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ON THE STABILITY OF FINITE-DIFFERENCE
SCHEMES FOR ONE-DIMENSIONAL PARABOLIC
EQUATIONS SUBJECT TO INTEGRAL CONDITIONS

UDC 518:517.944/947

M. SAPAGOVAS

ABSTRACT. The author prove the stability of a finite-difference scheme for the one-
dimensional parabolic equation with the constant coefficients and nonlocal integral
conditions. Stability analysis technique is based on calculation or estimation of the
eigenvalues of non-symmetric difference matrix. In case of constant coefficients in
integral condition it implies more general stability conditions, compared to that de-
scribed in literature. The efficiency of the stability analysis presented in the paper is
illiustrated by results of numerical experiment.

1. INTRODUCTION

The article deals with the stability of difference schemes for one-dimensional parabolic
equation
ou O%u
— == ,t), 0,1), te (0, T 1
=), ze(,1), te(0,T) (1)
subject to initial condition

u(0,z) = p(z), z€(0,1) (2)

as well as integral conditions (instead of common boundary-value conditions)

u(0,t) = /oz(x)u(x,t)dx +ui(t), te(0,7T), (3)
u(l,t) = /ﬂ(z)u(x,t)dx + pa(t), te(0,7). (4)

The pioneering studies that had a great impact on the subsequent development of theory
of differential equations subject to non-local conditions were the articles [1]-[3]. The
great part of articles [4]-{10] dealing with non-local problem (1)—(4) employ either finite-
difference or finite element technique. Substantiating theoretically application of these
techniques and, in particular, studying the stability, one face an essential peculiarity
of the problem under consideration, i.e. non-symmetric matrix of system of difference
equations. The articles cited above [4]-[9] when dealing with the stability of difference
schemes make certain assumptions related to the “smallness” of the coefficients a(z)
and f(z). These assumptions in most cases are either congruous or equivalent to the
following inequalities:

la(z)| <1, [B(x)] < 1. ()

Key words and phrases. One-dimensional parabolic equation, nonlocal condition, finite-difference
scheme, stability, eigenvalue problem.

77



78 M. SAPAGOVAS

Not providing any proof the article [10] states inaccurately, that difference schemes con-
sidered there are unconditionally stable, and no constraints on functions a(z) or §(z)
are imposed.

Article [11] proves that essentially weaker constraints compared to (5) suffice the exis-
tence and uniqueness of the solution of implicit difference scheme. Namely, boundedness
of absolute value of both a(x) and ((z) and fineness of numerical grid in both spatial
and time directions imply existence and uniqueness of the solution.

This article explores the stability of implicit second order difference schemes. We
prove the absolute stability of the difference scheme in special vector norm whenever
a(x) and f(z) satisty completely different conditions than (5). These conditions evolve
when exploring the eigenvalues of the matrix of the system of difference equations. For
example, in the case o(z) and B(x) are constant these new stability condition is —oco <
a+ 3 < 2, instead of || <1, |8] < 1, widening significantly the class of constraints (3)
and (4) ensuring stability of the difference scheme. Similar stability analysis technique
for different non-local conditions than (3), (4) is used in [12], but somehow this article
remains unnoticed by specialists or undervalued.

Parabolic equations subject to other non-local conditions than (3), (4) were investi-
gated by a series of authors. It is worth mentioning separately the class of problems for
one- or two-dimensional parabolic equations subject to non-local conditions, linking only
contour points [13]-[21]. More comprehensive review and bibliography of earlier works
on the topic one can find in [6], [12], whereas recent works are overlooked in [10], [11],
[22].

Investigation of that differential or difference eigenvalue problems with non-local condi-
tions, which lie in the base of the technique presented in this article, make a self-contained
problem area analysed in various articles, such as [12], [20], [21], [23]-[29].

2. DIFFERENCE SCHEMES

Differential equation (1) we approximate by the following system of difference equa-

tions: - _
g+ J ) )
B T8 o oA (1 o)A + o], (6)

.

where

i=T,N 1, j:O M—T h=1/N; 7 =T/M,
1 2u + ul 11
2
and @{ is a value of function f(x,t) at a certain point, close to the point (i,j). We
approximate non-local and initial condition (2)—(4) by the following difference equations:

Aul = i

qu)+1 +(1- O’)’U,(J) =o(o, v/ ™) + (1 — o) (a,u?)+
7
+opl ™+ (1—o)u] "

m&*+ufawN—UWmﬁU+( o) (B, u?)+
j=

toul ™ + (1 —o)d, j=0,M—1,
u) =¢;, i=0,N. 9)
where we denote N
1
oty (kv 2
i=1
‘ j j N-1 ‘
(B,w?) = h(iﬁouo ZBNUN + Bmf)
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For 0 = 1 and gag = fij'H, difference scheme (6)—(8) turns to be implicit with approxima-
tion error of O(h? + 7). For ¢ = 0 and @{ = fij , the difference scheme becomes explicit
with the same approximation error, i.e. O(h? + 7). For ¢ = 1/2 and @{ = fin/Q, we
obtain implicit Crank-Nicolson scheme with approximation error of O(h? + 72).

For every fixed value of j, we put difference scheme (6)—(9) into some special matrix
form. Let us begin with the purely implicit scheme (the case o = 1):

A Y L A

Ui -1 i+1 i+1

L - L=t h2 : +fzj ; Z:]-vN*]-? (]‘O)
ah™ = (@) 4, (11)
W = (8,0 + (12)
To put this system into a special matrix form, rewrite (11) and (12) as a system of two

equations in two unknowns u)™" and uht 1

hag . hay = ; ;
(1- To)uf{H - TNug\;t-l =h Z ol Tt 4l
i=1

N—1
hBo ji+1 hBN | 41 i+1 i+1
,Tug +(1- > Juh' =h Z auw] T+

i=1

This system has a single solution, that is, unknowns U%+1 and u]]\;r ! can be expressed

linearly in terms of the rest variables uf Hi=1T,N-1 provided the determinant of the
system is not a zero:

hag han
S R h i
D=1"14 Wy | =1~ 5la0 +0n) + - (aofy — anfho) # 0. (13)
0 A
2 2
When solving the system, we obtain:
u%—’rl _ Z aiug-i—l _}_ﬂi-i—l7 (14)
=1
uy =D bl T+ (15)
i=1
where
1 h? h?
= 5 (o = 0+ 1),
b = l(hﬁ _ hQO‘OB. + % )
[ D 3 2 3 2 (B

pra gt (1- hﬁN) pit hay
! D 2 D 2

ﬂjH _ N‘J;l (1- @) N{H %
2 D 2 D 2
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Putting expressions for u)"" and v} into system (10) for i = 1 and i = N — 1, we

obtain the following form of the system:

N-1
PR EED DR U A A it
—u _ =1 + fJ+1
41 j +1 '+12 j+1 hz 7
i+ i) o j
el R = St M P ) (16)
T h? ‘
it AT UM
i+ gL Uy~ 2unTy ) by _j+1
UN—1 7 UN-1 _ i=1 n fg+1 Ha
T h? h? -
Define square matrix A of order N — 1 :
2—(11 —1—&2 —as —aN-—1
-1 2 -1
-1 2 -1
1 . .
-1 2 -1
—b, by ... —bn.s —1—by.9 2—by_,
Finally, system (16) for any fixed 7 = 0, M — 1 obtains the form
(B + 1AWt = o 4 711, (18)

. . ; it1 1 1
where E is identity matrix, w1 = (@], ut, . u)), f7T is a vector of order

N — 1, whose components are corresponding right-hand terms of system (16).

We note, that system (10)-(12) can be written in a matrix form as a system of order
N +1 not using any preliminary rearrangements. Here the system is written as a system
of order N —1. Lemma 1 will clear the purpose of this form. Moreover, system (10)—(12)
can be always put into the form (18) provided inequality (13) holds. In case « and 3 are
constants not depending on variable z, inequality (13) takes rather simple form:

2
h#——0. 19
£ (19)
Lemma 1. FEigenvalue problem for matriz A
Au = du (20)
can be written as an eigenvalue problem of non-local difference problem:
Uj—1 — 2U; + Ujqq R —
B +Au; =0, i=1,N—-1, (21)
QolUp + anu e
Uy = h(M n omu), (22)
i=1
N—1
uN = h(ﬁOUO T BNUN + ﬁzuz> (23)

—

<.

Proof. Matrix equation (20) is obtained directly from (21)—(23) applying the same pro-
cedure as it was applied for system (10)—(12) when putting it into the equivalent form
(18).
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Next, instead of implicit scheme (6)—(9), consider explicit scheme (o = 0):

J+1 J I 9y J
w - up g — 2uy +ugy

_ % 1 J i—1 N — 1
— = — +f, i=TN 1, (24)
= (o) 4 ] )
u) = (o, u?) + pl,
uly = (B,u7) + ud, (26)

subject to initial condition u{ = ¢;,7 = 0, N. Analogously to the implicit scheme, we put
this system of difference equations into the matrix form

wWt = (B - 1A +1f7, (27)

where A is the same matrix defined by (17). As before, here j =0, M — 1, u°® = ¢.

Let us explore the stability conditions of difference schemes (18) and (27). We stress
that matrix A is non-symmetric.

3. THE NORM OF NON-SYMMETRIC MATRIX

In order to explore the stability of the difference schemes, define a special vector norm
and matrix norm in a following way. Let A be a simple structured matrix, i.e. it has N—1
linearly independent eigenvectors. Denote the eigenvectors as vy, vy, ... vy—_1. Matrix

H = (vivg---vn_1),

with the columns being vectors v;, is non-singular. For any square matrix B of order
N — 1, we define the norm [30]:

N—-1
IBll. = |H ' BH|y = _max > [byl, (28)
SR, 2

where l;ij are the elements of matrix H !BH. The definition of matrix H implies that
H~!'BH is diagonal matrix with the eigenvalues of matrix A in the main diagonal. Thus,

Al = [[HBH|: = max [Xi(A)] = p(A). (29)

1<i<N-1

where p(A) is a spectral radius of matrix A vector norm consistent with the matrix norm
[|A]|« is given by [30]:

—1 ~
Julle = 1~ ully = | _mavs i, (30)
where @; is a component of vector H u.

In [24], norm || - ||« is used to solve the systems of difference equations with non-
symmetric matrix. Here we use this norm to investigate stability of the systems of
difference equations (18) and (27). First of all we stress, that this way of defining
the matrix norm eliminates the difficulties in stability analysis arising from the non-
symmetricity of the matrix. Thus, stability analysis of non-symmetric matrices, as in
case of symmetric matrices, is reduced to calculation or estimating of eigenvalues of
matrix A. However, the vector norm becomes more intricate compared to symmetric
case, and interpretation of the norm is not so evident.
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4. STABILITY OF DIFFERENCE SCHEMES

We will refer to the following stability definition of the difference schemes [31]: The
difference scheme (18) or (27) is stable, if the following inequality holds:

I+ < 0 J
ot < M + M s ] B1)

where My, M, are the constants not depending on h, 7, j.

Theorem 1. Let A be a simple structured matrixz with positive eigenvalues. Then system
of difference equations (18) is unconditionally stable.

Proof. Equality (18) implies:
[a? s < (B +7A) 7 - lulls + 7 (B +7A) 7 - 1174 (32)

Because all eigenvalues of matrix A are positive and 7 > 0, then for any eigenvalue of
matrix F + 7A inequality A(E + 7A) > 1 holds. Therefore,

A((E + TA)—l) <g¢<l.

Substituting this estimate into (32) we obtain

lw? . < gllw? |« + 7all £ (33)
or -
[ * e < @l + TJZqSIIfj”’SH*-
Hence _ - _
e < ol + 7 _ma 1] (34)

This completes the proof.

Theorem 2. Let A be a simple structured matriz with positive eigenvalues. If
c

where ¢ is constant not depending on T or h, then ewxplicit difference scheme (27) is
2

2h
conditionally stable for 7 < —.
c

Proof. Since 0 < \;(A) < ¢/h?, then

2
IMwﬂmﬁKLihé%n

Denote
max |N((E—74) Y| =q <1

1<i<N-1
In the same way as in the proof of theorem 1, we obtain inequality (33), with constant
q1 instead of g. Therefore, in this case inequality (34) holds, too.
This completes the proof.
To have a clear understanding what novelty theorems 1 and 2 give for stability analysis
compared to constraints |a| < 1,|8| < 1, let us consider the case where o and 3 both are
constants.
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5. ANALYSIS OF SPECTRUM OF MATRIX A

Let us investigate the eigenvalue problem of matrix A in case both o = const, and
B = const. In accordance to lemma 1, the eigenvalues of A can be found solving the
eigenvalue problem (21) with non-local conditions (22)—(23). Notice, that problem (21)-
(23) for constant a = const, and B = const is a finite-difference approximation of the

differential problem
2

d*u
S+ Au=0, (35)
u(0) = a/u(x)dx, (36)
u(l) = ﬁ/u(w)dx, (37)
0

Theorem 3. For constant o = const, and 8 = const, difference problem (21) — (23)
has a trivial eigenvalue if and only if o + 3 = 2.

Proof. To begin with, we will establish conditions for the matrix of the system (21)
subject to constraints (22), (23) yielding a trivial eigenvalue A = 0. To this end substitute
A = 0 into equation (21) and put down the general solution of this difference equation:

u; = c1th + ¢ (38)

Let us find the values of constants ¢; and c2 such, that solution (38) satisfies both
constraints (22) and (23). To do this, we put (38) into (22) and (23):

—%cl +(1—a)e =0,
(]. — g)cl + (]. — 6)62 =0.

For this system to have a non-trivial solution (¢, ¢2), it is necessary and sufficient that
the main determinant is zero:

- 2 -
D = s =0

or a + 3 = 2. This completes the proof.

2
Theorem 4. If o = const, 3 = const, a+03 > 2 and h < prwl then problem (21)—-(23)

has single negative eigenvalue.

Proof. Let A\ < 0 in equation (21) and determine, when this equation has a non-trivial
solution satisfying conditions (22) and (23). Put equation (21) into the form

Ah?
Uj_1 — 2(]. — T)m + uip1 = 0. (39)

For A < 0, inequality 1 — /\zﬁ > 1 holds. Denote

Ah?
1- - = cosh ph. (40)

The general solution of equation (39) has a form

u; = ¢q - coshiwh + co sinh iph. (41)
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Substituting solution (41) into conditions (22), (23) and performing elementary rear-
rangements, we obtain

h inh h hp—1
(1-tosube) hewhe-
2 tanh £¢ 2 tanh ¢ 49
(cosh h3 sinh o Jer - (snh h3 cosh o — 1> . (42)
—_ C J— 1. —_——_— | C = 5
2 tanh%h ! L tanh%h ?

Equating determinant of the system to zero and performing a series of elementary reduc-
tions, we get
h(oe+ ) coshp — 1

sinh p =

2 tanh %h
. @ ® 2 wh
sinh £ (tanh Tt 7) =0. (43)
Equality
sinh 2 =0
2

implies ¢ = 0. In accordance to (40), this contradicts to the assumption of the theorem
A < 0. Therefore,

P 2 oh
tanh T tanh 5 = 0. (44)
Denote N
—tanh 8. f(o) = — 2 wh
f1(¢) = tanh 5 falp) = o+ 5) tanh 5 (45)

Let us explore the behaviour of those functions over the interval (0,00). Firstly, both
functions are monotonous in the interval (0,00) since f;(¢) increases from 0 to 1 and
f2(p) increases from 0 to 2/h(ca + ). Moreover,

T, 1
57 fz(o)_a_'_ﬁ'

Therefore, if a+ 8 < 2, then f1(¢) < fa(¢) on the whole interval ¢ € (0,00). If a+ 38 >
2/h, then fi(v) > f2(p) on the whole interval ¢ € (0,00). Next, if 2 < a4+ 5 < 2/h,
then functions fi(p) and f2(p), being monotonous intersect exactly once over the whole
interval (0, 00). Consequently, there exist a root ¢* of equation (44) if and only if

f1(0) =

2
2<at+f< . (46)

Eigenvalue A« corresponding to the root ¢* can be calculated using formula (40):

A*h?
1—

= cosh ¢*h.

This completes the proof.

Theorem 5. If a = const, § = const and o+ 3 < 2, then all eigenvalues of difference
problem (21)—(23) are real and different. Moreover, some of the eigenvalues depend on
a and B, some of the eigenvalues remain constant for any value of « and (.

Proof. We prove this theorem using the same technique as in theorem 4. For A\ > 0,
coefficient at w; in equation (39) is less than 1. Let us consider separately the case

1 Ah2|<1
5 :
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Denote NE
1- — = cos ©h. (47)
Then difference equation (39) has a general solution of a form
u; = ¢1 cosiph + co siniph. (48)

Put this solution into non-local conditions (22) and (23). Performing a series of elemen-
tary rearrangements we obtain

-2 f
h : sin” —
(1__a MY )cl—ha 26220,
2 ph oh
tan — tan —
2 2 (49)
h ; sin? b
(cosa - —6 S P )c1 + (sing& — h572)02 =0.
2 wh wh
tan — tanh —
2 2
Equating the determinant of the system to zero, we get
in% £
sin — h(a + 2 —0.
12 ( B) tor %h
or ( ) sin®
. P ( ¢ h(la+pB) sin )
sin —( cos — — ————= =0. 50
2 2 tan “’Th (50)
This equation yields two equations:
sin g =0 (51)
and ( ) sin £
¢ h(a+pB) sing B
cos o — R - %h =0. (52)
The roots of equation (51) does not depend on « or 3:
N -1
o = 2k, k:1,2,...,{T}, (53)
where N_1
[ 2 } “)N-1

T—l if N —even.

As k& > [%], the eigenvalues obtained of equation (47) begin repeating. Next, put
equation (52) into the form
@ 2 oh

tan 5 = m tan 7 (54)

Denote

2 h
file) = tang, falp) = mtan%

We analyse functions fi(p) and fa(¢) only over the interval [0, N7], since both are
periodic functions with common least period Nr.

For 0 < a+ 8 < 2, function f2(p) > 0 over the interval (0, N7). Thus, graphs of
functions fi(¢), f2(p) intersect only once over each interval

(2km, (2k + 1)7), k=0,1,... Ny,
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where
N-2 if N —odd,
N, = 2
— if N —even.

For a + 8 < 0 function fo(¢) < 0 over the interval (0, N7). Thus again, graphs of the
functions fi(¢), f2(p) intersect only once over each interval

((2k — 1), 2kn), k=1,2,... N,

where
Nobogy o —odd,
Ny = 2

N
o) if N —even.

For oo + 8 = 0 the roots of equation (54) have a form
on=02k—1m, k=12,..., N,

Consequently, in all the three cases (0 < o+ < 2,a+ ( < 0,a+ 5 = 0) the number of
roots of equations (54) and (51) is equal to N — 1. For every root gy, the corresponding
eigenvalue Ay, is calculated by equation (47).

This completes the proof.

Remark. At the beginning of the proof of theorem 5 we took a separate case |1—A\h?/2| <
1 of a more general constraint 1 — Ah?/2 < 1. This is enough to get all of N — 1 positive
eigenvalues. It can be checked directly, that in case 1 — Ah?/2 < —1 there are no positive
eigenvalues at all or they appear only when constraint o + § > 2 is imposed. For
example, if 1 — A\h?/2 = —1 and number N is even, then A\ = h?/2 is an eigenvalue
provided oo + 3 = 2.

6. NUMERICAL RESULTS

We illustrate efficiency of findings we obtained in this article by presenting the numer-
ical results of problem formulated in [5]. Problem (1)—(4) was solved in case of constant
coefficients o and 3 and following expressions for

f(z,t) = —30z* + 61°,

1
ut) = £ — aft® + ),

1
palt) = 145~ B + 3).
These functions are selected in the way that u(x,t) = 2%+ % is a solution of problem (1)—
(4). According to constraints |a| < 1,|8| < 1, the following values of o and 3 satisfying
the constraints are selected in [5]:

a=02; =04

a=04; [B=0,6;

One more pair of values do not satisfying the constraints is chosen as well: a = 1,4,
8 =0,4.
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Table 1
h a=0.5 a=-9> a=-13 a=—-32
8= B=5 8= B=—32
0.1 —0.23-1071 0.81-10" 0.48 101 0.18-10!
—0.53-10! —0.24-1071 —0.12-101 —0.94-1072
0.05 —0.59-1072 0.20-1071 0.12-1071* 0.46 - 1072
—0.13-107t —0.59-1072 —0.31-1072 —0.23-1072
0.025 —0.15-1072 0.51-1072 0.30-1072 0.12-1072
—0.33-1072 —0.15-1072 —0.78 - 1072 —0.60-103
0.0125 —0.40-1073 0.14-1072 0.85-103 0.33-1073
—0.89-1073 —0.41-1073 —0.22-1073 —0.17-1073

Continuation

h a=—-30 a=-30 a=-120 a = —1000
6=5 6 =20 6 =170 6 =500
0.1 0.42-1071 0.92-101 0.87-101 0.76 - 10!
—0.10- 107t —0.12-101 —0.95-101 —0.89-1072
0.05 0.10-107* 0.23-1071 0.22-1071 0.19-107t
—0.26 - 1072 —0.29-1072 —0.24-1072 —0.22-1072
0.025 0.26-1072 0.59 1072 0.55- 102 0.47-1072
—0.65-1073 —0.74-1073 —0.61-1073 —0.57-1073
0.0125 0.74-1073 0.16-1072 0.15-1072 0.13-1072
—0.18-1073 —0.21-1073 —0.17-1073 —0.16-1073

Table 2
h a = -30|a = -30|a = 32 |a = =30 |a=-1000
6 = 31 |68 =319 |08 = =30 |8 = 325 |38 = 1000

0.1 0.86 - 10° | 0.28 - 10* | —0.39 - 10* | 0.24 - 10* | 0.16 - 107
—0.35-1071|—-0.96- 107! | —0.12 - 10° | —0.69 - 10° | —0.24- 10!
0.05 | 0.21 - 10° | 0.71 - 10 | —0.96 - 10° | 0.56 - 10* | 0.40 - 10!
—0.88-1072|-0.24-107!{-0.30-10"t | —0.16 - 10° | —0.60 - 10~
0.025 | 0.54 - 1071 | 0.18 - 10° | —0.24 - 10° | 0.14 - 10' | 0.10 - 10*
—0.22-1072|—-0.60- 1072 | —0.75- 102 | —0.41- 107! | —-0.15- 10~
0.0125) 0.15 - 107! | 047 - 107! | -0.64-101| 0.36 - 10° | 0.28 - 10°
—0.61-1073|—-0.16- 1072 | —0.20- 102 | —0.10- 107! | —0.42- 1073

According to the stability condition —oo < «a + 8 < 2 attained in our article, the dif-
ference scheme under consideration is stable over much wider set of values of parameters
a and § compared to that in [5]. This is clearly seen in table 1, where error data are
given. Error there is defined by e/ = u(x;, t;) —u’; where u(x;,t;) are the values of exact
solution of differential problem, and u/ are the values at the point (z;,t;) of the solution
of corresponding difference problem.

For every value of h and for each pair of values of a and 3 table 1 shows the solution

error at two characteristic points: the upper value 5? is calculated at = 0,0;¢t = 1,0
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and the lower value is at x = 0,5;¢t = 1,0. In all of the cases the step 7 was calculated
according to the formula 7 = h2.

The results in table 1 show, that the difference scheme is stable for rather large absolute
values of o and 3 provided inequality a + 5 < 2 holds.

Table 2 is build in the same way. There we can see the results for the absolute values
of a or § being much greater than 1 with the sum of these numbers close to upper bound
of the stability constraint, i.e. « + 3 is close to 2. The results show stability of the
scheme, yet computational error increases significantly as o + [ increases.

Table 3
h a=10 a=20 a =50 a = 1000
6 =10 6 =20 6 =50 6 = 1000
0.1 0.22-1071 0.21-107t 0.20-1071 0.19-107¢
—0.69-102 —0.80-1072 —0.85-1072 —0.88-1072
0.05 0.88-10! 0.82-1072 0.79-102 0.48 1072
—0.28 1072 —0.33.1072 —0.35-1072 —0.22-1072
0.025 0 0.36-1072 0.35-1072 0.12-1072
00 —0.14- 1072 —0.15-1072 —0.56-1073
0.0125 00 0.16-1072 0.16-1072 0.32-1072
0 —0.66- 102 —0.77 - 1072 —0.16-103
0.0625 00 00 (%) 0.22-1073
00 00 00 —0.12-1073

Table 3 is build in the same way as table 1, too. It shows the numerical results for
the values of a and g not satisfying the stability constraint, i.e. o+ 3 > 2, for any value
of h, though instability occurs only when h < oﬁTﬁ (see Theorem 4).

According to theorem 4, if a+8 > 2 and h < JTB there exists one negative eigenvalue,

therefore inequality p((E + TA)’l) < 1 subject to the value of 7 can change to the
inequality p((E + TA)’1> > 1. In case h is not a sufficiently small, matrix A has no

negative eigenvalue, and inequality p((E' + TA)*l) < 1 remains true. Thus, for h >

2/(a + ) and « + 8 > 2 numerical computations using implicit scheme (10) - (12) can
preserve stability. Such a scheme is called ”quasistable”. Some results in table 1 illustrate
this fact.

It is worth mentioning that difference schemes of higher order accuracy, say O(h*+72%),
for differential equations with constant coefficients subject to non-local conditions can
be highly efficient [5].

7. CONCLUSION

Finite difference method applied to one-dimensional parabolic equations subject to
non-local integral conditions yields a system of difference equations with non-symmetric
matrix. These systems of difference equations, unlike symmetric difference schemes,
lack efficient methods for stability analysis. Stability analysis technique presented in
this article is based on calculation or estimation of the eigenvalues of non-symmetric
difference matrix. We show that this method is efficient for a certain class of problems
with non-local conditions. In case of constant coefficients o and § present in non-local
condition it implies more realistic stability constraints, compared to that described in
literature.
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Undoubtedly, this technique can be generalised both for different types of non-local
conditions and two- or three-dimensional parabolic equations. In order to evaluate more
comprehensively the efficiency of the technique presented, additional investigation on
meaningfulness of usage of the norm || - ||, should be accomplished. It is not clear yet,
whether the usage of this norm in certain situations yield quantitatively poorer results
compared to the results obtained for symmetric difference schemes. The efficiency of the
stability analysis presented for differential equations with variable coefficients subject to
non-local conditions is still not clear, too.

The study was supported by Lithuanian State Science and Studies Foundation.
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