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SOME NEW STABILITY RESULTS FOR DIFFERENTIAL AND
DIFFERENCE EQUATIONS WITH UNBOUNDED OPERATOR
COEFFICIENTS IN HILBERT AND BANACH SPACES
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Dedicated to the 85-th anniversary of A. A. Samarskij

ABSTRACT. New stability results for the first order differential equations with an
unbounded strongly positive operator coefficient in Banach and Hilbert spaces are
presented. The framework of Hilbert spaces allows one to get stability estimates in
somewhat stronger norms as it is the case for Banach spaces. An exact two-level
difference approximation is derived using the evolution operator. Considering an
arbitrary two-level approximation as a perturbation of the exact difference scheme
the stability and accuracy theorems in a strong norm are proven. The stability
results for three-level difference schemes with unbounded strongly P-positive operator
coefficients are discussed.

1. INTRODUCTION

Many initial value problems for parabolic partial differential equations in abstract
setting have the form

Ou(t

855 Ly du) = £1), u(0) = o, (1.1)

where u(t), v : Ry — X is an unknown, f(t) is a given vector-valued function with

values in a Hilbert or Banach space X and A is a closed linear operator in X with a

domain D(A). The simplest finite difference approximations to (1.1) on the equidistant

grid w, = {t; =i7: i =0,1,...} is the explicit scheme

yn_i_lTi_yn'f'Ayn:fn» n=0,1,... yo = uo, (12)

where y,, = y(t,) is an approximation to u, = u(t,). An other approximation is the
implicit scheme

yn+l7_7_yn+Ayn+1 =fn, n=0,1,... yo=ug. (1.3)
Both these schemes belong to the class of two-level schemes of the kind
Byny1 =Cyn+F,, n=0,1,... yo=mup. (1.4)

where B =1,C = I[+7A, F,, = 7f, for the first scheme and B = [+7A,C =1, F, =1f,
for the second one.

There are various definitions of stability for two-level difference schemes [11, 17, 13,
12, 16, 21] which mean, roughly speaking, that the error remains bounded or increases
in accordance with some apriori defined low when n — oo. For example, the following
two definitions can be found in [13,12,16].
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Definition 1.1. A two-level difference scheme is called stable with respect to the initial
data, if

lynll) < Millyoll), n=0,1,... (1.5)
in some norm || - [[(1) with a positive constant M; independent of n,7 provided that
F, =0.

Definition 1.2. A two-level difference scheme is called stable with respect to the right-
hand side, if

||yn||(1) < M2OISHI?§nHFkH(2)7 n=0,1,... (1.6)
with some norms || - [|(1), || - |2y and with a positive constant M, independent of n, T

provided that ug = 0.

The both stabilities (with respect to the right-hand side and with respect to the initial
data) imply the stability of the difference scheme with respect to the initial data in the
sense

lyalloy < Millwolly + Mo mass [Felley, n=0,1,... (L.7)

It is possible to study the stability of a two-level difference scheme in the form (1.4). For
example, one get immediately that the necessary and sufficient condition of the stability
with respect to the initial data is

lp(B~1C)| <1 (1.8)

where p(B~1C) is the spectral radius of the operator B~!C. But the complexity of the
problem of estimating the spectral radius is often equivalent to the initial one. For this
reason A.A .Samarskij has introduced the so called canonical form of a two-level difference
scheme

BT L Ay =g, n=0,1,... (1.9)
T

with a given yo. One of the most beautiful results of the Samarskij’s stability theory is the
following [13,12,16,17]: Let A = A* and the operator B! exists then difference scheme
(1.9) is stable in the norm ||y|l4 = \/(Ay,y) iff B > $A. The use of the canonical form
has allowed to develop almost closed theory of stability of two-level difference schemes
in [13,12,16,17]. Only the case of unbounded operator coefficients especially in a Banach
space remains not complete studied despite the fact that there are many interesting
results in [17]. A canonical form of three-level difference schemes approximating the
second order differential equations was also introduced by A.A.Samarskij and has allowed
to obtain a number of important results [13,12,16,17].

The stability theory together with the regularization principle [14] provide a powerful
tool to obtain stable difference schemes. The main idea of regularization is to start from
any simple scheme (even unstable) and by perturbing its coefficients (while taking into
consideration the stability conditions) obtain a stable difference scheme or a scheme with
other desired properties. All the main classes of difference schemes for the problems of
mathematical physics have been designed and analyzed on the basis of this approach in
[13,12,16,17].

An important kind of stability is the so called coefficient stability of differential equa-
tions and difference schemes. Before we define this kind of stability let us consider the
following two Cauchy problems:

du

o T Au=F(1), u(0) =uo (1.10)
and d
d—z +Bv=yg(t), v(0)= "o (1.11)
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Definition 1.3. Problem (1.10) is called stable with respect to the initial data if in some
norms

[[u— o] < Mlluo — o (112)
provided that B = A, g = f, stable with respect to the right-hand side if

l[u—ol| < M| f =gl (1.13)

provided that B = A, vy = ug, and stable with respect to the operator coefficient A, if
there exists an operator C' such that (A — B)C ™! is bounded and

lu—all < M|[(A-B)C™|| (1.14)

provided that g = f, vo = ug where M is a positive constant.
The problem (1.10) is called strongly stable if it is stable with respect to the initial
data, to the right-hand side and with respect to the operator coefficient in the same time.

Analogously one can define the stability with respect to the initial data, with respect
to the right-hand side, with respect to the operator coefficient and the strong stability
of the difference schemes (cf. [17]).

In this paper we present some new results for the case of unbounded operator coeffi-
cients which develop results from [13,12,16,17] and were partly obtained in [5,15].

The paper is organized as follows. In Section 2 we derive the strong stability of
the first order differential equations with an unbounded operator coefficient in Hilbert
and Banach spaces. The framework of Hilbert spaces allows one to get the stability
estimate in a somewhat stronger norm as it is the case for Banach spaces. Section 3
is devoted to the two-level grid approximations of the first order differential equations
with strongly positive unbounded operator coefficients. We derive an exact two-level
difference scheme and consider an arbitrary two-level approximation as a perturbation of
this scheme. This allows us to get new stability and convergence results in some strong
norm in a Banach space. Section 4 deals with three-level difference schemes which involve
unbounded strongly P-positive operator coefficients. In this section we introduce the p-
stability of three-level difference schemes, discuss the strong P-positivity and represent
the solution of the difference scheme as a function of the operator coefficient. This
solution is represented then in Section 5 by an improper Dunford-Cauchy integral being
the basis for various stability results where the strong P-positivity is the crucial sufficient
condition of the p-stability. Analytical and numerical examples are given to confirm and
clarify theoretical results.

Note that common results about differential and difference equations with unbounded
operator coefficients is of great importance also for finite-difference and finite-element
approximations of non-stationary partial differential equations. These approximations
possesses although matrix coefficients, i.e. are formally bounded, but their norms depend
on the discretization parameter h and tend to infinity as h — 0.

2. STABILITY OF THE FIRST ORDER DIFFERENTIAL EQUATIONS

In this section we consider the following two initial value problems

du

—FADu= (1), u(0) = uo (2.1)
and d

d—z + B(t)v =g(t), v(0) =0 (2.2)

with densely defined, closed operators A(t), B(t) having a common domain D(A) =
D(B) = D(A(t)) = D(B(t)) independent of ¢.
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First of all we remind some facts about the evolution operator. The evolution operator
(family of evolution operators) U(t, s) for the equation (2.1) satisfies the equations
oU(t, s)
ot

where I is the unit operator. Given the evolution operator U(t,s) the solution of the
equation (2.1) can be represented by

+AMU(t,s) =0, U(s,s) = I, (2.3)

t
u(t) = Ult.s)u(s) + [ UG5 (2.4
It is known (see i.e [3]) that the evolution operator can be written down in the form
t
Ult,s) = e~ (t=9)A40) 4 / e~ A R(r, 5)dr, (2.5)
where R(t, s) is the solution of the integral equation of the Volterra type
t
R(t,s) — / Ry (t,r)R(r,s)dr = Ry(t, s) (2.5)
with
Ri(t,s) = —(A(t) — A(s))e~ (t=9)A0), (2.7)
The difference z(t) = u(t) — v(t) is the solution of the initial value problem
dz

— T A(t)z = —[AQt) = BO(t) + f() = g(t),

dt (2.8)

z(0) = up — vo.

We investigate the estimates for z(¢) in Banach and Hilbert spaces under various as-
sumptions and in various norms.

2.1 Stability estimates in Banach space.

Here we make the following assumptions:

(B1) The operators A (t), B (t) are densely defined in a Banach space X and possess
domains D (A) = D(B) = D (C) independent of ¢. There exist the bounded inverses
A~Y(t), B71(t) and for the resolvents Ra()(z) = (z — A(t)) ™', Rpw)(2) = (2 — B(t))~*

holds
1

1+ |z

1
[Ba (2)]| < T [Rp)(2)] < (0 +e<largz[<m) (29

with 6 € (0,7/2), e > 0 uniformly in ¢ € [0,T].
(B2) The operators A(t), B(t) are strongly differentiable on D (A).
(B3) There exists a constant M such that

| 4% (s)B~P(s)|| < M. (2.10)

(B4) For the evolution operators there holds

C C
147U < o - 5 1B OUsC )] < e febl @
(B5) It holds
|AP(t)A~P(s) = I||<Clt—s|*,  pe[0,1], a>0. (2.12)
Remark 2.1. Let © C IR* be a polygon and
=) S 0

L(@,t,D)=—->" a_%ai,j(x,t)% + ij(x,t)%j + c(x, t) (2.13)

i,j=1 7o =1
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be a second order elliptic operator with time-dependent real smooth coefficients satisfying
the uniform ellipticity condition

2
Z aig(z,0)&& > alE)? (€= (&,&) € Ry) (2.14)
i,j=1

with a positive constant d;. Taking X = L?(Q), and V = H}(Q) or V = HY(Q)

accordingly to the boundary condition

u=0 on O x(0,T) (2.15)
or 9u
—4+ou=0 on 90 x(0,7), (2.16)
8Vg
we set
ou Ov
(u,v) Z/a”xta 8$Jd+2/ xt—vd:z
7,j=1 (217)

—|—/ c(:zc,t)uvdw—}—/ o(z,t)yuvdS
Q 9

for u,v € V. An m-sectorial operator A(t) in X can be defined through the relation

A (u,v) = (A(t)u,v), (2.18)
where u € D(A(t)) C V and v € V. The relation
D(A(t)) = H*(Q) N Hy(Q) (2.19)
follows for V = H{(2) and
D(A(t)) = {v € H*(Q) | 8871; on BQ} (2.20)

for V.= H*(), if 0 is smooth for instance.

It was proved in [3][pp. 95-101], that all the assumptions above hold for such an
operator A(t).

Assumptions (B1)- (B2) yield (see e.g. [8][Th. 3.11, pp. 255, 240], [9]) that
the homogeneous problems (2.1), (2.2) are uniformly correct, and the evolution op-
erators Ua(t,s),Up(t,s) map the domain D(A) into itself, the operators Va(t,s) =
At)UA(t, s)A7L(s), VB(t,s) = B(t)Ugp(t,s)B~1(s) are bounded and strongly continuous
in the triangle Ta = {(s,t) : 0 < s <t < T'}. The solution of (2.8) can be represented by

t
z(t) = Ua(t,0)z(0) +/ UA(t,S){ — [A(s) — B(s)]u(s) + f(s) }ds (2.21)
0
where Ux(t, s) is the evolution operator. This equality yields

AB(t)z(t) = AP(t)UA(t,0)A~P(0) AP (0)2(0)

+/0 AP (UL, 5) [B(s) —A(s)]Aiﬁ(S)Aﬁ(S)U(S) ds (2.22)

Let us show that the following estimate holds:

A (t)Ua(t,s) AP (s)|| < M,
0<s<t<T.
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To this end we use the formula [8][see (4.14), p. 262]:
t

UA(t,S)ZUA(S) (t,s)-}—/UA(t,T) [A(T)—A(S)]UA(S) (T—S)dT,

S

where
Uags) (T —5) = exp (=A(s) (t — 5)).
Then we get

HAﬁ YUa (t,5) A0 (s)|| = || A% (£) A7 (s) A% (s) Un(s) (t,8) A7 (s) +
+/A5 U, m)[A(T) — A(s)] AL (s) A(s) UA(S) (T —29) AP (s)dr

dr

T—S

1+CT* M+CCM/ =
( ) B t—Tﬁ( )1_a_5

:(1+CTO‘)M+050M(t—s) B(1-8.1-p-a)< M,

where B (z,y) is the beta-function. Now, equality (2.22) implies
[A%()z(t)]| < M| A%(0)=(0 )||
+ Cymax|[[B(s) ~ A©JA(s W/ Sy

+M/0 1A% (s)[f(5) — g(5)] || ds.

Assumption (B3) allows us to replace the first integral on the right-hand side of (2.23)

by the integral
t
1
M/O W||B(s)v(s)|| ds. (2.24)

For this integral we get from (2.2)

B < M1BORO) + 1 [ 13696 ds. (2:29

Substituting this estimate into (2.23) we get the following stability estimate
147 ()z(2)]| < M| A®(0)2(0)]| +cgM max [|[B(s) — A(s)] A (s)

xf’ @w n+/|m |@} (2.26)
+M/ﬁmﬁ ~ g(s)]l ds, B €[0,1).

Thus, we have proven the following assertion.

Theorem 2.2. Problemn (2.1) is strongly stable in the Banach space X with the stability
estimate (2.26) provided that conditions (B1) - (B5) hold true.

Note that stability estimate (2.26) has sense for 0 < 5 < 1 only, i.e. it is not valid
for the norm ||Az(t)||. The strong stability in a similar strong norm will be shown in the
next section in the case of a Hilbert space.



SOME NEW STABILITY RESULTS 23

2.2 Stability estimates in Hilbert space.
In this section we assume that there exists an operator C = C* > ¢yl such that
(H1)
H[A(s) — B(s)]C”H < < oo, (2.27)
(H2)
(A(s)y, Cy) > co|Cyll?,

(B(s)y,Cy) > co||Cy|I* Vs €[0,T),co > 0.

The equality (2.8) yields

5 12O + (AW, C20) = ~(A®) - BO),C=(0) (2.29)
+(f(1) = 9(t), C=(t))

(2.28)

and further

1 t

i(Cz(t),z(t))—i—/o (A(s)z(s), Cz(s))ds

:/0 ([B(s)fA(s)]CflC’v(s),C’z(s)) ds (2.30)
+ [ (106) =909, C2(5)) s+ 5 (o = ). (g = v0)

Using the assumptions (H1), (H2) we get

(Cz() —}—co/ |C2(s)||*ds

¢ / |C=(s) s + - / |Cu(s)|ds -

+el/ |C(s |ds+—/ 17(s) — g(s)|ds

+ §(C(u0 — ), (1o = o)),

where €, €; are arbitrary positive numbers. Choosing € + €; < ¢y we get
1 t )
§(Cz(t), 2(t)) 4+ (co —e—e1) [ [[Cz(s)]]Pds <
0
5t .
< —/ |[Cu(s)||*ds+ (2.32)
1
+—/ [I.f(s) s)|[*ds + 2(0(’&0*”0)7(“0*’00))-

In order to estimate the first term on the right-hand side we use the equation (2.2), from
where we get

——(Cv(t),v(t)) + (B(t)v(t),C’v(t)) = (g(t),Cv(t)). (2.33)

This implies the inequality

S (Colt), 1) +Co/||Cv J(|2ds <
(2.34)

<o [ owsPas + 1= [ oo + 30w,
0 €2 Jo 2
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or
/ [Co(s)2ds < (o — e2)” / lo(s) s + S(Cuo,0)]. (235)

After substitution of (2.35) into (2.32) we get the following stability estimate

1 t ,
i(Cz(t),z(t)) + (o —€e— 61)/ ICz(s)]|7ds <
< g [14() - Boje P [ L / lg(s)ds + (2.36)

#5Cm )|+ 5 [ 176 - a0)Fds + 5 (Ol 1) 1o = ),
€1 Jo

which means the strong stability, i.e. the stability with respect to the right-hand side,
to the initial condition and the coefficient stability. Thus, we have proven the following
assertion.

Theorem 2.3. Let A(t), B(t) be densely defined operators in a Hilbert space H and
there ezists a self-adjoint, positive definite operator C with a domain D (C) = D (A (t)) =
D (B (t)) independent of t, then the conditions (H1), (H2) provide the strong stability
of the problems (2.1), (2.2).

Note, that an analogous estimate in the case of an finite dimensional Hilbert spaces and
of a constant operator A was proved in [17][p. 62]. In some cases it is more convenient to
use other sufficient stability conditions for (2.1), (2.2) using properties of the operators
A(t), B(t) only (without the assumption about C). These properties are discussed
below.

Let us suppose that the operators A (t), B (t) are self-adjoint, positive definite in some
Hilbert space H with the domains D (A) = D (B) independent of ¢ and satisfy

(H3) The operators A (t), B (t) are strongly continuous and differentiable on D (A).

Starting from (2.8) one gets the equality

1d 1, 2
S lZ @l = 5 (A @) 2 (1), (0) + 140 = (O] = 2.3
=—([A®)-BOIV©®),A®)z@) +(f () —g(1), A1) (1)),
which implies after integration
Hz |\A(t)+/||A )| ds_/(A’ (S)z(s),z(s)fds,
*/([A(S)*B(S)]U(S)714(8)2(8))618+
0 (2.38)

+/<f<s>—g<s),A<s) () ds + 5 12 0) 4
0

= _Il +L+1I3+ 5 ||Z( )”?4(0)
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Next, we estimate each of the integrals on the right-hand side of (2.38). We get

t

I = / (4772 () A () A7 () A2 () 2 (5) , A7H/2 (5) 2 (s) ) ds
0

t t (2.39)
2
<a / HA_1/2 (s)z (S)H ds = ¢ / Iz (5)”?4(3) ds,
0 0
where Lemma 1.9, p. 229 from [8] (see also [9]) was used. Further we have
t
| = /([A (5) = B(s)] A7 (5) A(s) V (5) , A(s) Z (5)) ds
0
< EOQ&XTH ||/|\A 9|2 ds (2.40)
+e / 14 G5) | ds,
0
and, finally,
h=c / 4 (s) = ()1 ds + o / 1£) = g I ds. (241)
Using inequalities (2.39)—(2.41) with e =g = 1/4 equality (2.38) implies
1
RO HA I ds < & Hz Iy s
4 max [|[A(s) — ()| / 1A () V (5)] ds (2.42)
0<s<T
/nf I ds + 2 112 0) 1y
Using the Gronwall’s lemma we get from (2.42)
I @10 + / 4 (5)= ()| ds
{201<nsa<xT I[A (s) — (s)]| / A (s) V (s)]” ds (2.43)

/Hf $)[2ds + 1|z 0 >|i(0)}em.

The right-hand side of (2.43) contains an integral, where the integrand involves V' (t).
Let us estimate this integral through the input data. Analogously as above we get for
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the solution of problem (2.2) the following equality
3 IV Ol + / 1B(s)V ()" ds

/ V (s)) ds + / (9(5), B (5)V () ds
0

1 2
D) IV (O[5 -

l\:)lr—\

which yields the estimate

IV Ol /||B 9|2 ds

(2.44)
<c1/||v s ds+/||g P ds + [Voll3o)-
This estimate and the Gronwall’s lemma imply
1
IV (@)1, ||B 9| ds <
(2.45)

/ I I ds + Vol | €
0

where ¢; is a constant, which bounds the norm of the operator B~'/2 (s) B’ (s) B~'/? (s)
(see Lemma 1.9, p. 229 from [8,9]).

Since the operator A (¢t) B~! (t) is bounded, i.e. there exists a positive constant M
such that

|A@®) B~ (t)| <M, telo,1],
then (2.45) implies

/I\A(S)V(S)I\2ds=/||A(s) B (s)B(s)V (s)[*ds <

[ g @I s+ Vol | e

(2.46)

Substituting estimate (2.46) into the right-hand side of (2.43), we get the following
assertion.

Theorem 2.4. Let the operators A(t) B (t) be self-adjoint, positive definite, densely
defined with domains D (A (t)) = D (B (t)) = D (A) independent of t and satisfy (H3),
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then the Cauchy problem (2.1) is strongly stable with the stability estirmate

1= (01 /HA 9|2 ds <

T
<§2gmax [[A(s) = B(s)] A7 ()| M? /Ilg(s)l\2d5+ (2.47)

+[Vollgy| e +2 / 1 () = g ()2 ds + |12 O)sgq) p e

3. STRONG STABILITY OF TWO-LEVEL DIFFERENCE SCHEMES IN BANACH SPACES

Let us consider the Cauchy problem

u )+ A ut)=f(1), t € (0,1]

(0 = o (3.1)

in a Banach space X. In this section we assume the operator A(t) for each fixed ¢ to
be densely defined, strongly positive operator, i.e. its spectrum is situated inside the
domain

Qp ={z=pe" 1 pp <p<oo, —p <0 <gppe(0,7/2)}
and on the boundary and outside of {2y the resolvent satisfies
M

with some positive constant M.

Besides we make the following assumptions.

(BB1) The operator A (t) possesses a domain D (A (t)) = D (A (0)) independent of ¢
and satisfies the following Hélder condition

A (t)— A(s)] A <M|t—s|° (3.2)

||X—>X

for arbitrary ¢,s,7 € [0,1] with some positive constant M and ¢ € (0, 1].
It is well known [18] that problem (3.1) possesses the unique continuously differentiable
solution u (t) for ¢ € [0,1] and it holds

u(t) =U (t,0) uo —l—/U (t,8) f(s)ds, (3.3)
0

provided that ug € D (A (0)) and f (¢) is continuously differentiable.
Here U (t,s) is the evolution operator of problem (3.1) defined as the continuous
solution of the integral equation
U(t,s) =exp{—(t—s) A(s)}

t

+ (U6 - A@esnl- 65 A@)ar &4
The operator U (t, s) satisfies the semi-group identity
Uts) = U (i) U (1:5). .

0<s<n<t<l.
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Using representation (3.3) and identity (3.5) we get the following exact two-level differ-
ence scheme

Ut,k+BkU(tk) = Pk, kZO,].,“' SN —1, (36)
where t, = 7k, up p = 7 Hu(tps1) —u(ty)), k=0,1,---,N, 7N =1,
B = 71 (I -U (tk+1,tk)) s (37)
tht1
op =T " / U (tks1,s) f(s)ds (3.8)
123

The evolution operator U (¢,s) and the vectors ¢ € X of the exact difference scheme
(3.6) can be found exactly in some very special cases only. That is why an other difference
scheme B
yt,k'}_Bkyk:ka? kZO,l,"',N—l,
Yo = Up
is usually used which approximate scheme (3.6) in some sense.
For the error

(3.9)

2k =U (tk) — Yk
we get from (3.6), (3.9)
zt k + Brzi = Yk,
k=01,---,N—1, (3.10)
20 = up — g,
where
Yy = (Bk - Bk) Yr + Ox — Ok (3.11)

The solution of problem (3.10) can be written down in the form

k
2k = U (ty,0) 20 + ZTU (tksts) Vg,

P (3.12)
k=0,1,---,N.
It was shown in [18] that
||U(tkatn)|‘xﬂx <M, (3.13)
|A () U (b tn) A7 ()| o x <M, (3.14)
7 (k=) A () U (B t)llx < M, (3.15)
0<n<k<N,
provided that condition (3.2) holds. Using (3.13) — (3.15) we get from (3.12)
s S
1At 2tlc, 0 < M (1A 20llx + e, o | 14D =777 ] | <
Jj=1
< My [[|A(0) 20l x + (3.16)

7 \0<k<N-1

1 ~ ~ — ~
-I-ln — < max H (Bk — Bk) Bk 1H HBkyk‘
X—X C-(X)

+ llor = Gille )|
where

Ville, x) = 0SISN Vel x
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Let us estimate the term HBNkyk’ © on the right-hand side of (3.16) through the initial

-

data of problem (3.9). To this end we consider the operator
U (tep,tn) = (I - Ték) (I - ﬂék,l) . (I - Tén+1> (3.17)
which satisfies the equations
U (tot) = (1~ TBS>IH

+ i U (tx,tp) [Bs - Bp_l} (I_ TBS)H”, (3.18)
p=s+1

~ ~ k—s
U (tg, t,) = (I - TB,H)
5, (1-7Bia) " [Bict — B, U 1yt .
p:

Let us further assume that
(BB2) The operators By, k = 0,1,--- , N are densely defined in X with the domains

D(Bk)zD(A(O)), k=0,1,---,N (3.20)

and for each fixed k the operators By, are strongly positive.
(BB3) The operators By, k =0,1,---, N satisfy the Lipschitz condition

HB" (Bk — Bn) B’,;lH < Mty —tn]. (3.21)
X—X
(BB4) The inequalities
~ n ~ ~ n M
H(I*TB;C> <M, HBk (Ifer) <—,
X—X X—X nrt (322)
HTB]CH <M, k=01,---,N—1, n>1
X—=X
with some positive constant M hold true.
Using (3.21), (3.22) we get from equation (3.18)
k
U (tg, ts <M{1 HU th,t H ) 3.23
H (b )XHX_ { +p§17— (e tp) XX (3.23)

The solutions of this inequality can be majorized by the solution of the recurrence system

of equations
k
V (k,s) = M{l + > TV (k,p)}

p=s+1 (3.24)
s=k—-1,k—2,---,0,
V(k, k)= M.
This solution is
V (k,s)=(1+Mr)"* M
and we arrive at the estimate
HU(tk,ts) <(A+M)fF*M<a+M)N M=
(3.25)

M
_ [(1 +M7)ﬁ} M < MM,
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which is analogous to estimate (3.13).
Let us prove an analogon of estimate (3.15). Using inequalities (3.21), (3.22) we obtain
from (3.19)

HBk—lﬁ(fk,fs)Bs_lH <
X—-X

(1=rBr)

k—p—1

B p-1
|52
XX X—X
k—2

+ZT

p=s

f—2
X HBp—lU(tpvts)Bs_lHX_}X =M (1 + ZT HBp_lU(tp’ts)Bs_le_)X> ’

p=s

By (1= 7Byt H |Bis = By| B2 x

p_lHXHX

X—X

which looks similar to (3.23). Thus, in accordance with (3.25) we get for its solution

“Bk_lﬁ(tk,ts) B < MeM, (3.26)

X—X

It remains to find an analogon of estimate (3.15). Starting with (3.19) and taking into
account (3.21), (3.22) we arrive at

HBk—1U(fk,ts)

< HBk—l (I—TBk—l)kis

X—X

X—X
k—2 —p—
(B (1-rBe) | (B BB e
p=s -

M

% Hépflﬁ(tp’ts) X—X = (k—s)T

k—1
+ MY T HB,HU (ot
p=s

Solutions of inequality (3.27) are majorized by the solution of the system of equations

k—1

M
Vik,s)=——+M \%
p=s (3.28)
k=s+1,s+2,--- N,
TV (s,8) =M,
which yields
V(k+1,5) =aV (ks) M
e 3 R y A
k=s+1,s+2,--,N, (3.29)

V(s+1,8) =2 +M%, a=(1+7M).
T
From (3.28), (3.29) we get the estimate

M k—s—2 k—s—3
V(k,s):ak_s_lV(s-f-l,s)——(a + + -

T 2.1 3.2
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M . M M
< (eM—-1)— +eMM? < !
_(6 )T+6 +T(k—8)_7'(k_3),
k=s+1,s+2,---,N,
which implies
M,

|Bia (1. ts) (3.30)

< —.
x—-x "~ (k—s)T
The estimates (3.25), (3.26), (3.30) lead to the following assertion.

Theorem 3.1. Let the operators By, k = 0,1,--- N — 1 satisfy assumptions (BB2)-
(BB4), then for the solution of problem (3.9) the following estimate holds true

| B

D ~ 1
C.(X) = <HB°y°HX +l&ille, x)In ;) : (3.31)

Proof. The solution of problem (3.9) can be written down in the form

k
yr = U (tr,0) yo + ZTU (tk,ti) Pj.

j=1

Together with (3.26), (3.30) this representation implies

B ‘ <
L7 ——
<Jai], 1B re 0], o],
XX X—X X
k
Bi_1U (g, t; 5 <M(H]§ H (3.32)
+;TH a0 ()| 18l p < M (|| Bowo| +
=1y
+@ille, x) >, Tt
=
Let us prove the auxiliary estimate
k—1
1 1
—— < —1Ink. .
: k—]_ln2n (3.33)
Jj=1
Actually, the function
k—1
f k)= —— —alnk, k=2,3,---, f(1)=0,
e~ | —
=1
satisfies
fk+1)—f(k) =g (k)
with . 1
g (k)= Efaln%.
Since P
—r—1+4+a
/! k - - -7
W= T

the derivative ¢’ (k) is non-positive for all k = 2,3,--- provided hat

3
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The function g (x) is non-increasing for these values of @ which means that
g(k) = F(k+1) = f(k) < g(1) =1 —aln2

and further, choosing

a=1/In2, (3.35)
we get

F)<fh-1)<-<f(2)=1—alm2=0.

Thus, condition (3.35) provides that all f(k), k = 1,2,3,--- are non-positive and we
arrive at (3.33).

Inequality (3.32) together with (3.33) imply (3.31) which proves the theorem.
Now, we are in the position to prove the main result of this section.

Theorem 3.2. Under assumptions (BB1)- (BB4) the two-level exact difference scheme
(3.6) is strongly stable, i.e. the following stability estimate holds true

1 ~ H—1
1A () 2o, ) < M{”Aw) 20llx +1n ~ {mfé |(Be-B) B,

1 (3.36)
(|5 H In = |3 — g :
([[Zotol] + 102 1051, ) + br = Bl o] |
Proof. The proof is due to (3.16) and Theorem 3.1.
Let us consider the following example of implicit difference scheme (3.9)
Yk — Yk—1
At = f(tg), k=1,2,---,N,
. (t) ye = f (k) (3.37)
Yo = uo,

which approximates the exact difference scheme (3.6). This scheme can be easily trans-
formed to the form (3.9) with

~ 1 - -~
Bi= =~ [I- (I +7A®) | = Atto) T+ 7A(G)]
Gr= (I +7A(tsr)) " ftiey), k=1,2,---N.
Let us check the conditions (3.21), (3.22). We have

(3.38)

|3 (B = B) B2

= [T+ Ao T Al ~ At AT G|
<M |[A(th—1) = A(tn-1)] A7 (tre1) ||y x < Mte — tal®

and one can recognize that due to (3.2) condition (3.21) is fulfilled with ¢ = 1.

The following statement was proved in [19]: an operator A with a dense domain D (A)
in a Banach space X is strongly positive generator of an analytic semigroup (exp —tA)
which satisfies the estimates

M
||exp (_tA)|‘X~>X <M, ||A exp (_tA)HXHX =
iff the estimates
H(1+TA)*’“H HA(I+TA)*’“H <M (3.39)
X—x' X—x ~ kT '

hold with M independent of 7.
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This theorem implies

[

- H(HTA (toer)) "

<M (3.40)

X—=X X—=X

and, further,

Hék (I - TBk>nH = HA(t,H) [I+7A (tk,l)]*”*H <

X—X
< M < M
“(n+ 17 a7
- Hlf (1+TA(t,€,1))—1H <1+ M.
X—X

X—X

)

=t
X—X

Thus, the operators By, k = 0,1, -, N —1 satisfy the assumptions of Theorem 3.2 which
asserts that the exact two-level difference scheme (3.6) is strongly stable as compared
with the scheme (3.9), (3.38) and estimate (3.36) holds true.

In order to get an accuracy estimate for the difference scheme (3.9), (3.37) one has to
estimate the terms

Yk — Pk, [Bk - Bk} Bt
For this end we represent

tht1

lir = el = | TLU (o) = 117 s+ > [ 1£(5)-

—F ) ds+ [T (T +7a@) 7] 10|

(3.41)

and estimate successively each summand under the norm.
Using integral equation (3.4) we get

[U (trt1,8) = 11 £ (s) = [exp{— (tx — 5) A(s)} — 1] f (s) +

tht1

+ / U (tksran) [A (5) — A ()] exp {— (1 — ) A()} £ (s) di.

tr

(3.42)

We assume that f (s) € D (A(0)) and f (s) is continuously differentiable, then we get
llexp {= (trs1 —8) A(s)} = 1] f (8)llx =

= —/exp{f(tk_H*S)A(S)}A(S)f(s)dn < (3.43)
s X
< M7[|AQ0) f(s)x < MT]A0) f(3)llex)
and .
. 1 1 tk+1 s
- s) — f (tx)] ds =||= ! dnds <
Tt[[f() reolas| Ttk/tk/f@ﬂnx— s
< 717 Olleg) -

Finally, we have

|[1-a+ra@n™] s <Mla@) £l (3.45)
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Taking into account (3.42)—(3.45) the equality (3.41) yields

llor — @kHcT(x) <

, (3.46)
<M LA ) F @)l + I @l + 140 £ )l
where
IV @lloen = max IV Ol
Let us go over to the estimating of the operator
5 -1 _ _ —1] 4-1
B = Bi] Bt = [U (thsn ) = (T4 7A ()| A7 (@) 11 a7)
+TA (tk)] = Il + Iz,
where
I = |exp{~rA ()} = (T+ A1) ™| A7 W) [T+ rA ()],
tht1
b= [ U [A(t) - A@]exp (- (1~ ) A(6) dnx
123
x A7 (tg) [T+ TA (t)] -
The operator I; can be transformed to
tet1
I =|I- / exp {— (tx —n) A (tx)Y A (tx) dn — (I + T7A () 1| %
123
trt1
XAV () [T+ TA(ty)] =T — / exp{— (tx —n) A (tx) }dn[I + TA (tr)]
tr
trt1
= - / exp{—(tr —m) A(tx)}dn + Texp{—7TA(tx)},
tr
which implies the estimate
il x < M.
For the operator I> we have
tht1
2l € 0 (et A (t0) = AL A (80) o
23
X Jlexp{—(n —tr) A(tr)} I + A ()]l x . x dn <
trt1
<M/+(—t)1+ T\ dy < 2Mr?
< n—tk Do) =M
123
These last two inequalities imply the estimate
% -1
ogrlglgajif(—l H [Bk B Bk} By HXHX < Mr. (3.48)

Estimates (3.46), (3.48) together with Theorem 3.2 lead to the following second main
result of this section.
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Theorem 3.3. Let the assumptions of Theorem 3.2 be fulfilled and the vector-valued
function f(t) € D(A(0)) be continuously differentiable on [0, 1], then for difference
scheme (3.38) the following accuracy estimate holds

1
14.(0) 2kl ) < 7In — MM, (3.49)

where the constant M is independent of 7.

Remark 3.4. The investigation technique of this section is closed to that of [1] but the
main results, namely Theorems 3.2, 3.3 are new.

Remark 3.5. Due to the factor InL on the right-hand side of estimate (3.36)(i.e. the
multiplicative constant on the right-hand side depends weakly on the step-size) it would
be more correct to call this estimate as an estimate of the “almost” strong stability. We
have obtained this estimate as well as the accuracy estimate (3.49) in a strong norm.
One can try to get similar estimates without the logarithmic factor in the weaker norm
of the Banach space X. But when using the estimate

max H [Bk — Bk:| B;IH <Mt
0<k<N-1 X—X

cox)’ i.e. the assertion of Theorem 3.1, which leads
(X
again to presence of the factor In % in the resulting estimates.

one needs estimates for HBkyk‘

4. p-STABILITY OF THREE-LEVEL DIFFERENCE
SCHEMES AND STRONGLY P-POSITIVE OPERATORS

Second order differential equations with operator coefficients are a powerful mathe-
matical tool in the description and study of evolutionary partial differential equations
arising in various fields of applications. In the numerical solution of evolution problems,
the problem of stability of numerical methods with respect to initial data is of great
importance. Considering these methods as difference schemes with operator coefficients
provides a suitable model for stability analysis.

In this section we discuss some results from [15] concerning difference schemes for the
following initial value problem:

dzu ’

W—l—AuzO, t€ (0, 7], wu(0)=up, u(0)=mu, (4.1)
where v : R4 — X is a vector-valued function, A is a linear, densely defined, closed
operator with domain D(A) in a Banach space X with norm ||| = |- ||x. In particular,
the equation (4.1) with the Laplace operator A = —A is the well-known wave equation.

Due to the presence of the second-order time derivative in (4.1), difference schemes
for the numerical solution of this problem have at least three time levels, i.e. they
involve approximate values y, for u(t,) at three neighboring points of the time grid
Wr = {ti :i=0,1,2,...,t0 =0,ti—ti_1 ZT}.

Unfortunately, known stability results do not include certain important classes of dif-
ference schemes with unbounded operator coefficients in a Banach space. Such results are
also important for finite difference and finite element approximations of partial differen-
tial operators since the norms of these approximations tend to infinity if the discretization
parameter tends to zero.

The aim of this section is to discuss some stability results for regularized three-level
difference schemes with unbounded operator coefficients in a Banach space. Note that
the initial difference scheme (without regularization) can be unstable.
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We consider the following family of three-level difference schemes:

(I + aA)yg., + BAy%) + Ay, =0, n=12,..., (4.2)
,n
with given yg, y1, where
_ Yn+1 — Yn _ Ynt1 — 2yn + Yn—1
° = T 5 yft,n - 2 )
t,n 2T T

«, B are parameters and A is a linear, densely defined, closed operator in a Banach space
X. If « = 8 =0 then we have the explicit difference scheme for the equation (4.1) which
is unstable in the case of an unbounded operator A.

The difference scheme (4.2) can be written down as

BT
2

In order to get an explicit formula for the solution of (4.3) let us consider the scalar
recurrence equation

[I+(a+ﬁ2—7—)A]yn+172[I+(a7§)A]yn+[I+(a7 )Alyn—1 =0, n=12...(43)

QUn41 — 20Uy, + cp—1 =0
with constant coefficients a, b, c. Setting u,, = "4, we get

- ~ c _
Up41 — 2—uy + —SUn-1 = 0
ar ar

and with » = Vca™!,x = bvca—! we have
’[NJ,,,H_]_ — 2{B1~Ln + an_l =0.

This is the recurrence equation which satisfies both Chebyshev polynomials of first kind
T, (x) and of second kind U, (z) (see [20]). Since U,_1 and U,_» are linear independent
and by definition U_»(z) = —1, U_1(z) = 0, we can write down u,, n =0,1,... with
initial values ug, u; as follows

Up = (Vea ™) [-Up—2(x)up + (V cail)flUn,l(x)ul].

Thus, denoting

2 . . —1/2
K6 ) = () =+ 0= DAl + (0 FAl + @ - GPar)
- . 1/2
Qa5 ) = Q) ={[r+ (e + DA 11+ (@ - B}

the solution of (3) can be obviously represented by
yn = Q" (A)[~Un—2(0)y0 + Q7 (A)Un-1(x)11]- (4.4)
Next, we introduce two definitions which we will use in our analysis.

Definition 4.1. Given a function p = p(7) and a real o > 0 we say that the scheme (2)
is p-stable with respect to initial data in the domain D(A?) of the operator A? if there
exists a constant M independent of n such that the estimate

n (Yot Y1 — Yo
Il < 31 (125221 + 122201, (45)

holds for any yo,y1 € D(A?) with |ulls = ||[A%u].

Here and below we denote by M, M,,...,C,Cy,...,c,c1,... various positive con-
stants.
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A principal role in our stability analysis will play the strongly P-positive operators
which have been introduced in [4]. Let T'g be a counter-clock wise oriented parabola

2
y? = %Ox + c1, co, ¢1 > 0 (see Fig. 1). We denote by Qr, the domain lying inside of T'y.

Now, we are in the position to give the definition of the strong P-positivity.
Definition 4.2. We say that an operator A : D(A) C X — X is strongly P-positive if
its spectrum X(A) lies in the domain Qr, and on I'y and outside of I'y the estimate

I(z = A) (4.6)

Hixox < M
1+ /|7
holds with a positive constant M.

Remark 4.3. The form of the path [y = [y(z) for a bounded z is not essential for our
analysis. What important is the behavior of the resolvent and of ¥(A) at infinity, i.e.
that I' is a parabola and the estimate (4.6) holds for |z| — oo.

Example 4.4. This example shows that there exist important classes of the partial
differential operators which are strongly P-positive [6].

Let V. C X = H C V* be a triple of Hilbert spaces and let a(-, ) be a sesquilinear form
on V. We denote by c. the constant from the imbedding inequality ||u||x < c|lulv,:
Vu € V. Assume that a(-,-) is bounded, i.e.,

la(u, v)| < cl|ullv|v]ly for all u,v eV

The boundedness of a(-, -) implies the well-posedness of the continuous operator A : V —
V* defined by
a(u,v) =y=< Au,v >y forall € V.
As usual, one can restrict A to a domain D(A) C V and consider A as an (unbounded)
operator in H. The assumptions
Re a(u,u) > dollull3 — 01 |lul/% for all u €V,

4.7
ISm a(u, w)| < &llul|v||u|]| xfor all u € V (4.7

guarantee that the numerical range {a(u,u) : u € X with [Ju||x = 1} of A (and sp(A4))
lies in Qr,, where the parabola I'g depends on the constants &y, d1, k,ce.. Actually, if
a(u,u) = &, + in, then we get

&u = Re a(u,u) > ollully, — 61 > doc® — o,

Il = 1S au, )] < lully.
It implies
_ 1 + 6
6> 00> =0, fully < (6t b, Il < m/gé—ol. (48)

The first and the last inequalities in (4.8) mean that the parabola I's = {z = £ + in :
£ = %0772 — 1, n € (—00,00)} contains the numerical range of A. Supposing that
Re sp(A) > 1 > o = bp one can easily see that there exists another parabola (called the
spectral parabola) I's = {z = £ +in : £ = agn® + by, n € (—00,00)} with ag = %
in the right-half plane containing sp(A) ( see Fig. 1). Note that doc; 2 — 6; > 0 is the
sufficient condition for Re sp(A) > 0 and in this case one can choose vy = dpc, 2 — d;.

Analogously to [4] it can be shown that inequality (4.6) holds true in C\Qpg (see the
discussion in [4][pp. 330-331]).

Example 4.5. This example shows how one can derive the parameters of the parabola
from the coeflicients of the elliptic second order partial differential operator [6].
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FiGure 1. Parabolae I's and I’y

Let us consider the strongly elliptic differential operator

d d
0
L:=— E 0010k + E b;0; + co (95 == 3:E-) (4.9)
=1 ’

J,k=1

with smooth (in general complex) coefficients a;x, b; and ¢g in a domain (2 with a smooth
boundary. For the ease of presentation, we consider the case of Dirichlet boundary
conditions. We suppose that a,, = aqp and the following ellipticity condition holds

d d
Z aij yiy; = C1 ny
i,j=1 i=1
This operator is associated with the sesquilinear form
d d
a(u,v) = / Z aij 3iu3jv+ij 0;uT + couv | dQ.
2\ j=1 j=1

Lemma 4.6. The spectrum of the operator L lies inside of the parabola T's = {z = £+in :
&= %07]2 — 01, 1 € (—00,00)} with parameters defined by ég = C1,61 = Ca, k = C3 where

. Cs:=Vdmax|b;(z)], (4.10)
z,]

C1 is the constant from the inequality of the strong ellipticity and Cr is the constant
from the Friedrich’s inequality.

Proof. Let A = £ + in be an eigenvalue corresponding to the eigenfunction v = wu, + iu;.
Then we have

d d
a(u,u) = / Z a;; O;u 0ju + Z bj OjuT + coutwr | dS)
Q

2,7=1 j=1

d d
= / Z a;j Oju Oju + Z b (0juy + tu;)(uy — du;) + colul* | dQ
Q

,j=1 j=1
d d
= / Z Qjj oiu 8ju + Z bj[('“)juTur — iajuTui + iajuiuT + 8juiui] + Co|u|2 dQ
Q

7,j=1 j=1
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= / Z ai; Oiudju + Zb (u? + u?) — i0;uru; + i05usuy] + colul? | dQ
Q

1,j=1

= / Z ai; Oiu Oju — Z =0;b;|ul? — b;[i0;uru; — i0;usur] + colul? | d
Q

i,j=1
= (& +in)|ullg (4.11)

By separation of the real and imaginary parts we further get

d
%ea(u,u):/ Zauauau_k co — = Z |u|2 aQ,
€ \ij=1 j=1
S ma(u,u) = 7/ b;[0juru; — Ojuiu,]dS (4.12)
Q

d
j=1

where
el =l ) = /Q fuf2dS2. (413)

Let [ulf = 3, |9;ul*> be the semi-norm of the Sobolev space H'(2), || - [[x be the norm
of the Sobolev space H*(Q) (k = 0,1,...) with H°(2) = L2(f2), and choose |luo = 1.
Using the elipticity condition

Z a;j O;u 05U > Clz|8 ul?, (4.14)

1,j=1

the Cauchy-Bunjakovski inequality

d d
Q j=1 Q j=1

and the inequality (Z; L s]) <Vdy"

i1 5% we get the estimates (compare with (4.7))

¢ =Realu,u) > Crluff — Callullg,

(4.16)
Inl =[S m a(u,u)| < Cslullo[ufy
with

1
do = C1,Cy = 6y = max|cy — 5 ;ajbj : wan
Oy =k= \/Em_arx|bj(x)|.
Let C'r be the constant from the Friedrichs iné,quality
lulo > Crluly for all u € Hj(Q).

This constant can be estimated by Cr < co(mes Q)Y/?, where ¢y = 2% for d > 2 and
co = 3/2 for d < 2 (see [10], p.71). Now, the first inequality in (4.16) implies

¢E=Realu,u) > 50|u|f - 51||u||g > 50052 —41. (4.18)
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It is easy to show that in this case with V = H(Q), H = L2(Q) it holds &, > C1|ul? —
CQHUHO Z Clcp — 02, |T]u| S C3|U|1 S 03\/ (fu + CQ)/C1, so that the parabola F5 is
defined by the parameters dp = C1,5; = C2,k = C3 and the lower bound of sp(A) can
be estimated by 71 = C1Cp% — C> > 9. Now, the spectral parabola I's in the right
half-plane can be constructed as above by putting ag = %.

The strongly elliptic partial differential operators with ® X(A) > 0 are important
examples of both strongly P-positive and strongly positive operators (also sectorial op-
erators or infinitesimal generators of holomorphic semigroups). The framework of the
strongly P-positivity is important for studying cosine families of operators related to the
equation (4.1) (see e.g. [7], [2]). It was shown in [4] that the strong positiveness of the
operator A provides some algorithmic representations of a cosine family generated by A
as well as the existence, stability and approximation results for (4.1) in the case when the
initial data belong to the domain of some fractional power of the operator A. Contrary
to the known necessary and sufficient conditions under which an operator A generates a
cosine family [7] our condition is easier to prove.

Example 4.7. This is an example of a strongly P-positive operator in a “genuine”
Banach space, i.e. in the case which can not be reduced to a Hilbert space [15].
Let us consider the one-dimensional operator A : Ly(0,1) — L1(0,1) with the domain
D(A) = {u|lu € HZ(0,1)} in the Sobolev space H3(0,1) defined by
Au=—u" Yue D).
The eigenvalues A\, = k?7%,k =1,2,... of A lie on the real axis inside of the path
z=n'%in, n>1,
r= 9
c=1xip, <1
The Green function for the problem
(21 — Au) = u"(z) + zu(x) = —f(z), 2 € (0,1);u(0) =u(1) =0
is
Glo,€) = 1 [sinvezsiny/z(1-¢) z <E,
ST JZsiny/z | sinyzEsinyz(1—x) x> &,
i.e. we have

u(w) = (=1 — A f = / Gl(x.€) [ (€)de.

In order to show that the estimate (4.6) holds true it is sufficient to estimate the Green
function on the parabola z = n? & in = \/n* + n%(cos ¢ + isin ¢), where

cos ¢ il sin ¢ L

= ——, sing = ——.
n*+1 vn?+1

Actually, we have /z = \/[4]n* + n?(cos % +isin %) = a £ b with

R N IR N

cos — = ,sin — = P
2 V2 Mt 4+ 2 V2 At 4+
\/772+ /774+n2 \/ n4+772_n2
a= ,b= .
V2 V2
The following estimates hold for z < ¢ and for n large enough
sin \/zrsin /z(1 - §)|
Vzsiny/z B
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_ [sin® az + sinh? br]z [sin? a(1 — €) + sinh? b(1 — €)]2 <

VI + n2[sin® a + sinh? b2 n
with an absolute constant c. The case & < x can be considered analogously. The last
estimate implies that [|(z] — A) "L f]|., < HL\/WWHM , i.e. the operator A is strongly

Cc

P-positive in X = L;(0,1). The same estimates for the Green function imply the strong
P-positivity of A also in L (0,1).

In the next section we will show that the strong P-positivity of the unbounded operator
A is one of the sufficient conditions for the p-stability of the regularized scheme (2)
whereas the explicit scheme (2) with o = 8 = 0 is unstable.

5. A SUFFICIENT CONDITION FOR pP-STABILITY OF THREE-LEVEL DIFFERENCE
SCHEMES WITH STRONGLY P-POSITIVE OPERATOR COEFFICIENTS

For the sake of simplicity we set in (4.2)

72
=1, «a= >
In this case the scheme (4.2) takes the form
-2
(I+ ?A)yit +7Ay. + Ay =0 (5.1)
or
I+ 72 AlYns1 —2Un +Yn1=0, n=12... (5.2)

and the operators y, Q are given by y(A4) = Q(A) = [I + 72A]~ /2.
The next theorem represents the first main result of this section (see also [15]).

Theorem 5.1. Let A be a strongly P-positive operator with the domain D(A) having
2

a spectrum Y(A) placed inside of a parabola y? = %Ox, co = const > 0, RE(A) > ~,
2
T < \/ical. Then the difference scheme (4.2) with 8 =1, a = % is p-stable with respect

N . o . CoT\_1/2
to initial data in D(A%) with p = (1 — — .
(A7) p=( \/5)
Proof. We choose the integration path enveloping the spectrum of A as shown in Fig. 2.
Using the Dunford-Cauchy integral we represent the solution of (5.2) as follows

Yn = % . —Q"(2)Up—2(x(2))(z — A)ildzyo—k (5.3)
+%/FQ”—1(Z)U,1_1(X(Z))(Z_A)—ldzyl

or in view of the elementary relations

Yoty Yo— Ui Yoty Yo— U1
Yo = 2 + ) Y1 = -

2 2 2
we get
1
Yn = Tmi / F (@) (= = A) 7 dz(yo + 1)~ (5.4)
™ Jp
1
i [ AOOE = A deln - ),
T Jr
where
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FIGURE 2. Integration path I
Taking into account the form of the path I' we can transform the integrals in (5.4)
as follows (we use the notations z = z + iy = = + ico /53, Z = x — icon/5, dz =

(1+ico/(2v2z))dz, dZ = (1 —icy/(2V/27))dx)

1
= L [ CAylgs —
1= o [ 196 -4

=11 UPOE- AT D0 - o) e
B T S N S S P
s [ UPEE- A
/3 coV/3
—i i féi)('wiy)('yﬁy—A)‘ldy—i i FE( —iy)(y—iy— A)tdy =
B s g s 0 [T ) - AV-1(s_ AV
o |, Imf () (2)(z — A)tde + 3 ), FH)Ve(E - ANz — A) " tda+
L B I KL L S VN N
g | mAREE AT 2 A6 ) ) e
+% 000 P i)y + iy — Ay — iy — A)rdy—
e
—2i RefH) (v +iy) (v — iy — A) " dy. (5.6)
T Jo
In what follows we will use the relations
Un—1(x) = Q(X)Un—2(x) =
=Un-1(X) = XUn—2(x) = Tn-1(x) =
= SV D (- VAE- DY,
Un—1(x) + Q(x)Un—2(x) =
1
=Un-1(x) + XUn—2(x) = \/ﬁx
X[2x+ VX2 -Dx+ V2 -1)" ' = 2x— VX2 - Dix— V2 -1,
[Un—1(x) = XUn—2(x)| < [@(x)]" " (5.7)

= 12X + X2 — 1+ 2x — /X2 — 1]
VX2 —1]

[Un—1(x) + xUn—2(x)| < [@(x)
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with
@(x) = max{[x + vVx* — 1], [x = vx* — 1|}, (5.8)
where T, (x) are Chebyshev polynomials of first kind [20].
It follows from (5.4)-(5.8) that

*° z c0/3 L

”ynH < C{ / q)|21€|£)d17 +/0 q)n(z,y)dy HAUyO ;y

h (I)n (ZF) Coﬁ 91 — Yo
l/W |Zr|a dx-l-/o ®,,(2,)®(1)(2r)dy HA — }, (5.9)

where
zr=$+ico\/§, Zy = + iy,
@ (2) = [Ix(2) @ ()", (5.10)
max {|2x(2) + Vi) 11 2x(:) = VA*E) ~ 11}

First of all we have to estimate
IX(2)|@(x(2)) = max {|L + itz ", |1 —iry/z[ '} (5.11)

Let z =z + iy = pe', x> 0,y € (—00,00), p= /22 + y2, cosh = %, sinf = %, then

IVx*(2) = 1

lq:(2)| 7% = [1£iry/z]? = [1£ir(2? +y?) /127 =
‘ ‘ 0. 0
=[1F7(* +y2)1/4sin§]2 + 72 (2? + )Y cos? 3=

0
=[1F 27’(172 + y2)1/4 sin 5] + 7'2(x2 + y2)1/2,
Since the angle 6 lies in the first or in the fourth quadrant, we have

0 Y 1

sin — =

20 VR VA

and
|Qi(z)|72 = 1:&\/574 +T2(.’L'2 +y2)1/2.
\/m+:c

We see that for z = zp

. co\/x/2
02 = 1 VEr -0V
\/:B-i- 2 + g /2

. B . B CO
+ 722 + Er /)Y > 1 — 7L 5.12
( 07/2) 3 (5.12)

and for z = zp

|Qi(2)|_2 =1+ \/57# _}_7_2(,)/2 +y2)1/2 >
TV
2
>1-—2r v/ >1- TC—O (5.13)

\/7+\/'y +¢57/2 V2

0<y<cov/v/2, T<V2/c.
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Next, we consider ®(1)(z) for z = 2r and z = z,. It is easy to see that

1 2 . 2 ;
@(1)(2’) = ;max{|ﬁ +ZT|, |ﬁ - ZT|}, (514)

1 2 112
P(zr) < — +7| < —|—4+7], 5.15
o er) T [ z2 + cgx/2 T [’Y } (5.19)

1 2 1

Sy(zy) E = | ——=+T7| < = —+T:|. 5.16
(=) [ — - |2 (5.16)

Now, we are in the position to estimate ||y,||. Taking into account (5.9)-(5.15) we get

—n/2
CoT
n < 11— —
lum ]l < € < \/§> <‘

where o > 0, ||u|lo = ||A%u||. The proof is complete.

Yo+
2

Y1 — Yo
T

+

o

U) , (5.17)

Remark 5.2. From the stability estimate one gets

e [ Yo + Y1 Y1 — Yo _ o~ 2 Yo+ Y1 — Yo
ol < B (R, 4 R0, ) = 0 (R 4 22, ),

T T

i.e. the stability constant increases exponentially with respect to the length of the time
interval T' = nT.

Remark 5.3. The explicit scheme (4.2) with a = 3 =0, i.e.
ya + Ay =0

or in the index form
2

-
Ynt1 — 2[1 — ?A]yn +Yn-1=0

is unstable if A is an unbounded operator in a Banach space E.
Actually, choosing yp = 0 we get

2
T
Y2 = 2[[7 7A]y1

Since A is unbounded there exists y§k) with |\y§’“)|\ = 1 such that ||(I — 72—2A)y§k)|\ >k
for any arbitrarily large k. Thus, the estimate (4.5) can not be valid for all yo,y1, i.e.
the scheme is not stable with respect to the initial data.

Note, that the scheme (5.2) related to the differential equation (4.1) is of the first
order of approximation with respect to 7 whereas the unstable explicit scheme is of the
second order. The following regularized difference scheme

2
(I " %A) Yitn + Ayn =0, n=12. . (5.18)

with given yo, w1 is a special case of (4.2) for 3 =0, a = %2 This scheme has the second
order of approximation with respect to 7. It can be also interpreted as the regularized
explicit scheme. The next main result of this section deals with the stability of this
scheme and can be proved analogously to Theorem 5.1 (see [15]).
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Theorem 5.4. Let A be strongly P-positive with a spectrum X(A) inside of the parabola

v =cdz/2 and =0, a = %2,7 < 2v2¢cyt, RE(A) > . Then the difference scheme
2_2

(4.2) is p-stable with respect to initial data in D(A%), o >0 with p = (1 + % + f )=

Remark 5.5. One can see from the conditions 7 < v/2cy' for the scheme (5.2) and
T < 2V2¢y ! for the scheme (5.18) that the opening of the parabola determines the upper
limit of the time-step 7 for which these schemes are p-stable.

Let us consider the following inhomogeneous difference scheme

(I +ad)ysn+ BAys +Ayn=fa, n=12,.. (5.19)

yo =41 = 0.
Below we define a type of stability that plays an important role for inhomogeneous
problems.

Definition 5.6. Given a function p(7) we say that the scheme (5.19) is p-stable with
respect to the right hand side in D(A?) with some real o > 0 if there exists a constant
M > 0 independent of n, such that the estimate

n—1
lynll < Mp™ Y 7llfollo
p=0
holds for any discrete function f, € D(A”).

The solution of (5.19) can be represented as

T - -1/2 n-1
Yn = {[I + (e + %)A][I + (- %A]} 3 Q" (A)Un—p 1 (x(A) fp =
p=0
# Z_:{/F[(l + (a+ ﬁQ—T)z)(l + (o — 52_7)2)]—1/2X

XQ" P (2)Un—p-1(x(2))(z — A)le}fp,

TL:2,3,...; yo=0,y1:().
Using the inequality
z)® z k
Q% (2)Ur—1(x(2))| < w7
11— x*(2)|

the estimates (5.12),(5.14),(5.15) and following the idea of the proof of Theorems 5.1,
5.1 we get the following statement.

2
Theorem 5.7. Under assumptions of Theorem 5.1 (o = %,ﬂ = 7) or Theorem 5.4
2
B =0,a= %) the corresponding difference schemes from the family (5.19) are p-
stable with respect to the right hand side in D(A?) with p(t) = (1 — %)71/2 and
coT | AT?

p(r) =1+ —= + )% respectively.

V24
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Example 5.8. In some sense, this example shows the sharpness of our results. Indeed,
let us consider the scalar problem

d*u
W-'-AU:O, tG(O,T],

uw(0) = up, ' (0) = iv/Aug,

where A = x — ico\/g can be viewed for z — oo as an “unbounded” strongly P-positive
operator with the spectrum inside of the parabola y? = (co + €)?2/2 with an arbitrarily
small positive . The solution of the problem is the function

. , x
u(z,t) =exp< i x—zco\/;t Up

= exp {i\ﬂ4]x2 + cgg (z cosg — sin g) t} ug,

v Vs

>0, sinp=-—

2 2T 2 2T
\/ T2+ 5 T2+ g3

where

cos p = < 0.

It is easy to see that

|u(x,t)| = pd(x,t)|u0|

with

For the solution of the corresponding difference scheme (5.18) Theorem 5.4 provides the
estimate

lyn(2)| = |y(z, n7)| < cp™(7)|uo|

1
with p(1) = (1 + (CO\J/FZ—E)T + (CO+Z)2TZ> ® . In particular we have for a fixed t = n7 and
T — 00

|u(oovt)| = mh_)ngo |u(x,t)| = pd(oo,t)|u0|,

ly(6)] < ep(r) ¥ |u),

cot

where pg(00,t) = limy o0 pa(z,t) = exp 55+ 1t is easy to check that

t
2,27 27 t
(co+5)7+(co—|—5)7} :exp{(co—}—g)}7
V2 4 2V2
i.e. the parabola containing the spectrum of A defines the behavior of the difference
solution asymptotically in t in exactly the same way as the exact solution.

T—0 T—0

lim p(t)% = lim [1 +

Example 5.9. Let us consider the difference scheme (5.18) with A as in Example 3 for
z = 10%co = 10%,90 = 1,y1 =1 +TZ.1/£L'—Z'CO\/§ and n = 1,2,...,100. One can see
that the absolute value of the solution as function of ¢ computed by (5.18) is stable when

the sufficient stability condition 7 < 2v/2/co holds (Fig. 3). The next figure shows that
the instability can occur if the condition 7 < 2v/2/cp is violated (see Fig. 4).
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r=0, 2" sqri{2 \'od r=1.9" sqri{2 Wch

] 'I L r = 1
Lo | I |
[}
I
t] 4 i
=
= r
4 L] L]
L] o |
- - 3 -
- K] ] LR D s, o [ ] oh -

F1Gure 3. Solution of scheme (5.18): the sufficient stability condition is ful-
filled

=5"sqri{2)cl

=7 sqri{2)cl

oty

F1GURE 4. Solution of scheme (5.18): the sufficient stability condition is vio-
lated
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