: cw? # 1. Thus, theorem is proved.
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Corollary 1. There are exactly N —1 different valuesof ¢, 1 < ¢} < ¢f < ... < ¢y < 00,
for which the system (36) — (40) of difference equations has no unique solution.
Indeed, the values A; given by (41) all are different,and 0 < w? < 1,for1 <s < N-1.

Corollary 2. As A — 0, 7 — 0, then

c;-‘—-a»oo, i=1,2,... , N-1.

Indeed, the solution w? of system (42) tends to zero for all values of i=1,N-1,s=
I,N ~1ash— 07— 0 (see Lemma 2). -

3. Generalization and Remarks. Afore mentioned techniques for parabolic difference
problems with a nonlocal condition can be applied far much wider than it is indicated
in the article. First of all we note, that this approach can be used to investigate a great
lot of various types of nonlocal conditions. It can be applied not only to examine the
existence and uniqueness of the solution of difference problems with nonlocal conditions,
but also to investigate the stability of difference equations, as well as convergence of the

difference solution.
Both extension possibilities are based upon the fact, that solution (20) of the difference

system (wn ), (wq); contains terms 7 — 0,2 — 0 convergent to zero, and the third term
(wo)? is solution of the classical problem.

The technique applies differential equations with variable coefﬁments too. In this case,
both functions (w; ); and (ws); are the fundamental solutions of homogeneous differential
equations with variable coefficients. Building up majorants of the solutions, it can be

proved that

(wg)i =0, s=1,2, i=1N~1.

Next, the technique can be used to analyze nonlinear parabolic equations, if nonlin-
earities are subject to certain constraints. Similar topics were discussed in [15], [17].

In case of two spatial variables, this approach parabolic equations advances a problem
of solving the system of difference equations (36) — (40). A possible way to deal with it
is to apply the Tchebyshev iterative method. Such methods converge, if the eigenvalues
of the main matrix are all positive even in case the matrix is non-symmetric. It is proved
in {24], that this kind of situation is very likely in the difference problems with nonlocal

conditions.
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