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SECOND-ORDER UNSTEADY-STATE EQUATIONS
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M. N. MOSKALKOV, D. UTEBAEV

ABSTRACT. The work deals with construction and investigation of the difference
schemes for solution of Cauchy abstract problem for a second-order equation. We
consider a parametric family of schemes. The presence of parameters in the scheme
allows to regularise the schemes with the view of optimising the implementation
algorithm and scheme accuracy. Such schemes may be applied for solving systems of
second-order ordinary differential equations and hyperbolic-type partial differential
equations.

Introduction. The scheme which is similar to considered scheme was constructed in [1]
on the ground of the finite element method and Bubnov-Galyorkin’s procedure. In [2], the
finite element schemes for unsteady-state equations comes from the quadratic functional
of total system energy. Such schemes require solving the equations for unknown values
of solutions either on all levels t = ¢,, n = 0,1,... or on several levels n = ng,ng +
1,...,n0+ k. Such a way for discretising the problem require a big number of arithmetic
operations for implementing these schemes.

Using the finite element method on the basis of Bubnov-Galyorkin-Petrov’s procedure
in [3], new vector two-level difference schemes are constructed which approximate Cauchy
abstract problem for second-order equations

Dii+ Au = f(t), u(0)=wup, ©0)=u, 0<t<T. (1)

Here, A, D are constant operators (matrices), A* = A > 0, D* = D > 0, acting in
Hilbert space H; i = %, U = %.

On the assumption of interchangeability of operators A, D : AD = DA a convergence
property of the solution of the scheme (2) to the sufficiently smooth solution of the
problem (1) is shown in [3]. In the same place, an implementation algorithm is proposed,
based on factorisation of the operator on upper level.

In the present work, the new parametric family of the schemes of fourth and sixth
accuracy orders is constructed and investigated by developing the ideas of [3]. The
convergence property is proved and an economic algorithm of implementing such schemes
is proposed, without assumption on interchangeability of operators A, D.

1. Construction of Difference Scheme. Let us define the generalised solution of the
equation (1) as the function u(t) € C1[0,T] satisfying, for any range (t,,t,+1) € [0,7],
the identity [3]

tn41 tnt1
(~Ditd + Auv)dt + Di["+ = / FOodt, Yot) € CU0,T.  (2)
tn tn
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Let wr = {tn, T = tpt1 — tn,n = 0,1,2,...} be a net on an interval ¢ € [0,T] (for
simplicity sake, we consider the grid uniform). We seek an approximate solution of the
problem (1) in a form of third-power Hermitean spline [1]:

y(t) =y w0 (1) + 5" eTo(t) + y" iy () + "l (1), (3)

where:

n *n dy n n
Yy = y(tn)» Yy = %(tn)» 9000(15) = 253 - 352 +1, 9010(15) = 352 + 253»

n n t—1tn
e (t) = 7'(53 —2¢? +&), ¢hit) = 7(53 - 52)7 = P
By selecting various weighting functions v(t), namely
o(t) = v1(6) = proy” (€) +p20i? (€)
t—1tn

(t) = va(€) = 51057 (€) + 52057 (€), €= —2,

T

@ =1 O=¢-¢ é%@=TG—3)

ey (¢332 L
v (5)—T<5 ¢ +25),
where parameters p, ps, s1, s2 are defined by correlation:
p1 =6 —60v, ps=30—360vy, s =1805— 40, sy = 16805 — 280,

we shall get the following vector difference scheme

(D*VT2A)y7y+A—y;y =1,

R . (4)
(D—arta) Lt — (p—prray LY =y,
Here,
tn+1 1
]- - in

o= [ == [+ ru©ds
tn 0
A t—t /

P2 = - / F)va( — n)dt = /f(tn + 78wy (§)dE,
0

tn
v =uo, ¥’ =u.

In the first equation of system (4), v is an arbitrary parameter, as distinct from [3], where
V=15

Let us choose parameters «, 3,7 for reasons of accuracy and simplicity of scheme
implementation algorithm.

We assume, for simplifying the investigation of the scheme accuracy, that A, D are
numbers, and the equation (1) is a second-order homogeneous f(t) = 0 ordinary differ-
ential equation (test equation) which has an exact solution:

A
u(t) = ag cos At + azsin A\t, A = D (5)

Constants aj, as are determined by entry conditions.
We will seek the solution of difference equations (4) (¢1 = 2 = 0) in the form

y=y"=Yq", y=y"=Yq", (6)
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with amplitudes Y and Y. By substituting (6) to (4), we shall get a homogeneous system
with respect to Y and Y, for which the condition of the occurrence of nontrivial solutions
(the determinant is equal to zero) is given by:

(1—az?) (1—72%) (¢ — 1% + ZZ (1-82%) (¢ + 1)?=0, z=1A\

The last equation allows to define the scheme transition module g:
(1 — 622) (1 - 722) — 242 (1 - ozz2) +d
(1—522) (1—72%) + = (1— a2?)

where d = —2% (1 — a2?) (1 — 32?) (1 — v2?).
The condition of scheme stability (4) is given by [3]

(D — aT2A) (D — ﬁT2A) (D — 77214) > 0.

q1,2 =

For satisfying this, it is sufficient that
D
2
77 < —
— mA?

At this, d < 0 and |g| = 1, so that we may present ¢ as:

m = max{a, 3,7} > 0. (8)

g1,2 =Ccosp tisinyp. (9)
By comparing (7) and (9), we shall get an equation to define ¢:
2010

(1—az?) (1 —y22) + 2 (1 - B22)

cosp =1—

From here,

.|z (1 —az?)
p = 2arcsin | - 5 .
2\ (1= az2) (1—n22) + Z (1 622)
From (6), (9), we will find:

y=19y" = by cos %tn + by sin %tn. (10)

The distinction of the exact and approximate solutions is characterised by value ¥ =
(see (5) and (10)). The closer is ¥ to 1, the more accurate the approximate solution i
Let us expand ¥ by powers of z:

P
TA
S.

9 =147r2"+ 2t + 0%, (11)

1 1
T1=§<a+7ﬁ6)»

1 1 1\ _
T2—ﬁ<56057+%>+<5+’7046>7”2-

By minimising |r;| and |rs|, we may improve the quality of the approximate solution.
We shall demand from all schemes considered below that the condition r; = 0 is to be

satisfied. From here,
1

a+ Y= ﬁ + 6 (].2)
At the same time, ¥ = 1+ A7 + O(7%), ry = & (B — 60y + ).
In this case, we may say that the harmonic propagation speed of the differential
equation and difference schemes agree to an accuracy of fourth-order values by step 7.
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For obtaining the schemes of sixth order of accuracy we shall require that both (12)
and the following condition are satisfied:

1
ﬁ76a’y+E:0. (13)

As noted above, the investigation of the scheme was made on the assumption of inter-
changeability of operators A, D. This condition is burdensome. To reject such condition,
we shall introduce w = D2y, & = D'/?j instead of y, 3, where D'/? is a square root
from a positive operator D. Let us also note that (D1/2)* = D'/2 > 0, and there exists
an inverse operator D~1/2 = (D’1/2)* > 0.

After making obvious transformations, from the scheme (4), we shall get the scheme

LW — ~W 4w -
D’y +A 9 = Y1,
’ . (14)
LW —w - W+ w
D, - D = o,
T A 2 2

where @y = D72y, o = D"Y2py, D, =D —wr?A, D= E, A= D Y2AD~Y/2 1t
is obvious that D = D* >0, A= A* > 0 and DA = AD.

2. Algorithm of Scheme Implementation. For implementing the scheme (14), it is
necessary to solve a system of two equations for unknowns w, w

Do + g[m =&, =D — %flw N

—% Db —}—f)au? = <i>z = —%f)gw + f)aw + T2
We shall find by Cramer’s formula (considering DA = AD)
w=ATA;, w=AT'A,, (15)
where:
A=D%+ <a+’y— )TZAD-}- (cw— g) T4 A2,
(16)
Al = ﬁa(iz‘l — %A‘i’z, Az = Dvéz — %Dﬁ(bl
Let us factorise an operator A: } o
A=D,D,,,
where w,wsy are roots of a quadratic equation
. 1
w2+<a+71)w+<a’y§):0. (17)

Coming back in (15) to old variables y = D~'/?w, § = D=2, we shall, after simple
transformations, obtain formulas for scheme implementation (4):

Ay=A;, Aj=A,,

where:
A — D1/2AD1/2 — D1/2Dw1Dw2D1/2 —

— D\/? (E — T%lD*l/?AD*l/z) x
x (E - Tzsz_l/zAD_l/2> DY =D, D'D,,,

A, = D'2A, = D,D"'®, — %AD*@Z,
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~ T
Ay = DY?A, =D, D@, — EDﬁD*%pl,

. T T .
q>1 ZD,yy—EAy‘f‘T(Pl, ‘I’z=—§Dﬁy+Day+TS@z

On the ground of the last formulas, the calculation algorithm appears as follows:
we solve equations D®; = ®; and D®y = P»;
calculate Al = Da(Iz‘l — %A(I:‘z, AQ = Dv(i:‘z — %Dﬁ‘i‘l,
solve equations D, x1 = Ay and D, x2 = Ay;
and, at last, we calculate solutions on a new level by solving the equations

Do,y = Dxy, Dg,i = Dx.

The scheme implementation algorithm would be more economic if wy = 0; this takes
place if the following condition is satisfied:

ay= . (18)

Here, w1 = a+ v — %. In this case, it is necessary ”to invert” two operators D and D,

only.

The necessity to factorise the operator A (and, as consequence, the operator A) is
connected to the following fact. For the ODE systems (1) resulted from the approxi-
mation of hyperbolic equations by the net method or finite element method by spatial
variables, the matrix corresponding to A is conditioned poorly and filled badly. The
matrix corresponding to the operator A will have a greater number of nonzero elements
and its conditionality is worsened, while each of factors D, D,,, D,, in representation
A to be ”inverted” has the same structure and properties as operators D, A do.

Let us consider examples of schemes which satisfy requirements of accuracy (12), (13)
and of economy (18).

I The scheme with parameters v = 1, a = 15, 8 = & (see [3]) has the accuracy
order 4 (the condition (12) is met). The discriminant of the quadratic equation (17)
is negative and, therefore, the implementation of such scheme in the field of real
numbers by the specified algorithm is impossible (it is reasonable that such scheme
can be implemented by inverting the operator A on each time step). The condition
of scheme stability 72 < /1\—2.

II By choosing v = & and satisfying (12) and (18), we shall obtain of order 4 with

B = 37, @ = 4, that coinciding with one of schemes in [3]. Roots of the equation (17):

— o7, wz = 0. The condition of scheme stability 72 < 3.

IIT Let us introduce a new scheme of fourth accuracy order missing in [3]. The originality
of such scheme is that, for its implementation by algorithm, it is necessary to ”invert”
only one operator D, as w; = we = 0. Let us subject the choice of parameters to
conditions (12), (18) and

w1 =

1

_ 1 ; : 2 _ 1 1o
From here, 8 = 53, and v, a are roots of a quadratic equation z* — 3@ + 55 = 0.
Therefore, we may choose v = z1, a = xy, or @ = x1, ¥ = Xy, where z; = % +

% % ~ 0.2473681, x5 = 3 — % % ~ 0.0026318. The condition of scheme stability
2 1 4
= 72 N2

IV Now, let us consider scheme of order 6 (this is also a new scheme), which would satisfy

the condition (18). The parameters of such scheme are defined from the following

system:

1
8
’

1 1
a+7—ﬁ+ga ﬁ—6a7+E—0, ay——==0.
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The solution is: # = 55, @+~ = &2, ay = g5. The roots of the equation for o and v
are complex. The scheme may not be implemented even by inverting of the operator
A.

V We shall point out to one more scheme of 6th accuracy order (new!), which has real
roots of quadratic equation:

7 1 1

@a /6:%7 Y=75

o = 12

The conditions (12), (13) are met for these values of parameters. Where wy o =

1 1 /71 iy o 2 12
TR VA T The condition of scheme stability 7> < 3z

3. Stability and Convergence of Schemes. We shall assume that H is a Hilbert
space with a scalar product (u,v), u,v € H. Similarly to work [1], we shall present the
scheme (14) as

W+ W

BW; + A =&, W(0) =W, (20)

where:
(DD, 0 S0 DA\ -
B = v ~ ~ A = ~ ~ @ = D A
<0 ADa> ) (ADB 0 ’ ( BP1, 502)7
W, = (0", w") € H> = H® H, B, A are operators from H? in H?.
On the ground of the theorem 1 of [3], as D* = D > 0, A* = A > 0 and DA = AD,
always supposing
D >m7?A, m =max{a, ,7} (21)

the scheme (20) is uniformly stable, i.e. the following estimation is true:

W g < IW 5 v, (22)

&
where (W74 = w3, + 73,5
Let us require, similarly to [3], that a condition stronger than (21) is to be satisfied:
D-mr?A>c¢E, 0<e<l. (23)
Then,
W15 = ellw™ I + & [l * = e lly" 1% + & 15"11D , (24)
as
[w* (5 = (Aw",w") = (D/2AD™Y2DY 2y D2y = |y
[ [* = (", w™) = (DY?y", D'2y™) = [|5"||7, -
Now, if we apply theorem 2 of [3] to the scheme (14), then, if (23) is satisfied, owing to

interchangeability of operators AD = DA, we shall obtain the estimation of the solution
by the right part

lw™ |l 5 + ™| < M([[w’|| 15, + 10"l 5,5, + 16711 2-2 + 185115 +

#1300+ 188015+ Do (18 2l s + 125 11).
k=1

where M = M(e). Coming back to old variables y, ¢, we see that the following theorem
is true:
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Theorem 1. Let D* =D > 0, A* = A > 0. Then, if the following condition is satisfied:
D—-—mr?A>eD, 0<e<l,
the following estimation is true for the solution of scheme (4):

ly™ 4+ 119" < M|¥° )| sp-sip 19 5. prp. + Nt la-r + 1151 51 +
AD-1D, DgD=1D,,

#1680+ 18lpms + Dbl + el
k=1

For v = ﬁ and if the condition (12) is satisfied, an approximation error of scheme
(4) on sufficiently smooth solutions has fourth order. Therefore, the following theorem

is true:

Theorem 2. Let conditions of the theorem 1 be satisfied, and let scheme parameters
satisfy the conditions v = 11—2, a—p= 11—2 Then, the solution of scheme (4) converges to a
sufficiently smooth solution of problem (1) with fourth order so that following estimations
are true:

ly™ = ulta)lla < M7%, o [[g" —alta)llp < M7

The issue on convergence and accuracy of fourth order schemes with v # % and of
sixth order schemes remains open (schemes III, IV, V from item 2).

For investigating of such schemes, we shall reduce the system of two-level equations
(14) to two three-level schemes

-+ 2w+ - P1+ P x
D, Dowy +DﬁAW — Dyt . LEN N (25)
S A4~ -~ Py + P
Do Dyt + ADp———— = Dagrp— AZ2T 22 . w2 (26)

The approximation error of such difference equations is the following value:
1 1
b =(r+a—g=BOF) + (8- 6ay+ )0 +0(°),

that is, a value of order O(7*) if the condition (12) is satisfied, and a value of order O(79)
if (12) and (13) are satisfied simultaneously.

The stability of such difference schemes results from the general stability theory of
three-level schemes [4]. The stability condition coincides with the condition (21), o
D > m7?A, m = max{a, 3, 'y} Here, the interchangeability of initial operators A and D
is not assumed as operators A and D,, are interchangeable by construction. The accuracy
order of schemes (25) and (26) as well as of their analogues for variables y, ¢ coincides
with the approximation order.
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