UNIFORM EXPONENTIALLY CONVERGENT METHOD FOR THE FIRST ORDER EVOLUTION EQUATION WITH UNBOUNDED OPERATOR COEFFICIENT

UDC 517.983;519.62

V. VASYLYK

ABSTRACT. A new algorithm is proposed for differential equations of the first order in a Hilbert space with an unbounded operator coefficient. A solution of differential equation is represented as a Dunford-Cauchy integral along a curve in the right half of the complex plane, then transform it into real integral over $(-\infty, \infty)$, and finally apply an exponentially convergent Sinc-quadrature formula to this integral. Algorithm provides possibility to perform computations in parallel.

Let us consider the initial value problem

$$u'(t) + Au(t) = 0, \quad t \in (0, T],$$

$$u(0) = u_0,$$
(1)

where $u: R_+ \to H-$ is a vector-valued function, A- self-adjoint, positive densely defined operator in Hilbert space H. $A=A^* \geq \gamma_0 I$, $\gamma_0 > 0$, $\overline{D(A)}=H$. Using the improper Dunford-Cauchy integral we can represent the solution of (1) in the form (see [1] for details)

$$u(t) = -\frac{1}{2\pi i} \int_{\Gamma} e^{-zt} R_A(z) u_0 dz, \qquad (2)$$

where Γ - is a curve in the plain \mathbb{C} , that envelops the spectrum of the operator A. For the approximate solution of the problem (1) different numerical integration formulas are used. So, using the Sinc-approximation [2] and trapezoidal quadrature rule there was built an algorithm in the work [3] for the numerical solution of the problem (1) when A is a strongly P-positive densely defined closed operator in a Banach space. The main advantages of this method are the exponential rate of convergence of algorithm and natural possibility to perform computations in parallel. In the work [5] Sinc-approximation and trapezoidal quadrature rule was used for the integral (2) in assumption that the spectrum of the operator A is enveloped by a curve $\Gamma = \{z = \xi + i\eta : \xi = \gamma_0 \cosh(a\xi)\}$.

We need to notice the slow rate of convergence of proposed algorithms at the point t=0 as disadvantage of these methods. The rate of convergence is polynomial at the point t=0 in contrast to the case when t>0 where the rate of convergence is exponential. So, it is $O(N^{-1/3})$ for the strongly P-positive operator.

Another way for the numerical solution of the problem (1) was proposed in the work [4]. It was built a method with an exponential rate of convergence in Hilbert space by means of expanding of exponent to the Fourier-Chebyshov series. Difficulties in computation of the series terms and absence of parallel implementation are disadvantages of this method. Besides at the point t=0 the rate of convergence is polynomial as for the

above mentioned methods. We have to remark that all these methods don't require the smoothness of the initial data u_0 .

Let us make assumption that $u_0 \in D(A^{\sigma})$, $\sigma \in \mathbb{N}$. Then $\exists u^* : u^* = A^{\sigma}u_0$, and the integral (2) one can write down in the form

$$u(t) = -\frac{1}{2\pi i} \int_{\Gamma} e^{-zt} R_A(z) A^{-\sigma} u^* dz =$$

$$= -\frac{1}{2\pi i} \int_{\Gamma} \frac{e^{-zt}}{z^{\sigma}} R_A(z) u^* dz. \tag{3}$$

We chose an integration curve in the form

$$\Gamma = \{ z = \xi(s) + i\eta(s) : \xi = \cosh(bs) + a - 1, \ \eta = -s\cosh(bs),$$

$$a < \gamma_0, \ b > 0, \ s \in (-\infty, \infty) \}.$$
(4)

Then (3) we can write as follows

$$u(t) = -\frac{1}{2\pi i} \int_{-\infty}^{\infty} \exp\left\{-z(s)t\right\} (z(s) - A)^{-1} \frac{b \sinh(bs) - i \left(\cosh(bs) + bs \sinh(bs)\right)}{z^{\sigma}(s)} u^* ds =$$

$$= -\frac{1}{2\pi i} \int_{-\infty}^{\infty} \exp\left\{-z(s)t\right\} \frac{\psi(s)}{z^{\sigma}(s)} (z(s) - A)^{-1} u^* ds = \int_{-\infty}^{\infty} F(s, t) ds. \tag{5}$$

Let us estimate the function F(s,t). First of all we shall see the resolvent $R_A(z)$, $z \in \Gamma$. Due to the fact that A is self-adjoint, we further get the estimate

$$||R_A(z)|| \leqslant \frac{1}{d},$$

where d— is a distance from z to the spectrum of the operator A (see [1]). Taking into account that Γ is situated in the right half-plain we have the estimate

$$||R_A(z)|| \leqslant \frac{1}{|\operatorname{Im} z|}, \quad for z : \operatorname{Re} z > \gamma_0.$$

So, we get

$$||R_A(z)||_{z\in\Gamma} \leqslant \frac{1}{|s\cosh(bs)|} \leqslant \frac{C_1}{(|s|+1)\cosh(bs)}, \quad s\geqslant \frac{1}{b}\operatorname{ar}\cosh(\gamma_0+1-a).$$

Then we can write

$$\|\psi(s)R_A(z)\|_{z\in\Gamma}\leqslant C_1\frac{\psi(s)}{(|s|+1)\cosh(bs)}\leqslant C_2b,$$

where

$$C_2 = C_1 \max_s \frac{b \sinh(bs) - i \left(\cosh(bs) + bs \sinh(bs)\right)}{(|s|+1) \cosh(bs)}.$$

For $z^{-\sigma}$ we use the simple estimate

$$\left|\frac{1}{z^{\sigma}}\right|_{z\in\Gamma} = \frac{1}{\cosh^{\sigma}(bs)\left|1+(a-1)\cosh^{-1}(bs)-is\right|^{\sigma}} \leqslant \frac{e^{-b\sigma|s|}2^{\sigma}}{\left|1-is\right|^{\sigma}} = \frac{e^{-b\sigma|s|}2^{\sigma}}{(1+s^2)^{\sigma/2}}.$$

Here we have used the estimate $(\cosh(bs))^{-1} \leq 2e^{-b|s|}$. Taking into account that

 $|\exp\{-z(s)t\}| \le \exp\{-(\cosh(bs) + a - 1)t\}.$

we have

$$||F(s,t)|| \le C_2 b \frac{\exp\left\{-(\cosh(bs) - 1 + a)t - b\sigma|s|\right\}}{(1+s^2)^{\sigma/2}} ||u^*|| \tag{6}$$

It follows from the estimate (6) that the integral (5) converges for all t and $\sigma > 0$. Let us consider u'(t)

$$u'(t) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \exp\left\{-z(s)t\right\} \frac{\psi(s)}{z^{\sigma-1}(s)} \left(z(s) - A\right)^{-1} u^* ds = \int_{-\infty}^{\infty} F_1(s, t) ds \tag{7}$$

Using the estimate of F(s, t) we have

$$||F_1(s,t)|| \le C_2 b \frac{\exp\left\{-(\cosh(bs)-1+a)t-b(\sigma-1)|s|\right\}}{(1+s^2)^{(\sigma-1)/2}} ||u^*||.$$

These estimates provide the convergence of the integral (5) for $\sigma > 0$, $t \ge 0$ and the integral (7) for $\sigma \ge 1$, t > 0. So we have proved the following result

Theorem 1. Let for the initial value problem (1) A- self-adjoint, positive densely defined operator in Hilbert space $H, u_0 \in D(A^{\sigma}), \sigma > 0$. Then the solution of the problem (1) is represented by the integral (5).

Further we shall construct quadrature formula for the integral (5) as it was done in works [3], [5]. For this purpose let us introduce the family $H^p(D_d)$ of all vector-valued functions, which are analytic in the infinite strip D_d ,

$$D_d = \{ z \in \mathbb{C} : -\infty < \operatorname{Re} z < \infty, |\operatorname{Im} z| < d \},$$

with the norm

$$\|F\|_{H^{p}(D_{d})} = \begin{cases} \lim_{\varepsilon \to 0} \left(\int_{\partial D_{d}(\varepsilon)} \|F(z)\|^{p} |dz| \right)^{1/p}, & 1 \leq p < \infty, \\ \lim_{\varepsilon \to 0} \sup_{z \in D_{d}(\varepsilon)} \|F(z)\|, & p = \infty, \end{cases}$$

where

$$D_d(\varepsilon) = \left\{ z \in \mathbb{C} : |\operatorname{Re} z| < \frac{1}{\varepsilon}, |\operatorname{Im} z| < d(1 - \varepsilon) \right\}.$$

We have to find the width d of the strip D_d , where we can analytically extend the integrand F(s,t) because we construct the quadrature rule in the space $H^p(D_d)$. Let us consider a parametric family of curves $\Gamma(\nu)$ which we obtain by substitution of $s+i\nu$ instead of s in Γ . Analyticity of the integrand can be violated if the set $\Gamma(\nu)$ intersects the part of real axis $\eta > \gamma_0$ where the spectrum of A is situated (in this case the resolvent is unbounded) or when the set $\Gamma(\nu)$ includes the point (0,0) (in this case we obtain 0 in denominator). So we have

$$\Gamma(\nu) = \{\cosh(b(s+i\nu)) + a - 1 - i(s+i\nu)\cosh(b(s+i\nu))\} =$$

$$= \{\cosh(bs)\cos(b\nu) + i\sinh(bs)\sin(b\nu) + a - 1 +$$

$$+i(\nu - is)\left(\cosh(bs)\cos(b\nu) + i\sinh(bs)\sin(b\nu)\right)\} =$$

$$= \{\cosh(bs)\cos(b\nu)(1+\nu) + a - 1 + s\sinh(bs)\sin(b\nu) +$$

$$+i\left(\sinh(bs)\sin(b\nu)(1+\nu) - \cosh(bs)\cos(b\nu)\right)\}.$$

 $\Gamma(\nu)$ intersects the real axes (Im z=0) when s=0. Then the width of the strip D_d is defined by inequality

$$0<\operatorname{Re}\Gamma(\nu)|_{s=0}<\gamma_0,$$

$$0 < a - 1 + (1 + d)\cos(d) < \gamma_0.$$
 (8)

Let

$$S(k,h)(x) = \frac{\sin\left[\pi(x-kh)/h\right]}{\pi(x-kh)/h}, \qquad k \in \mathbb{Z}, h > 0, x \in \mathbb{R}$$

be the k-th Sinc function [2] with step size h, evaluated at x. Given $f \in H^p(D_d)$, h > 0, and $N \in \mathbb{N}$, we use the notations

$$I(f) = \int_{\mathbb{R}} f(\xi) d\xi,$$

$$T(f,h) = h \sum_{k=-\infty}^{\infty} f(kh), \qquad T_N(f,h) = h \sum_{k=-N}^{N} f(kh),$$
 $\eta(f,h) = I(f) - T(f,h), \qquad \eta_N(f,h) = I(f) - T_N(f,h).$

Lemma 1. For any operator valued function $f \in H^1(D_d)$, that satisfies on $\mathbb R$ the condition

$$||f(x)|| \le c \frac{e^{-\alpha|x|}}{(1+x^2)^{\beta}}, \quad c = const, \quad \alpha, \beta > 0,$$
 (9)

the following estimate is true

$$\|\eta_N(f,h)\| \leqslant \frac{2c}{\alpha} \left[\frac{e^{-\pi d/h}}{\sinh(\pi d/h)} + \frac{e^{-\alpha hN}}{\left(1 + (hN)^2\right)^{\beta}} \right]. \tag{10}$$

Proof. As it has been shown in [3], [5] $\forall f \in H^1(D_d)$ the following estimate is true

$$\|\eta(f,h)\| \le \frac{e^{-\pi d/h}}{2\sinh(\pi d/h)} \|f\|_{H^1(D_d)}.$$
 (11)

Taking into account the condition (9) we obtain

$$||f||_{H^{1}(D_{d})} = 2 \int_{-\infty}^{\infty} ||f(x)|| dx \leq 2c \int_{-\infty}^{\infty} \frac{e^{-\alpha|x|}}{(1+x^{2})^{\beta}} dx \leq 2c \int_{-\infty}^{\infty} e^{-\alpha|x|} dx = \frac{4c}{\alpha}.$$

Then from (11)

$$\|\eta(f,h)\| \leqslant \frac{2ce^{-\pi d/h}}{\alpha \sinh(\pi d/h)}.$$
 (12)

For $\eta_N(f,h)$ we have

$$\|\eta_N(f,h)\| \le \|\eta(f,h)\| + h \sum_{|k| > N} \|f(kh)\|.$$
 (13)

For the last sum assumption (9) leads to

$$h \sum_{|k|>N} ||f(kh)|| \le hc \sum_{|k|>N} \frac{e^{-\alpha|kh|}}{(1+(kh)^2)^{\beta}} = 2hc \sum_{k=N+1}^{\infty} \frac{e^{-\alpha|kh|}}{(1+(kh)^2)^{\beta}} \le$$

$$\le 2hc \int_{N}^{\infty} \frac{e^{-\alpha hx}}{(1+(xh)^2)^{\beta}} dx \le \frac{2hc}{(1+(Nh)^2)^{\beta}} \int_{N}^{\infty} e^{-\alpha hx} dx =$$

$$= \frac{2hc}{(1+(hN)^2)^{\beta}} \frac{1}{\alpha h} e^{-\alpha hN} = \frac{2c}{\alpha (1+(hN)^2)^{\beta}} e^{-\alpha hN}.$$
(14)

Combining (12), (13), (14) we obtain the estimate (10) which completes the proof.

F(s,t) can be analytically extended into the strip D_d as it has been shown above. So we can apply quadrature rule T_N for approximating of the integral (5). Taking into account the estimate (6) we can use the lemma 1 substituting c for $bC_2e^{-at}2^{\sigma}$, α for $b\sigma$, β for $\sigma/2$. Equalizing the exponent by setting $h=\frac{1}{\sqrt{b\sigma N}}$, we obtain

$$\|\eta_{N}(F,h)\| \leqslant \frac{C_{2}e^{-at}2^{\sigma+1}}{\sigma} \left[\frac{2\exp\left(-2\pi d\sqrt{b\sigma N}\right)}{1-\exp\left(-2\pi d\sqrt{b\sigma N}\right)} + \frac{\exp\left(-\sqrt{b\sigma N}\right)}{\left(1+\frac{N}{b\sigma}\right)^{\sigma/2}} \right]. \tag{15}$$

Algorithm 1.

- 1. Given γ_0 , chose $a < \gamma_0$, b > 0, $\sigma \ge 1$, N.
- 2. For $k = \overline{-N, N}$ compute $h = \frac{1}{\sqrt{b\sigma N}}$, $z_k = \cosh(bkh) + a 1 i(kh)\cosh(bkh)$, $\alpha_k = \frac{\psi(kh)}{z_k^{\sigma}}$.
- 3. Solve the equations $(z_k A) \hat{u} = u^*$, $k = \overline{-N, N}$, where $u^* = A^{\sigma} u_0$.
- 4. Find the approximation u_N for the solution of (1) in the form

$$u_N(t) = h \sum_{k=-N}^{N} \alpha_k \exp\left\{-z_k t\right\} \hat{u}(z_k).$$

Remark. The above algorithm possesses two sequential levels of parallelism: first, we can compute all $\hat{u}(z_k)$ at Step 3 in parallel and, second, each operator exponent at different time values (t_1, t_2, \ldots, t_M) .

Now we can formulate the main result of the work.

Theorem 2. Let the assumption of the theorem 1 is valid. The approximate solution is computed using the algorithm 1. Then the estimate (15) is true.

Example. Let us consider the following problem:

$$rac{\partial u}{\partial t} = rac{\partial^2 u}{\partial t^2}, \quad u(x,0) = \sin(\pi x),$$
 $u(0,t) = u(1,t) = 0,$

with the exact solution $u(x,t) = e^{-\pi^2 t} \sin(\pi x)$.

Operator

$$A = -\frac{d^2}{dx^2},$$

defined on

$$D(A) = H^2(0,1) \cap H^1_0(0,1),$$

is self-adjoint, positive definite and $\gamma_0 = \pi^2$. The numerical solution was computed accordance with the Sinc-algorithm $(a = 1, \sigma = 1, b = 1)$ where the step 3 was performed using explicit formulas. The error $\varepsilon_N = u(x, t) - u_N(x, t)$ for x = 0.5 as a function of N is given by Table 1 and Table 2.

The estimate (15) shows that $\varepsilon_N \approx c \exp(-\sqrt{N})$. If we set $\delta_N = \frac{\varepsilon_{N/2}}{\varepsilon_N}$ then $Ln(\delta_N) \approx \sqrt{N} \left(1 - \frac{1}{\sqrt{2}}\right)$. In Table 3 comparison of $Ln(\delta_N)$ obtained from the Table 1, 2 at t = 0 and $\sqrt{N} \left(1 - \frac{1}{\sqrt{2}}\right)$ is shown in Table 3.

Table 3 shows that ε_N is in a well agreement with the estimate (15).

Acknowledgment. The author thanks V.L. Makarov for the discussion of the scientific issues connected with this work and helpful hints.

TABLE 1

t	ε 16	$\varepsilon 32$	ε64	ε 128
Ō	0.0235251	10,000-0		6.4074683×10^{-6}
0.2	0.0000513	0.0000103	$2.7622945 * 10^{-7}$	$6.2785482 * 10^{-10}$
0.4	0.0000862	$9.6637569 * 10^{-6}$	$1.5685791 * 10^{-7}$	$3.1343728 * 10^{-9}$
0.6	0.0000714	$6.7490393 * 10^{-6}$	$9.0428640 * 10^{-8}$	4.9384672×10^{-9}
0.8	0.0001015	$4.7352868 * 10^{-6}$	$2.2676695 * 10^{-7}$	$3.8738405 * 10^{-9}$
1.0	0.0000264	$4.8744014 * 10^{-6}$	$2.1572527 * 10^{-7}$	$2.6352864 * 10^{-9}$

TABLE 2

\overline{t}	$\varepsilon 256$	arepsilon 512	$\varepsilon 1024$
0	$4.2575771 * 10^{-8}$	$4.0334624 * 10^{-11}$	$2.3314683 * 10^{-15}$
0.2	$1.5860607 * 10^{-10}$	$9.5479180 * 10^{-14}$	$8.3266726 * 10^{-17}$
0.4	$3.3733536 * 10^{-12}$	$4.4002995 * 10^{-14}$	$2.7755575 * 10^{-17}$
0.6	$2.6156579 * 10^{-11}$	$2.1379599 * 10^{-14}$	$4.8138576 * 10^{-17}$
0.8	$1.2210844*10^{-12}$	$9.5989839 * 10^{-16}$	$9.9746599 * 10^{-18}$
1.0	$6.1291827 * 10^{-12}$	$2.7885950 * 10^{-15}$	$4.3977950 * 10^{-18}$

TABLE 3

N	$Ln(\delta_N)$	$\sqrt{N}\left(1-rac{1}{\sqrt{2}} ight)$
32	1.9358	1.65685
64	2.6422	2.34315
128	3.6302	3.31371
256	5.0139	4.68629
512	6.9618	6.62742
1024	9.7584	9.37258

BIBLIOGRAPHY

1. S. Krein, Linear Differential Operators in Banach Spaces, TAMS, New York (1971).

2. F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer-Verlag, Beijing (1993).

3. I.P. Gavrilyuk, V.L. Makarov, Exponentially convergent parallel discretization methods for the

first order evolution equations, CMAM, 1 No 4 (2001), p. 333-355.

4. O.I. Kashpirovsky, Yu.V. Mytnyk, Approximation of solutions of operator-differential equations by means of operator polynomials, Ukrainian Mathematical Journal, 50 No 11 (1998), p. 1506-1516.

5. I.P. Gavrilyuk, W. Hackbusch, B.N. Khoromskij, Data-Sparse Approximation to Operator-Valued Functions, Preprint Max-Planck-Institute für Mathematik in den Naturwissenschaften, Leipzig No 54 (2002).

INSTITUTE OF MATHEMATICS NAS OF UKRAINE, 3, TERESHCHENKIVSKA STR., 01601, KYIV-4, UKRAINE

E-mail address: vasylyk@imath.kiev.ua