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UNIFORM EXPONENTIALLY CONVERGENT METHOD
FOR THE FIRST ORDER EVOLUTION EQUATION
WITH UNBOUNDED OPERATOR COEFFICIENT

UDC 517.983;519.62

V. VASYLYK

ABSTRACT. A new algorithm is proposed for differential equations of the first order
in a Hilbert space with an unbounded operator coefficient. A solution of differential
equation is represented as a Dunford-Canchy integral along a curve in the right
half of the complex plane, then transform it into real integral over (—oo, o0), and
finally apply an exponentially convergent Sinc-quadrature formula to this integral.

Algorithm provides possibility to perform computations in parallel.

Let us consider the initial value problem
W (t) + Au(t) =0, te (0,7},

u(0) = ug,

(1)

where u : Ry — H— is a vector-valued function, A-- self—gdjoint, positive densely defined
operator in Hilbert space H. A = A* > oI, v > 0, D(A) = H. Using the improper
Dunford-Cauchy integral we can represent the solution of (1) in the form (see [1] for
details)

1
u(t) —_— “—2"“;;: E’:’thRA(Z)quZ, (2)
r

where I’ is a curve in the plain C, that envelops the spectrum of the operator A. For
the approximate solution of the problem (1) different numerical integration formulas are
used. So, using the Sinc-approximation [2] and trapezoidal quadrature rule there was
built an algorithm in the work [3] for the numerical solution of the problem (1) when A
ig a strongly P—positive densely defined closed operator in a Banach space. The main
advantages of this method are the exponential rate of convergence of algorithm and nat-
ural possibility to perform computations in parallel. In the work [5] Sinc-approximation
and trapezoidal quadrature rule was used for the integral (2) in assumption that the
spectrum of the operator A is enveloped by acurveI' ={z =& +in: {=" cosh{af)} .

We need to notice the slow rate of convergence of proposed algorithms at the point
t = 0 as disadvantage of these methods. The rate of convergence is polynomial at
the point ¢ = 0 in contrast to the case when ¢ > 0 where the rate of convergence is
exponential. So, it is O(N~1/3) for the strongly P—positive operator.

Another way for the numerical solution of the problem (1) was proposed in the work [4].
It was built a method with an exponential rate of convergence in Hilbert space by means
of expanding of exponent to the Fourier-Chebyshov series. Difficulties in computation
of the series terms and absence of parallel implementation are disadvantages of this
method. Besides at the point ¢ = 0 the rate of convergence is polynomial as for the
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above mentioned methods. We have to remark that all these methods don’t require the

smoothness of the initial data uy.
Let us make assumption that ug € D(A?), 0 € N. Then I u* : u* = A%ugy, and the
integral (2) one can write down in the form

1
u(t) = 5 e Ra(2)A™u*dz =
r
_ L [ R () (3)
- 2mi g ALEIE Az

r
We chose an integration curve in the form

['={z=¢&(s) +in(s) : £ =cosh(bs)+a —1, n=—scosh(bs),

(4)
a<v,b>0 s€(—-00,00)}.
Then (3) we can write as follows
u(t) = __2_}7;{ exp {—2(s)t} (2(s) — 4)"! bsinh(bs) — 7 (C(;Sah(?;) + bs Sinh(bs))u*ds _
= 2;’ / exp {—z(s)t} i((?) (2(8) — A) " urds = / F(s,t)ds. (5)

Let us estimate the function F'(s,t). First of all we shall see the resolvent R4(z), z € T
Due to the fact that A is self-adjoint , we further get the estimate

1
IRA( < 5
where d— is a distance from 2 to the spectrum of the operator A (see [1]). Taking into
account that I' is situated in the right half-plain we have the estimate

1

— orz: Re z > .
Im z| / con

| Ba(z)]| <

So, we get
1 Cy 1

< 7 "'-<-. . ) .-2 ' _"" .
1BA@er S ooahma] S ToTT Dooshizs)” ° = 52 cosh(o +1-a)

Then we can write

[HERA@ler < Cr o ms < G,

where
bsinh(bs) — ¢ (cosh(bs) + bssinh(bs))

(|s| + 1) cosh(bs)

Cg = Cl ITlax
8

For 277 we use the simple estimate
1 1 < e—ba}s[zar e—bals]za
2% |,er  cosh?(bs) 11+ (a — 1) cosh™ (bs) — is’g Sl —ids)” (1+ 32)0‘/2'

Here we have used the estimate (cosh(bs)) ™ < 2e~bls!.
Taking into account that

lexp { —z(s)t}| < exp {—(cosh(bs) + a ~ 1)t},
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we have

cosh(bs) — 1+ a)t — bo |s

(coshibs) = 1+ o)t = bolel} 6
(1+ s2) |

It follows from the estimate (6) that the integral (5) converges for all ¢ and o > 0.

Let us consider u'(t)

1F (s, 8)]] < Cop TR

o(0) = 5 / exp {—2(s)t} —2E)_ (2(s) — A) " utds = / Fi(st)ds  (7)

z7-1(s)

Using the estimate of F(s,t) we have |
exp {—(cosh(bs) — 1 + a)t — b(o — 1) 3|}
(1 + 32)("'_1)/2

These estimates provide the convergence of the integral (5) for o > 0, ¢t > 0 and the
integral (7) for o > 1, t > 0. So we have proved the following result

Theorem 1. Let for the initial value problem (1) A— self-adjoint, positive densely de-
fined operator in Hilbert space H, ug € D(A%), o > 0. Then the solution of the problem
(1) is represented by the integral (5).

lu™] -

1F1(s, )]} < Ca

Further we shall construct quadrature formula for the integral (5) as it was done in
works [3], [5]. For this purpose let us introduce the family H? (Dgy) of all vector-valued
functions, which are analytic in the infinite strip Dy,

Dg={2€C: —o0 <Rez < o0, |Imz| < d},
with the norm

N\ e
lim{ [ [F(2)|Pldz]] , 1<p<oo,
“F"HP(Dd) = § €0 (3Dd(s)
lim sup ||F(2)], p = 00,

€0 2e Da(e)

where )
Dy(e) = {z eC: |Rez|[ < = Im z| < d(1 —E)}.

We have to find the width d of the strip Dy, where we can analytically extend the
integrand F(s, t) because we construct the quadrature rule in the space H? (Dg) . Let us
consider a parametric family of curves I'(v) which we obtain by substitution of s + v
instead of s in I". Analyticity of the integrand can be violated if the set I'(v) intersects
the part of real axis n > o where the spectrum of A is situated (in this case the resolvent
is unbounded) or when the set I'(v) includes the point (0,0) (in this case we obtain 0 in

denominator). So we have
I'(v) = {cosh(b(s +iv)) + a — 1 — i(s + iv) cosh(b(s + iv))} =
= {cosh(bs) cos(bv) + i sinh(bs) sin(bv) + a — 1+
+i(v — is) (cosh(bs) cos(bv) + isinh(bs) sin(bv))} =
= {cosh(bs) cos(bv)(1 + v) + a — 1 + ssinh(bs) sin{bv)+

+41 (sinh(bs) sin(bv) (1 + v) — cosh(bs) cos(bv))} .
I'(v) intersects the real axes (Im z = 0) when s = 0. Then the width of the strip Dy is

defined by inequality |
0 < Rer(”)ls:ﬂ < Y0,
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0<a—-1+(1+d)cos(d) < . (8)

Let
gin [r(z — kh)/h]

S ) = = R

be the k—th Sinc function [2] with step size h, evaluated at z. Given f € HP (Dy), h > 0,
and N € N, we use the notations

ke Z,h>0, a:ER

I(f) = f f(€)de,
R

o0 . N
T(f,h)=h > f(kh), TIn(fiR)=h Y [(kh),

k==-—00 k=-—-N

Lemma 1. For any operator valued function f € H' (Dg), that satisfies on R the con-
dition
walml
f(x , c=const, o,8>0, 9
@] < e s (9)

the following estimate s true

- =

B < c eﬁfrd/h e~ hN |

(10)

(1 -+ (hN)z)ﬁ_:

Proof. As it has been shown in [3], [5] V f € H(D,) the following estimate is true

—nd/h

(W < sgmmtrari Wl (11)

Taking into account the condition (9) we obtain

e—alz|

£l (o) =2 / 7@ do < 26 / ptes e [ eeean =%

Then from (11)

2ce

For nn(f, h) we hﬁvé
lnn (F R < In(F I+ R > (kR (13)

k>N

For the last sum assumption (9) leads to
o—clkh] 00 e—alkh]

Ry f(kR)|| < ke Z T 2he Y T G <

k| >N Ikl:::-N k=N+41

00 o0

—ahz
< 2he © ﬁd:c < 2he : ﬂfe““hzdmz
J (14 (zh)?) (1+ (VR)2)° ]

_ 2hc 1 o—ahN _ 2c e~ OhN (14)
(1+ (hN)2)P ch a(l+ (hN)zy6
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Combining (12), (13), (14) we obtain the estimate (10) which completes the proof.

F(s,t) can be analytically extended into the strip Dy as it has been shown above.
So we can apply quadrature rule Ty for approximating of the integral (5). Taking into
account the estimate (6) we can use the lemma 1 substituting c for bC2e~ %27, a for bo,

3 for o /2. Equalizing the exponent by setting h = 7615—1\” we obtain

C,e—0t90+1 | 2exp (-—27rd\/borN) exp (——\/bcrN)
“"?N(F: h)” g - + 0/2
o '1—exp (—27rd\/b0'N) (1+ %) S

-—

(15)

Algaorithm 1.

1. Given v, chosea <, 06>0,02>1, N.
_ 1
2. For k = —N, N compute h = T

zx. = cosh(bkh) + a — 1 — i(kh) cosh(bkh),

X — ﬂgl
Solve the equations (zx — A) 4 = u*, k = —N, N, where u* = A%ug.

Find the approximation uy for the solution of (1) in the form

ol

N
’U,N(t) = h Z O €XP {—zkt} '&(Zk).
k=—-—N

Remark. The above algorithm possesses two sequential levels of parallelism: first, we can
compute all %#(z) at Step 3 in parallel and, second, each operator exponent at different

time values (f1,t2,...,tnm).
Now we can formulate the main result of the work.

Theorem 2. Let the assumption of the theorem 1 is valid. The approzimate solution s
computed using the algorithm 1. Then the estimate (15) is true.

Example. Let us consider the following problem:
ou _ 0%
ot  ot?’
u(0,t) = u(l,1) =0,

u(z, 0) = sin(nx),

with the exact solution u(z,t) = e~ tgin(n).
Operator
d2

dx?’

A=

defined on
D(A) = H*(0,1) N Hy(0,1),
is self-adjoint, positive definite and v = 2. The numerical solution was computed
accordance with the Sinc-algorithm (a = 1, & = 1, b = 1) where the step 3 was performed
using explicit formulas. The error en = u(z,t) — un(z,t) for z = 0.5 as a function of N
is given by Table 1 and Table 2.
The estimate (15) shows that ey ~ cexp(—vN). If we set oy = ZN/2 then Ln(dn) ~

EN

vN (1 o -%) . In Table 3 comparison of Ln(éy) obtained from the Table 1, 2 at ¢ =0

and VN (1 — 715) is shown in Table 3.
Table 3 shows that £y is in a well agreement with the estimate (15).
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TABLE 1

€6 [e32 64 ~ |e128

0.0235251 |0.0033945 0.0002416 6.4074683 x 10~°

10.0000513 [0.0000103 2.7622945 10 7 |6.2785482x 10717 |

0.0000862 |9.6637560 » 10~ © |1.5685791 107 |3.1343728 + 10~°
0.0000714 |6.7490393 * 10~© [9.0428640 » 10-° |4.9384672 + 10°

0.0001015 |4.7352868 » 10-0 |2.2676695 » 10~ |3.8738405 x 10~ |

0.0000264 |4.8744014 » 10 © |2.1672527 » 10" |2.6352864 » 1077 |

Sl

= ojololo
SO HW

TABLE 2

[t [e256 512 £1024

0 |4.2575771 * 10-° |4.0334624 » 10~ 11 |2.3314683 » 10~ 15
0.2 |1.5860607 » 10~ 10 |0.5479180 » 10~ 14 [8.3266726 + 1017
0.4]3.3733536 % 10-f214.400“2995 ¥ 10124 [2.7755575 % 1017
0.612.6156579 + 10~ [2.1370500 % 10 1% |4.8138576 % 10~ |
0.8 |1.2210844 » 1012 |9.5089839 10~ 1° [9.9746599 * 10~ %

1.0]6.1291827 » 10~ 12 |2.7885950 10~ ° |4.3077950 % 10 *°

TABLE 3

N |Zn@n) [VN (1- 25)
32 |1.9358 |1.65685
64 [2.6422 {2.34315
128 |3.6302 |3.31371
256 |5.0130 |4.68629 |
512 |6.9618 |6.62742
1024 {9.7584 |9.37258

S
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