2KypHas 004YHCII. IPUKJI. MATEM. J. Comput. Appl. Math.
Bum. 1, 2005, crop. 3-16 No. 92, 2005, pp. 3-16

NONSYMMETRIC GALERKIN FINITE ELEMENT
METHOD WITH DYNAMIC MESH REFINEMENT
FOR SINGULAR NONLINEAR PROBLEMS

S. N. DIMOVA, T. P. CHERNOGOROVA

ABSTRACT. The paper is devoted to the numerical study of the model of heat struc-
tures in the radially symmetric case. The existence and the structural stability of its
blow-up self-similar solutions beyond some critical exponents are investigated. Be-
cause the critical exponents appear in space dimensions N > 3, a special attention is
given to the singularity at the origin. In order to deal successfully with this singularity
we use the nonsymmetric Galerkin Finite element method. To proceed successfully
with the single point blow-up, a special adaptive mesh refinement, consistent with
the self similar law is made.

1. THE BLOWUP PROBLEM

The paper is devoted to the numerical study of the model of heat structures [17]
uy = div (ugradu) +uP, ze RN, t>0, >0 p>1,

(1)
u(0,2) =up(x) >0, wuy#0, sup wuy < o0,
zeRN

in the radially symmetric case. This model was introduced about 30 years ago in [18]
and it was increasingly investigated in the school of A.A. Samarskii. In spite of the
fact, that the book [17] and many works were devoted to analyze the complexity and the
unusual properties of the processes, described by this model, many problems remain open
by now. The presence of two medium parameters o and 3, different space geometries
and dimensions N, pose challenging questions and make the problem (1) interesting
from mathematical and computational view points. It is worth mentioning, that in
many cases the success was achieved by the combination of theoretical investigations
and computational experiments.
In this work we consider the radially symmetric variant of problem (1):

wp =NV )+, 0<r < oo, t>0, (2)
w(0,r) =up(r) >0, r>0, wug#Z0, supuy<oo. (3)
r>0

It is well known [17], that for ¢ > 0, 8 > 1 equation (2) admits blowup self-similar
solutions (s.-s.s.) of the form:

us(t,r) = (1= t/To)"V0700(), €=r/(L—t/T)™ "V, m=(F-0-1)/2, (4)
where Ty > 0 is the blowup time.
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The function 6(£) > 0 satisfies the nonlinear ordinary differential equation (self-similar
equation)

1
_gN—l

M ey 1 8 _
(ﬂ—l)TogeJr(ﬂ—l)Toe 0" =0, 0<€< o0 (5)
and determines the space-time structure of the self-similar solution u,(t, 7).

The invariant solutions, and in particular, the self-similar solutions, form an important
class among all the possible solutions of partial differential equations (PDE). In many
cases they are attractors of the solutions, which are determined from wide classes of
initial data. Even more, the s.-s.s. describe the asymptotic behavior of these classes of
solutions and the possible singularity formation, when the initial data are “forgotten”.
In the presence of arbitrary boundary conditions the invariant solutions determine the
behavior of the noninvariant ones for times, which are away of the initial time, but smaller
than the time, when the boundary conditions begin to act, so they are intermediate
asymptotics [2].

Much efforts have been done to investigate the existence and the number of the dif-
ferent solutions of equation (5) under the conditions:

0'(0) =0, 6(§) — o0, &— oo. (6)

(gN—lea’e/)/ +

It occurred that the problem (5), (6) is very rich of different kind of solutions, depending
on the parameters o, 5 and N, determining thus different types of blow-up solutions [17].
Mentioning the cases 1 < 8 < o +1 (total blow-up) and 8 = o+ 1 (regional blow-up), we
will stress our attention to the case 8 > o+ 1 (single point blow-up), where the following
critical exponents have appeared by now (see [17], [11], [14] and the references therein):
Bf = o +1+2/N (Fujita’s exponent);
Bst:(o+1)N/(N_2)7NZ3; ﬁstZOO, N:172a
Bs=(c+1)(N+2)/(N—2), N>3 (Sobolev’s exponent); s =00, N =1,2;
Bu=(0+1)(1+4/(N—-4—2/N—1)), N>11; B, =0, N < 11;

3(0 + 1) + (62(N — 10) + 20(50 + 1)(N — 10) + 9(o + 1)?)1/2
N—-10 ’
For 8 < (¢ and arbitrary initial data ug(r) # 0, the solution of problem (2), (3)
blows up in finite time. For 8 > (§; the problem (2), (3) has global and blowup solutions
depending on the initial data ug(r).
For 8 > f3,; there exists singular stationary solution of equation (2): Uy (r) = cor™ /™,
and singular solution of equation (5):

0s(6) = etV o= [(N =2~ (o +1)/m)/m]'*™, m=(@-0c-1)/2. (7)

N >11.

ﬂp:1+

The critical Sobolev’s exponent [, determines the existence (8 > () and nonexistence
(B < Bs) of strictly positive nonsingular stationary solutions of equations (1) and (2). It
is connected with the possibility of nontrivial continuation of the blowup solutions for
t > Tp as well [11].

The exponents 3, and 3, are connected with some properties of the singular stationary
solution Uy (r) and with the existence of special kind of blowup solutions to problem
(2),(3), which have a nontrivial continuation for ¢ > Ty [11].

As we know, the concept of continuation of the blowup solutions is posed first in the
work [1] for a semilinear heat equation. If the continuation of the solution is trivial, that
is, u(t,r) = oo for t > Tp, the blowup is called complete; if u(t,r) #Z oo for t > Tp, the
blowup is called incomplete.

Let us return back to the self-similar problem (5),(6). It has been proved in the book
[17], Chapter 4, that for c +1 < f < 0o, N=1,2,and o0 +1 < 8 < 5, N > 3, the
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problem (5), (6) has strictly monotone solution #(£) > 0. Ten years later Galaktionov
and Vazquez [11] extended this result to the range 5, < 8 < (,: there exists a positive
solution of (5), (6), which is strictly monotone with asymptotics

0(&) = co& V(1 +0(1)), €—o00, co> cCs, (8)

¢s being the constant in the singular solution 6,(€) (7), and for which the s.-s.s. (4) blows-
up completely. A hypothesis is made there ([11], p.56), that the corresponding to 6(&) self-
similar solution us(¢,7) is asymptotically (structurally) stable and describes the behavior
ast — Ty (ug) of a wide class of solutions to (2) with initial data w(0,7) = ue(r) > 0,
that are eventually monotone and satisfy u; > 0 in {u > 1}. This conjecture as well as
the existence of solutions to (5),(6),(8) for 8 > (3, are not theoretically proved by now.
Some numerical results were briefly reported in [4].

The aim of this work is:

— to present numerical techniques, appropriate for the singularity at the origin of both
- the self-similar and the parabolic equations, as well as for the singularity in time of the
parabolic problem;

— to investigate numerically the accuracy of the method for solving the self-similar
problem (5),(6),(8) in the case of strong singularity at the origin (big values of the space
dimension N);

— to show the effectiveness and the reliability of this techniques when applied to
investigate the structural stability of the blowup s.-s.s. wus(t,r), corresponding to the
monotone solutions 6(¢) > 0 of (5),(6),(8) for 8s < 8 < B, (which are proved to exist),
as well as for the ranges 3, < 8 < 3, and 3 > 3,.

2. NUMERICAL METHODS

In order to deal successfully with the strong singularity at the origin (we are interested
in big values of N) of both the self-similar equation (5) and the parabolic equation
(2), we use the nonsymmetric Galerkin Finite Element Method (GFEM). It is proposed
and theoretically investigated for linear singular at the origin problems in [9] and for
semilinear ones — in [10].

The idea of the nonsymmetric method is to apply GFEM on a special nonsymmetric
form of the original self-adjoint problem. For example, if the GFEM with continuous
polynomial basis functions of degree k — 1 is applied on the linear radially symmetric
problem, written in the form

—(@N Y N T rqu =2V 0< 2 <1, W/(0) =u(l) =0,
then the approximate solution uy satisfies the estimates:
1N D2 (uy, = w)|| L, < CRF||la N D2,

found in [19] by using a straightforward variational technique, and

k
1
[ (lng) I

k =1when k =2 and k = 0 when k > 2, found in [13] by a more refined analysis. It was
mentioned in [9], that even in the case k > 2, when the theoretical order of convergence
is optimal, the numerical experiments show a marked loss of accuracy near x = 0. For
the GFEM, applied on the same equation, but written in the nonsymmetric form

—(zu) = (N =2)u' 4+ zqu=2zf, 0<ax <1, 4(0)=u(l)=0
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for N > 2, an estimate of optimal order has been found for £k = 2 as well in the paper
[9]:

llun = ullpo < CHF|[uP ], k>2. (9)
The numerical tests, reported there, show good accuracy of the approximate solution
just to the origin.

Realized and numerically tested on the nonlinear problem (5)-(6) for N = 3 in [3],
the nonsymmetric GFEM occurred to give the optimal, second order of convergence just
to the origin when using linear finite elements. Here we investigate the accuracy of the
nonsymmetric GFEM for N > 3 and generalize it for the nonlinear parabolic equation

2).

2.1 Nonsymmetric GFEM for the self-similar problem.. For convenience and
without loss of generality we first set 7o = 1/(8 — 1) in equation (5) and then we write
it in the following nonsymmetric form:

L(6) = — (£670)) —4(N —2)0°0' + m&™P 0" + 0(1—6°"1) =0,  (10)

where y =0 for N =1,y =1for N > 1. From the known asymptotics (8) we derive a
boundary condition of third kind, so in the case § > o+ 1 we solve the problem (10),(11):

00)=0, 0@+ 1/mol)/1=0, 1> 1. (11)

In computations we choose the length ! of the interval so, that the asymptotics (8) is
fulfilled enough well: further increasing of [ does not influence the numerical solution (in
an appropriate range of accuracy). For completeness we give the boundary conditions
for the case 1 < < o+ 1 as well:

0(0)=0, 6(1) =0 (12)

where we chose [ so as to avoid the influence of the boundary condition on the solution
(it is possible because of the finite support of the solution in this case). The further main
steps of the method are given below.

According to the Continuous Analogue of the Newton’s Method (CANM) [12] the
stationary problem

L) =0 (13)
is reduced to the evolution one

DO = L0), 0E0) = 00(6). (14)

by introducing a continuous parameter ¢, 0 < ¢t < oo, on which the unknown solution
depends: 0 = 6(¢,t). By setting v = 96/9t and applying the Euler’s method to the
Cauchy problem (14), one comes to the iteration scheme

L'(0r)vr = —L(0k), (15)
Opr1 =0 + v, 0<m <1, k=0,1,...,

Or = 0k(§) = 0(&,tk), vk = vi(§) = v(§, tr), (16)

00(&) — initial approximation.
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For the nonlinear operator L(#) from (10) the equation (15) takes the form:

— (579gv;€)/ — (N — 2)0(92710;1);C — (5709271%)/ -
—~(N = 2)07v), +mE vy + E7(1— 507 oy, = (17)

= [ (£7070;) — V(N — 2)676}, + mE 0, + €(1 — 67 71)6y).

Let us mention, that for N = 1,2 it is the same as for the symmetric equation (5). If

00(&) satisfies the boundary conditions (11) or (12), the iteration corrections vy (€) must
satisfy:

v,(0) =0, v, (1) + (1/m)vk()/Il=0 for B>0+1, (18)

v,(0) =0, v(l)=0, for 1<fB<o+1. (19)

The finite element discretization is made on the problems (17),(18) and (17),(19) in weak

form:
Find a function vi(§) € H'(0,1), which satisfies the identity

(L' (Ox)vg, w) = —(L(Or),w), Yw € HL(0,1) (20)

and the boundary conditions (18) or (19) respectively. Here (.,.) is the standard L? inner
product, 05(&) is a given function, which satisfies the boundary conditions (11) or (12),
O € D = {0(€) : 07, do7 T Jde € L2(0,1)},

HL(0,1) = {w(€) : w, &’ € L*(0,1), (1 — a)w(l) = 0}.

The value oo = 1 corresponds to the condition (18), and oo = 0 — to the condition (19).
The identity (20) is

1
/{ﬁ'ya(ﬂk)v;w’ + [€q1(0k) — mET + (N = 2)a(0y)] vew'+
0

+[€7q2(0) — (1 + v)m& ] vpw} d€ + y(N — 2)a(Or )vrw|e—o+

+a [mg ™ + ((L+0)/m)E ™" — (N = 2)) a(0h)] viwle— =

(21)

!
T /{gm(ek) pw' 4 [=mEHT 4 y(N — 2)a(0k)]0xw’+
0
+[€7q3(0k) — (1 +7)m&” + v(N — 2)q1(0x)10rw} d§—
—Y(N—=2)a(0k)0rw|e=o—a[m&™7 —(v(N —2) — (1/m)€" " )a ()] 0pwle=1,
where the functions a, g1, g2, g3 are defined as follows:
a(fx) =07, q(bk) = 062’10;,
(22)

w0) =1-8007" g6)=1-6".
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For discretization of (21), (22) linear finite elements on quasiuniform partitions {0 =
§1 <& < <&n=1I &t1— & < h} of the interval [0,] are used. A system of linear
equations is thus obtained for the vector Vi of nodal values of the iteration corrections
Vi = U(é-a tk?):

A0y) Vi = —B(01)O%. (23)
The matrices A and B are nonsymmetric band matrices, @y, is the vector of nodal values

of the function 8, = (¢, tx). To solve the system (23), LU decomposition of the matrix
A(0)) is made at every iteration step.

The iteration parameter 73 in (16) is determined by the extrapolation formula [16]:

Ok—1
) Op—
51@)7 k< O0p—1,

Ok—1
Ok

min <I,Tk1
T =

) , Ok > Ok—1.

maXx <T0,Tk1

Here ¢y, is some norm of the residual L(6y). In the computations the uniform norm of
the discrete residual is used:

6k = max |B(9k)(:)k|- (25)
nEwWh

The value of 7y was taken to be between 0.01 and 0.1. When §; decreases, the algorithm

(24) ensures the convergence of 7 to 1 (1, — 17), and the rate of convergence of the

iteration process (15),(16) becomes quadratic. The stop criterion is d; < ¢ for some small

d. When it is fulfilled we take 6 = 0(&,t) as approximate solution of problem (10),(11)

(or (10),(12)) and set 0, (&) = 0(&, tx).

The method of choosing initial approximations for the iteration process (15),(16) will
not be presented here. It is the same as for the symmetric problem, described in [6].
For the case 8 > o + 1 it relies on the linearization around the homogeneous solution of
equation (5) and the sewing of its solution with the known asymptotics (8). Because we
are interested here in the simplest monotone solutions of problem (5), (6), this choice is
not so important, as it is for the multiple nonmonotone solutions. Of course, the rate of
convergence of the iteration process depends essentially on this choice. In the examples
below the method from [6] is used.

The numerous experiments made with the nonsymmetric GFEM and linear finite
elements show its fast convergence (usually 15 — 60 iterations are enough for § = 10~7)
and optimal, second order of accuracy at the nodal points just to the origin. In the table
bellow the values of the approximate solution 6 (&) of problem (10),(11) with parameters
o =2,0=06.5, N =10 are given at some common points of 4 embedded meshes with
steps 0.2,0.1,0.05 and 0.025. The approximate order of accuracy « is computed by the
method of Runge:

ey 0©) —8(©
= 00u(©)

on the meshes with steps (0.2, 0.1, 0.05) and (0.1, 0.05, 0.025). It is shown in the columns
”a” of the Table.
Table: Order of accuracy of 6,(§) forc =2, 5=6.5, N =10

/In2,
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h E=00 a €=08 a €¢£€=16 a €£€=24 a €£€=32 «
0.20 1.4482300 1.3243517 1.1036388 0.9257791 0.7997794
0.10 1.4480463 2.04 1.3238326 2.00 1.1038749 2.02 0.9262001 1.98 0.8001835 1.98
0.05 1.4480015 1.98 1.3237025 1.99 1.1039333 2.01 0.9263064 2.00 0.8002862 2.00
0.025 1.4479902 1.3236697 1.1039478 0.9263331 0.8003120

h E=40 a €¢=60 a €¢=10. o €¢=15. a ¢E=20. «
0.20 0.7090248 0.5654267 0.4230292 0.3356525 0.2847938
0.10 0.7093822 1.97 0.5656965 1.97 0.4232200 1.97 0.3358005 1.96 0.2849181 1.96
0.05 0.7094733 1.99 0.5657655 1.99 0.4232688 1.99 0.3358384 1.99 0.2849500 1.99
0.025 0.7094961 0.5657828 0.4232811 0.3358479 0.2849580

For the same problem, with the same initial approximations, the iteration process,
based on the symmetric GFEM [6], does not converge at all. It is convergent for some
smaller values of N (the range in N depends on the other parameters as well). For
example, it gives an order of accuracy about 1.7 at the origin for N =3, 0 =2, =3

[5].

2.2 Nonsymmetric GFEM for the parabolic problem.. We first use the Kirchhoff
transformation of the nonlinear heat-conductivity coefficient:

G(u) = /0“ s7ds =u’tt /(o +1).

This is essential for the further interpolation of the nonlinear coefficients and for the
optimization of the computational process. As we know, the Kirchhoff transformation is
first used for computational purposes in [3].

Then we write equation (2) in the following nonsymmetric form

ruy = (r"Gy)r + (N — 2)G, + ruf, v=0, N=1; v=1, N>1. (26)

We solve equation (26) under the initial condition

u(0,7) =up(r) >0, 0<r<R (27)

and boundary conditions:
ur(t,0) =0, t >0, wu(t,R)=0 if messuppuop(r) < oo, (28)
ur(t,0) =0, t >0, Gp(t,R)=0 if uo(r)=206(r). (29)

The discretization is made on the problem (26)-(28) and (26),(27),(29) in weak form:
Find a function u(t,r) € D, D = {u: r7/?u,77/20u°*' /0r € Ly}, which satisfies the
integral identity

(rug,v) = A(t;u,v), Yo € HL(0,R), 0<t< Ty, (30)

the initial (27) and boundary conditions (28) or (29).
Here

R
(u,v) :/0 u(r)v(r)dr,

or Or
HL(0,R) = {v:r"?0,17/% € Ly(0,R), (1 - a)v(R) =0}.
The value oo = 0 corresponds to the condition (28), and ow = 1 — to the condition (29).

R
A(t; u,v) = / [T'V 9G(u) dv +9(N —-2) ac;(u)v + 7P| dr,
0 T
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The lumped mass finite element method [20] with interpolation of the nonlinear coeffi-
cients is used for discretization of (30). Let {0 =r; <ry <--- <7y =R, rip1—1 < h}
be a partition of the interval [0, R] into elements e; = [r;,ri41], 1 =1,2,,... ,m—1.

Let Sp, be the space of the continuous functions on [0, R], which are polynomials of
degree k — 1 on e; :

Sp ={w(r) € C([0, R]),w

e; € Poo1; (11— a)w(R) =0}

Let {¢;}? ; be the standard Lagrangian nodal basis of Sy, and up (¢, ) be the approximate
solution in Sy for every fixed value of ¢. The semidiscrete problem is:
Find up, : [0, To] — Sp, such that

(rup, w) = A(t; up, w) Yw € Sp, (31)
uh(O) == uo,h. (32)
The approximation Ty of the blow-up time T} is found in the computations.

We use the finite element interpolants of the solution u(t, ), of the nonlinear functions
G(u) and q(u) = u” and of the initial data g (r):

up(t,r) = Zuz‘(t)%'(T)v ug(r) = Zuo(ﬁ)%(T)v (33)
G(u) ~Gr = Z G(u)pi(r), q(u) ~qr= Z q(ui)pi(r). (34)

Substituting (33) and (34) in (31), (32), we find a system of ordinary differential
equations (ODE):

U=MY-KGU)+~(N —2)BU) + qU), U(0) = Uy, (35)

with respect to the vector U(t) of the nodal values of the solution w(¢,7) at time ¢. Here
n R
M = dzag{m”}, ’ﬁ’L” = Zmij, mij = / Tvgﬁigﬁjd’l”,
j=1 0
R

R
K = {k‘ij}, k'ij = / T"YQD;QD;-dT, B = {bij}, bij = / T‘V(p;(pde, i,j = ].,2, el N
0 0

Let us mention, that because of the Kirchhoff transformation and the interpolation of
the nonlinear coefficients only the two vectors G(U) and ¢(U) contain the nonlinearity
of the problem, while the matrices K and B do not depend on the unknown solution.

To solve the system (35), a modification of the explicit Runge-Kutta method [15],
which has second order of accuracy and extended region of stability is used. For conve-
nience we write it down for a system of ODE in the form

y =1,  y0)=yo.
The value of the solution at time level j + 1 is then given by the formulas
YT =y + ik + pakd + pskd, 40 = v,
p1=1/4, p>=15/32, p3 =9/32,

=7l (), k=7l +2K]/3), k=7 (' + K3+ k/3).
The step 7; is chosen in order the two conditions (see [15] and references therein):

— for a given accuracy e: maxo<i<n |(k) — k))il/(|(v?)i + E|) < 6.2¢,
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— for stability: maxo<i<n |(3k] — 2k — k)| < 5maxo<i<n |(k] — k)il

to be fulfilled at every time level. For singular in time solutions the stop criterion
7; < 1071% is used and then Tj is the time reached in the computations.

2.3 Dynamic mesh adaptation.. To proceed successfully with the single point blow-
up behavior of the solution, a special adaptive mesh refinement, consistent with the self
similar law (4) is made.

The main idea of the dynamic mesh adaptation will be given on the case of a differential
equation

ug = Lu, w=u(t,z), € R, t>0, (36)
which admits self-similar solution of the kind
T
us(t, x) = o(t)0(§), = — 37
(h3) = e00). €= 705 (37)

The function ¢(t) determines the amplitude of the solution, while the function 6(¢)
determines its space structure (the geometry). In the new, similarity variable £, where
the space and the time are connected in a special way, the function € gives the “frozen”
image of the nonstationary process, described by the equation (36). The function 6(&)
satisfies a reduced order equation (ODE or PDE, depending on the operator L).

It is always possible to choose (t) and v (t) so, that ¢(0) = 1 and ¥(0) = 1. In this
case the invariant solution u4(t, z) corresponds to initial data

us(0,z) = 0(x). (38)

As it was mentioned earlier, the importance of the invariant solution us(x,t) is that it is

an attractor of the solutions of equation (36) for large classes of initial data, different from

(38). So it is important to incorporate the structure (37) in the numerical method for

solving equation (36). The relation between ¢ and z (37) gives the idea how to adapt the

mesh in space. Let Az is the step size in space at t = t*. There are two possibilities:
- to choose Az®) = (t*) A& so, that AL = hy = max; Az;(¥) at every time step;
- to choose Az™®) in such way, that A¢®) be bounded from below and from above

ho/A < AW < Ahg
for appropriate A (usually A = 2).
Further, by using the relation between () and ¢(¢), it is possible to incorporate the
structure (37) of the s.-s.s. in the adaptive procedure. We will show how it is done for
equation (2). In this case

E=r(1—t/Ty)~ (B—0o—1)/(2(8—1)) (39)

us(t,1) = (1= /Tp) "V =1 9(¢). (40)
From (40) we find
us(t,r)

(]‘ - t/TO)il/(ﬁil) = 0(6)

and we define the function

Then
(1- t/TO)*(ﬁ*fffl)/@(ﬁ*l)) — Fs(t)(ﬁ—a—l)/z =T,(t)™

This, together with (39), gives the necessary connection between & and r, A{ and Ar:
E=rDs(t)™, A& = ArDs ()™, m=(f—0c—1)/2. (42)



12 S. N. DIMOVA, T. P. CHERNOGOROVA

For arbitrary initial data
u(0,7) =wup(r) >0, supug <oo, re€Ry, (43)
by analogy with (41) we introduce a new function

max, u(t,r)

I(t) =

max;, ug(r) ’
and then by analogy with (42)
E=rr(t)™, A& = ArD(t)™, m=(8—0—1)/2. (45)

On the basis of relations (45) the following strategy is accepted.

Let Ar(®) be the step in space (the length of the finite element) at time t = t*. In the
case of single point blow-up, m > 0, we choose the step Ar(*) so that the step AEX) be
bounded from above:

AW = ArMID ()™ < Ahyg. (46)
This means, that when I'(#) increases, the mesh in r must be refined. When condition
(46) is violated, the following procedure is made:

— every element in the region, where the solution is not established with a given
accuracy d, (usually &, = 1077), is divided into two equal elements and the values of the
solution in the new mesh points are found by interpolation from the old values;

— the elements, where the solution is established with a given accuracy ¢,, are thrown
off (the computations proceed in smaller interval).

We use the fact, that on the developed stage of the process (¢ — Tp) the solution grows
only in a neighborhood of the blow-up point, while it is established near the boundary of
the localization region. Let us mention, that the condition (46) is checked at every time
step, but the refinement is made only when this condition is violated. At that moment
a checking for elements throwing-off is made.

In the computations we have used \ = 2.

3. STRUCTURAL STABILITY OF THE S.-S.S

It is clear, that the blowup solutions are not stable with respect to the initial data
in the sense, that small changes of the initial data may produce small changes in the
blowup time, but very big differences in the solution’ values near the blowup time. For
blowup solutions and more generally, for invariant solutions, a more important property
is the preservation in time of some characteristics, as geometric form, rate of growth,
localization in space. Such a property is called structural stability, and for the blowup
solutions (4) it is introduced in [8]. It gives a possibility to investigate the asymptotic
behavior of the blow-up solutions in a special ”self-similar norm”, consistent for every ¢
with the geometric form of the solution. In order to introduce the notion of structural
stability, we define the self-similar representation [8] ©(¢,&) of the solution wu(t,r) of
problem (2), (3):

O, &) =u(t,&r()"™)/I(#), T{) = mrz;mxu(t,r)/mraxuo(r). (47)

The s-.s.s. us(t,r) (4), corresponding to the solution 6(£) of the problem (5),(6), is
called structurally stable [8], if there exists a class of initial data ug(r) # 6(r), so that
for the self-similar representations (47) ©(¢,€) of the corresponding solutions u(t, ), it
holds:

I

(“)(t,f) - §(€)||C[O,oo) -0, t— TO_, (48)
0(¢) = (max uo(r) /max 6(£))0(¢).
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It is clear, that if ug(r) = 6(r), then (&) = 0(€) and O(t,€) = 0(¢) for V.
In some cases it is more convenient to introduce a little different self-similar represen-
tation:

O(t, &) = u(t,0(t)™™)/T(t), T(t) = maxu(t,r). (49)
and another scaled solution of the problem (5),(6):
0(€) = O(cmax (&) ") jmax 6(6) (50)

Then the s-.s.s. us(¢,7) is called structurally stable, if the convergence (48) takes place
for (49) and (50). In the examples bellow the self-similar representation (49) is used,
because we compare the evolution in time of self-similar and non self-similar initial data
- in both cases the self-similar representations are scaled in such way, that 0(¢,0) =1
and the comparison is easier.

4. NUMERICAL INVESTIGATIONS

We constructed numerically solutions to (10),(11) for different values of ¢ > 0 and
8 > Bs. The comparison with the singular solution 6,(§) showed that the constants cg
in (8) for the computed solutions satisfy co > ¢, for B < 8 < f,, for 8, < 8 < B, and
8> B

Taking the computed 6(¢) as initial data for the parabolic problem (26),(27),(29), we
have compared both the exact blow-up time Ty = 1/(8 — 1) with T, found in the com-
putations and the self-similar representations O(t,¢) with 8(¢). All of the experiments
show: Tp is close to Ty, (see the examples bellow), and O(t,£) are close to 8(£) up to
Ty (their graphs coincide within the plotting resolution). These two observations show
the good accuracy and the reliability of both methods - for the self-similar and for the
parabolic problems.

Taking compactly supported initial data ug(r), but large enough [17] to produce blow-
up (as it was mentioned, for 5 > 8¢ and small initial data (2) the solution may be global),
we show the validity of (48), i.e., the structural stability of the s.-s.s. (4), corresponding
to the computed 6(¢) for the same values of N, o and 5 > 0;.

5. EXAMPLES

The evolution in time (on the left) and the self-similar representations (on the right)
of self-similar (Fig. 1, 3, 5) and non-self-similar (Fig. 2, 4, 6) initial data for 8 beyond
three critical exponents are shown.

FiGURE 1. B > (s = 4.5, self-similar initial data
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FIGURE 2. 8 > (s = 4.5, non self-similar initial data

On Fig. 1 the evolution in time of the solution 6} (¢) for parameters o = 2, N = 10,
B =6.5> f; = 4.5 is shown. The initial mesh {0(0.05)2(0.1)4(0.2)10(0.5)20} contains
111 points with hg = minhio = 0.05. The last mesh contains 3989 points, but 2058

of them are thrown-off, the smallest step is h; = hg * 273, The exact blowup time is
Ty = 1/(8 — 1) = 0.(18), the blow-up time Tp, found in computations, is 0.1818028, so
To — Tg ~ 0.000015. The self-similar representations coincide with the scaled self-similar
function 6 (¢) within the plotting resolution.

On Fig. 2 the evolution in time of non self-similar initial data for the same parameters
c=2, N=10, 8 = 6.5 > ; = 4.5 is shown. The initial mesh {0(0.1)7} countains
71 points. The last mesh contains 4076 points, but 2182 of them are thrown-off, the
smallest step is the same, as in the previous example: h; = hg * 27!3. The self-similar
representations tends to the scaled self-similar function 8y, (¢).

On Fig. 3 and Fig. 4 the parameters are: ¢ =2, N =15,6, =6.412< 3=6.6 < 8, =
6.805. For the self similar initial data we have Ty = 1/(8—1) ~ 0.17857, Ty — T ~ 0.0037.

FiGuRE 3. 3, = 6.412 < 38 < 3, = 6.805 self-similar initial data
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FIGURE 4. 3, = 6.412 < 8 < 3, = 6.805 non self-similar initial data

KO SIGMA 00 BETA N t

1.00  2.000 1.00  7.000 15 «0.0000000
0.0798641

2} =0.1399762
w (. 1689208
%0.1697915
+0.1697952
+0.1697952
+0.1697952
1697952

00,01 02 03 04 05 06 0.7 0.8 03 L0 11

27 7¢ 6 '8 10 12 14 16 18 ' 20

FIGURE 5. 3 > 8, = 6.805, self-similar initial data

KO SIGMA 00 BETR N t

1,00 2.000 1.00 7.000 15 +0.0000000
0. 0060681

2] =0.0067082
w0.0067922
»0.0068130
+0.0068163
+0.0068163
+0.0068163
+0.0068163
0068163

90,01 02 03 04 05 06 07 0.8 09 L0 L1

3
E R A I I I

FIGURE 6. 3 > 3, = 6.805, non self-similar initial data

On Fig. 5 and Fig. 6 the parameters are: 0 = 2, N =15, 8 = 7 > 3,. For the
self-similar initial data we have Top = 1/(8 — 1) = 0.1(6), Tp — Tp ~ 0.0031.
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