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MULTI STEP KANTOROVICH METHOD FOR SOLVING THE
3-D QUANTUM MECHANICS EIGENVALUE PROBLEMS

M. S. KASCHIEV

ABSTRACT. The methods developed in this paper are based on two step of the Kan-
torovich metod for solving eigenvalue problems for the Coulomb three-body systems
using three-dimensional (3D) hyperspherical map in the barycentric coordinates. The
initial 3D problem is reduced to the solution of one-dimensional systems of the cou-
pled second-order ordinary differential equations with variable coefficients.

All essential features and oeculiarities of the problems are taken into account
in the present approach in a natupal and exact way. New implementations of the
Kantorovich method allow us to build up a new class of 1-D orthogonal parametric
angular functions. The essential feature of these functions consists of the description
of the typical peculiarities of various three body interactions on the 2D map, de-
pending on a set of physical parameters such as charges and masses of the particles.
An exact solvable model of the 1D parametric angular functions can be used as an
analytical test for the proposed schemes.

The convergence of the Kantorovich reduction is examined numerically by cal-
culating the energies of the ground state of some quantum mechanics system. The
results are illustrated in the tables. Some distinctive featurs of the implementation
of the Kantorovich appoach are discassed

1. INTRODUCTION

Currently an ongoing work is carried out at CERN on experiments ASACUSA and
ATHENA [1] studying properties of the exotic antiprotonic Coulomb systems in traps at
low temperatures using new abilities of modern lasers. The experiments require various
data on characteristics of the Coulomb systems, such as helium atom He and antiprotonic
helium atom pHe™ [2]. Such data can be obtained using the hyperspherical adiabatic
approach [3,4] in which the long-range dipole asymptotics of the three-body systems can
be taken into account in a natural and effective way [5]. The eigensolutions obtained
within this method can be further used in calculations of various processes, e.g., interac-
tions with surrounding media like He — pHet interactions, etc. This approach is based
on the Kantorovich method [6] of reducing a multi-dimensional boundary value problem
to a system of ordinary differential equations with variable coefficients. It takes ac-
count of necessary asymptotics in a natural way, satisfies the posed boundary conditions
and provides a guaranteed convergence of the approximated solutions to the exact ones.
Recently, a new method for computation of the variable coefficients (potential matrix ele-
ments of radial coupling) of a system of ordinary second-order differential equations with
a given accuracy has been proposed [7] for the helium-like systems using the heliocentric
coordinates.

A goal of this paper is to show the peculiarities of a modern implementation of the
Kantorovich method to numerical solution of the multi-dimensional eigenvalue problems
and also to point out some prospects of its application to three-body systems based on the
calculations of the low-energy spectrum of the helium atom. The quantum mechanical
three-body Coulomb problem with total angular momentum J = 0 is formulated using
an appropriate 3-D hyperspherical map in the barycentric coordinates. A reduction
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of the three-dimensional eigenvalue problem to the one-dimensional one is performed
using several variants of the Kantorovich method. The convergence of the resulting
finite system of the ordinary second-order differential equations and the efficiency of the
proposed multistep procedures for the computation of the low-energy spectrum of helium
atom including the ground state.

A significant improvement over the standard techniques of the calculation of potential
matrix elements of radial and angular couplings within the multistep Kantorovich method
is achieved. The results of our calculations of energy of the ground state Helium atom
He and negative hydrogen ion H ™ are discussed and compared with the results of other
calculations.

2. 3D EIGENVALUE PROBLEM FOR THE SCHRODINGER EQUATION

Time-independent Schrédinger equation for a system of three charged particles with
total angular momentum J = 0 in the hyperspherical coordinates (R, o, 8) can be written
[7] as an eigenvalue problem for the following 3D elliptic equation

~

TU(R,a,0) + %W(a,ﬁ)‘l’(R,a,@) =EU(R, o, 0), (1)

where £ is the relative energy and ¥ (R, a, ) is the total wave function of the system. The
differential operator of kinetic energy 7" and the multiplication operator of the Coulomb
pair interaction R™1W are defined in Eq. (1) as follows (e = A = m, = 1):

A 1 01 0 P 1/01 0 J1 0
T=—— —"R%—+1{ t=——|=—"Rsin?asinf—+ — -Rsinf—
RErorR2" Tor Th . <aa4 eSOt 9e1 ae)’
= ZaZc Zch . —1/2
W = ZaZp [l — 0 ,
sin ar/2 * cos /2 * b[1 = sinavcosd]
1 3 .. 2 .
T = g’R sin” asin 6.
In the above, Z, = Z, = —1 and Z. = Z are the charges of particles a, b, and c

with masses M, = 1, M, = 1, and M, = oo, respectively. Note that Z = 1 for
the H™ negative hydrogen ion and Z = 2 for the He atom. Hyperradius R € [0, c0),
hyperspherical angles (o,0) € @ = {0 < a <7, 0 <6 <7}, ie. total set of variables
(R,a,0) € Q3 =Q x[0,00).

Total wave function ¥(R, «, 0) satisfies the following boundary conditions:

v v
. 2 9% . . oF _
ali%l,ﬂ sin” o~ 0, eli%}w sin 0 50 0, (2)
ov
1 5— = 1 5 =
pmReR =0 Jm R =0, (3)

and is normalized by condition

/ / R2702dadfdR = 1.

The boundary conditions of this type were definited of first time in the book A.N.Ti-
khonov and A.A.Samarski [8], pp.624-632. Below we always will use such boundary
conditions.
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3. REDUCTION OF THE 3D PROBLEM BY THE KANTOROVICH METHOD

Consider a formal expansion of the solution of Eqs. (1)-(3) using the finite set of
two-dimensional basis functions {®;(c,0; R)};m*:

Nmazx

U(R.0,0) = > xi(R)®i(a,0;R). (4)

=1

In Eq. (4), functions x(R)? = (x1(R), x2(R), - .-, Xn,... (R)) are unknown, and surface
functions ®(, 0; R)T = (@1 (v, 0;R), ®2(r, 0, R), ..., ®,,..(a,0;R)) form an orthonor-
mal basis for each value of hyperradius R which is treated here as a slowly varying
parameter.

In the Kantorovich approach [6], functions ®;(«, 6; R) are determined as solutions of
the following two-dimensional parametric eigenvalue problem:

2
(t + RW + @> ®(a,6;R) = E(R)®(a,0;R) (5)
with the boundary conditions derived from Eq. (2)
. d ¢
al_i)rglm sin? age = 0, eli%}w sin 9% =0. (6)

Since the operator in the left side of Eq. (5) is self-adjoint, its eigenfunctions are or-

thonormal:
// T(I)i(I)deéde = §1J

In the equation above, ¢;; is Kroneker’s §-symbol. Problem (5)-(6) is solved for each
value of Ry € wgr where wg = (R1,Ra,... ,Rk,--- , Rmaz) 1S a given set of values of
hyperradius R.

After substitution of expansion (4) into the Rayleigh-Ritz variational functional (see
[7]) and subsequent minimization of the functional, the solution of Eqs. (1)-(3) is reduced
to a solution of an eigenvalue problem for the finite set of n,,4, ordinary second-order
differential equations for determining energy £ and coefficients (radial wave functions)
X(R) of expansion (4):

1 d d dx . 1 dR?*Q(R)x

— —_— 2_ =
I g R X VRN + QR Ge + 7~ R 281, (7)
dy
2 _ : 2.,
Jm R g =0 Jim Rix=o ®

Here I, U(R), and Q(R) are finite Nz X Nimae matrices, elements of which are given
by relations

1

U5(R) = (Ei(R) + Ei(R) - 4z

) (Sij + Hij(R),

0®; 0P 9
Hy (R) = H3u(R) = [ [ +52 S dads — 5,

Qi;(R) = —Qji(R (//T‘P %) ey — :;)2514'),

113:61]7 iaj:]-aQ?"'?nma;E-
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Thus, the solution of problem (1)-(3) by the Kantorovich approach is reduced to the
solution of the following problems:

1. Calculation of potential curves E;(R) and eigenfunctions ®;(«, 6; R) of the two-
dimensional problem (5)-(6) for a given set of R € wg.

2,

IR

(see Eq. (9)) necessary for obtaining matrix elements of radial coupling U;;(R)

and Qij (R)

3. Calculation of energies £ and radial wave functions x(R) as eigensolutions of
one-dimensional eigenvalue problem (7)-(8) and examination of the convergence
of obtained eigensolutions as a function of number of channels 7,45 -

2. Calculation of derivatives and computation of the corresponding integrals

4. REDUCTION OF THE 2D PROBLEM BY THE BUBNOV-(GALERKIN METHOD

Two-dimensional parametric eigenvalue problem (5)-(6) can be solved directly [10]
using the finite element method [11,12]. In this paper, to solve this problem we apply
the conventional Bubnov-Galerkin method described in [7]. Because of the symmetry
of equation coefficients with respect to o = m/2, problem (5) will be considered for
a€0,7/2)].

Cousider the following expansion of basis surface function ®;(c, 8;R):

lmaz
(o, 0;R) = Z @gz)(a;R)B(COS 0), (10)
1=0

where <pl(i) (a; R) are expausion coefficients depending parametrically on R and P;(cos 0)
are the Legendre polynomials. These polynomials are the eigensolutions of the following

eigenvalue problem

d . edPl(cosﬂ
a0 de
with A; = (I + 1) being the corresponding eigenvalues.

= A\ sin@ Pi(cosb)

Following [7] we find that eigenfunctions gal(l) (; R) and eigenvalues E;(R) satisfy the
following eigenvalue problem for a finite set of [,,,4, ordinary differential equations

d _d ,
L(p, E) = [R (EDE + A) + R2W —2E(R)YR*D| ¢\ (a,R) =0,

(11)
dp ) ) . .
lim sin?ad? = DT = (o, o, o),
aﬁ1()1,171r/2 sin a@a 0, (¢") (P17 9575 )
In the above, D, A, and W are finite ;42 X l;nq: matrices elements of which are defined
by

1
Diizzsin2a, Dij =0, i#j, Aiy==(i(i+1)+sin’a), Ay =0, i#}j,

1

4

Wi =~k s (con & 450 D) 5, + Lt cav
i = —4—8SInQ (COS — + Sin — | 0;5 —sin” aW. .,
J 4 2 2% "8 g

1

PWPG) .

Wrer =/ O g 6 =0,1,2, . Las
K 1 V1—tsina J

Thus, the solution of the two-dimensional eigenvalue problem (5)-(6) is reduced to the
solution of eigenvalue problem (11) for a system of I,,,, ordinary second-order differential
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equations. A convergence of this method in respect to number of equations l,,,4, has been
studied in Ref. [7] for Helium like systems for an infinite mass case.

5. COMPUTATION OF THE MATRIX ELEMENTS OF RADIAL COUPLING

Calculation of potential matrices U(R) and Q(R) (see [9], [10]) with sufficiently high
accuracy is a very important step of solving system of radial equations (7), since otherwise
it is practically impossible to get the desired energies and wave functions of three-body

d
Coulomb systems with required precision. This implies that derivatives & should be
computed with the highest possible accuracy, which presents a difficult problem for most
of numerical methods usually used in the adiabatic representation calculations [4].
d

An effective method, which allows to calculate derivative % with the same accuracy
as achieved for eigenfunctions of (11) and use it to compute matrix elements defined by
formulas (9), has been developed in [7]. Here we only outline it briefly for completeness.

d

Taking a derivative of (11) with respect to R, we get that % can be obtained as a

solution of the following boundary problem

de d d 2 / 3
L(2 E)=|—D— —U—-2RW +6E D +2E Dlp=G. (12
(dR’ ) {da o~ U —2RW + 6E(R)R*D +2E'(R)R*D| o = G.  (12)

d
The boundary conditions for function % are the same as for function ¢. Taking into

account that F(R) is an eigenvalue of operator L, problem (12) will have a solution if
and only if the right hand side term G is orthogonal to the eigenfunction ¢. From this
condition we find that

dcpT

w/2 d 3 /2 1
E'(R) = — Y DY LT+ 2RW) 0| do — 2 E(R / T~ Deoda = 1
(R) /0 ldo‘ da+s&(+ )| da R(), | ¢ gDwda

(13)
Now problem (12) has a solution, but it is not unique. From the normalization condition
we obtain the required additional condition

/21 d 3
T D& gy = — 2 14
/0 7 YaRY T TR (14)

Thus, problem (12) with additional conditions (13)-(14) has now a unique solution.

6. MATRIX REPRESENTATIONS OF THE EIGENVALUE PROBLEMS

For numerical solution of one-dimensional eigenvalue problems (7), (11) and boundary
value problem (12)-(14) subject to the corresponding boundary conditions, the high-order
approximations of the finite element method [11,12] elaborated in our previous papers
[13,14] have been used. One-dimensional finite elements of order p = 1,2,...,10 have
been implemented. Using the standard finite element procedures [12], problems (7) and
(11) are approximated by the generalized algebraic eigenvalue problem

AF" = E"BF™. (15)

The boundary value problem (12)-(14) is approximated by the system of linear algebraic
equations

Aul =b. (16)
In Egs. (15), (16), A and B are the finite element matrices, corresponding to problems
(7) or (11) (see [13,14]), matrix A and right-hand side vector b are obtained respectively
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from matrix A and condition (14) using the algorithm of Ref. [7], E” is the corresponding
eigenvalue, F" is the vector approximating solutions of (7) or (11) on the finite-element

d
grid, and u” is the finite element approximation for %
don .
Let E,, ¢, and % be the exact solution of (7) or (11), (12)-(14) and E*, F* u” be

the numerical solution of (15) and (16). Then the following estimates are valid [11]

|En — Ep| < cl(Ba)h™, lon — Frllo < c2(En)hP*,

d
|%—u2||0§03hp+1, >0, >0, c3>0,

where h is the grid step, p is the order of finite elements, n is the number of the corre-
sponding eigensolution, and constants c¢;, ¢, and c3 do not depend on step h.

7. TEST EXAMPLE: HYDROGEN ATOM ON A THREE-DIMENSIONAL SPHERE

Now we consider the following eigenvalue problem

(Ri sin? ol - R? sin 2a) P(a;R) = E(R)2R? sin? ay(o; R).

da da
(17)
lim sin® a3_¢ =0, lim sin® aa—w =0.
a—0 o« a—w Ja

Problem (17) has an analytical solution

11 n? —1
with eigenfunctions v, («; R) which are the radial functions of a hydrogen atom on a
three-dimensional sphere [15,16]

Yn(a, R) = Cp(R)Re{exp[—ta(n — 1 —10)]s Fi(—n + 1,1 4+ 10,2, 1 — exp(2ic)) },

n? + o2 R
o=—,

2
= o ,
V1 —exp(—2m0) R3 n

where o F} is a full hypergeometric function.

Denote the exact solutions of problem (17) by (E,,y) and the numerical ones by
(E ™). First, we present the results of the computation of eigenvalues and their
derivatives, which were obtained using 100 finite elements of the fifth order (501 nodes).
Twenty eigenvalues were calculated simultaneously at two values of hyperradius R =1
and 15 a.u. Some of them are presented in Tables 1 and 2 together with quantities
¢ = E" — E, and § = (E") — E!, which show the actual accuracy achieved for the
approximate eigenvalues and their derivatives. From the Tables, one can see an excellent
agreement (10710 or better) of our numerical results with the exact solutions.

Table 1: Approximate eigenvalues E! of problem (20) and their derivatives (E")" cal-
culated at R = 1 a.u. € = E" — E, and § = (E")’ — E/, where E,, and E/, are exact

Cn(R)
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solutions. The numbers in parentheses denote power of ten.

n E! € (ElY )

1 —.4999999999(+00) 266(—11) —.5748734821(-11) .575(-11)
6 .1748611111(+402) 137(—12) —.3500000000(+02) —.154(-12)
10 .4949499999(+402) .301(—13) —.9900000000(+02) —.144(-14)
14 .9749744897(+02) 114(-12) —.1949999999(+03) —.108(-12)
20 .1994987500(+403) 464(-12) —.3990000000(+03) —.107(-09)

Table 2: Approximate eigenvalues E" of problem (20) and their derivatives (E")’ cal-
culated at R = 15 au. € = E" — E,, and 6 = (E") — E! where E,, and E/, are exact
solutions.

n El € (EMY )
1 —.4999999999(+00)  .857(—11) 16063205493(—12) 606(—12)
6388888888(—01)  .144(—11)  —.1037037037(—01)  —.555(—12)
10 2150000000(+00)  .496(—12)  —.2933333333(—01)  —.459(—12)
14 4307823129(+00)  .252(—12)  —.BTTTTTTITTT(—01)  —.294(—12)
20 8854166666(+00)  .823(—12)  —.1182222222(+00)  —.782(—10)

The accuracy of calculation of the matrix H and Q is the same as the anlytical ones

(see [7])-

8. NUMERICAL RESULTS FOR He AND H™

In this section we present our numerical results for the low-energy spectrum of He-
lium atom He and negative hydrogen ion H~ including the ground state. To calcu-
late matrix elements (9) thirteen (1,4 = 12) Legendre polynomials in expansion (10)
have been used. System (11) has been solved using 100 finite elements of the 7-th
order for the first 28 eigensolutions. Problems (15) and (16) were solved by the sub-
space iteration method [12]. All eigenvalues and the corresponding matrix elements
were calculated with relative accuracy of 1071%, The grid in R has been chosen as fol-
lows, 0.02(0.02)0.1(0.05)6.1(0.1)20.0(0.2)35.0(0.25)50.0 (number in parentheses denotes
the step in R). For the results presented in Table 3 maximum values of hyperradius
Romaz = 50.0 a.u. have been used. System (7) has been solved using 220 finite elements
of the seseventh order (1541 grid points, grid step h = 0.00051). The cubic splines have
been used to interpolate the coefficients of system (7) and to construct the radial finite
element grid.

Table 3: Convergence of the ground state energy (in a.u.) for He and H™ with the
number of coupled channels n.

n He H~

1 —2.88791168 —0.52241442

2 —2.89137991 —0.52472087

3 —2.90287002 —0.52732522

6 —2.90300448 —0.52751473
10 —2.90363613 —0.52768020
15 —2.90370549 —0.52773607
21 —2.90372264 —0.52774928

28 —2.90372266 —0.52774970
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In Table 3 energy values for the He and H~ obtained in Ref. [7] using the heliocentric
coordinates are compared with the results obtained in this work by solving problem (1)-
(3) for different number of radial equations in system (7). Such comparison demonstrates
the convergence of the Kantorovich reduction of the 3-D problem using expansion (4)
and also stability of the Bubnov-Galerkin method (10) for solving the 2-D parametric
boundary problems (11) and (12).

A convergence study of the ground state energy of He and H™ with the number
of radial equations is presented in Table 3. One can see that the energy eigenvalues
converge monotonically from above, with the 28-channel value being £, = —2.90372266
a.u. and Eg- = —0.52774970 a.u. As shown these values are very close to the precision
variational results : EYAR = —2.90372437 a.u.[17] and EYAT = —0.52775102 a.u.[18].
Since the calculation of matrix elements have accuracy approximately 1072 it is shown
that we have the same accuracy for eigenvalues. It is evident that our results agree very
well with these high precision calculations.

9. TWO NEW SCHEMES OF THE 2D KANTOROVICH REDUCTION

In the present paper we would like to suggest a more efficient way to solve the two-
dimensional problem (5) using the Kantorovich method. Expansion (10) can be rewritten
in two different forms:

l’VYLO/I .
(0, 0;R) = Y i) (; R)Gi(0; 0, R), (18)
=0

l’VYLO/I
d,(a,0;R) = Z <pl(z) (0; R)Fi(c;0,R). (19)
1=0
In the expansions above, basis functions G;(6; «, R) and F;(«; 0, R) are the solutions of
the following two one-dimensional parametric eigenvalue problems:

d d 2 .
<—E sinf— + % sin? acsin OW (0, o) + gsm? asina) G=

do 4 do
(20)
3
=AM R) % sin? o sin 0G,
d R -9 d RZ -9 . 7 R .92 . _
(—azsm a- + 5 sin asin W (0, a) + 7 Sin asing | F =
(21)

R? ..
= A6;R) 5 sin? asin OF,

with the boundary and normalization conditions

lim siHHa—G =0, / sinfG%df =1, lim sinzaa—F =0, / sin? aF?da = 1.
6—0,7 00 0 a—0,m oo 0
respectively. Note, that the differential operators in Egs. (19) and (20) are self-adjoint.
This circumstance guarantees that eigenfunctions G; and F; form full orthonormal sys-
tems.

Let A(a;R) and Gi(0;«,R) be the solutions of problem (19). After substituting
expansion (17) into the Rayleigh-Ritz functional for a problem (5), and its subsequent
minimization we get the following system of coupled ordinary second order equations for
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obtaining the unknown eigenfunctions ¢V (a;R), (9T = ( gi),gogi), e ,gpl(2 .) and
eigenvalues F;(R)
d _d R? R .o — R ., —=dp
“REDZ o+ T Ao+ Zsin? aHp + — sin® aQ -2
dol e T g e s allpd st aly
(22)
-I-R dsin? aQyp _ R3
4 do 2
s Op

with boundary conditions HI(I)I sin aa— = 0. Here D, A, H, and Q are finite lyqz X
a—0,m Q

lmae matrices, elements of which are given by relations

E(R)Dg,

sin? a

Ay =sin® aN(R), Dy = 1 Ay =0, Dy =0 1#10,

a Oo

Hy = / sin 0? Gy do, (23)
0

— — T oGy
r==Qu = — in0G,——do, 1,I'=1,2,... lnas-
Qll Qll /0 sin l Do ) ) 3 4y )
Let A;(6;R) and Fi(0;a,R) be the solutions of problem (20). Following the same
procedure as above we obtain the unknown eigenfunctions
PDOR), (T =08, el )

and eigenvalues E;(R) as the solutions of system
d _d R3 R R de R dsinfQyp _ R3

RAD L R N BangTo+ RsngglP . RAsmbQy
RgPage T g Mot psindie+ psinfQo,+ F—0p 5

) E(R)Dy, (24)

0 — _
with boundary conditions lim sin 08—5 = 0. Matrices D, A, H, and @ are defined as

—0,7

sin 6

All = sin 9)\[(9;7?,), Dll = T, All’ = 0, Dll’ = 0, l ;é l/,
— i OF; OFy
2
Hll’ :‘/0 sin awwda, (25)

— — T Ey
Qll’ = 7Ql’l = 7/ Sinz Oéﬂa—lda, l,l/ = 1,2, e ,lmax.
A BT

10. SUMMARY

In this paper we have shown that the proposed implementation of the Kantorovich
method is an effective computational tool for solving multi-dimensional eigenvalue prob-
lems for the three-body Coulomb problem. All essential features and peculiarities of the
problem are taken into account in the present approach in a natural and exact way. New
implementations of the Kantorovich method proposed in section 8 allow us to build up
a new class of the 1-D orthogonal parametric angular functions. The essential feature
of these functions consists of the description of the typical peculiarities of various three
body interactions on the 2D map, depending on a set of physical parameters such as
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charges and masses of the particles. An exact solvable model of the 1-D parametric
angular functions can be used as an analytical test for the proposed schemes.

In the present work we have suggested the following implementation of the multistep
Kantorovich method:

1. Solve Egs. (19) or (20) for eigensolutions A; and F; or Gy, respectively.

2. Solve the one-dimensional angular systems (21) or (23) to find potential curves
E(R) and 1D angular basis functions gol(i).

Calculate matrix elements H and Q.

Calculate energies £ and radial wave functions x(R) as eigensolutions of one-

dimensional eigenvalue problem (7)-(8).

- w

The present study of the multistep Kantorovich reduction opens new possibilities for
using optimal approximations to solutions of 2D and 3D eigenvalue problems.

Here we shown in Table 4 the results of solving the Eq.19 and system (21) for R = 80
a.u. This is conviniet because the assimptotic values of the terms are known. One can see
that three eigenvalues and eigenfunctions of Eq.(19) are enough to obtain the accuracy
1079 while the Bubnov-Galerkin methods used the 13 Legendre polynomials (see [7]). In
this table I denotes the number of equations in system (22).

Table 4: Comparison of the numerical potential curves E;(R) of Eq. (20), (22) with the
dipole asymptotics, E2*(R), for the 1S¢ state of He calculated at R = 80, a.u.

i | = 1 1 = 2 1 = 3 1 = 6 E*R)

1 —201253 —201253  —2.01254  —2.01254  —2.01254
2 -051266 —0.51280  —0.51280  —0.51280  —0.51280
3 —0.23503 —0.51228  —0.51228  —0.51228  —0.51228
4 —0.13798  —0.23557  —0.23563  —0.23563  —0.23560
5 —0.09435  —0.23438  —0.23468  —0.23468  —0.23465
6  —0.07231  —0.13918  —0.23403  —0.23403  —0.23403

Using modern computer architectures such as vector and parallel facilities combined
with such techniques as the Gauss quadrature grids for the one-dimensional problems, etc.
can significantly reduce the cost of solution of multi-dimensional problems with overall
improvement in performance, effectiveness and accuracy required in modern computa-
tional physics.
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