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ON A SECANT TYPE METHOD FOR NONLINEAR LEAST SQUARES
PROBLEMS

UDC 519.6

S.M.SHAKHNO, O.P.GNATYSHYN AND R.P.TAKYMCHUK

ABSTRACT. In this paper the new Secant type method for nonlinear least squares
problems is presented. We study the convergence of the proposed method under
hypothesis that the divided differences of first order satisfy the generalized Lipschitz
conditions. We obtain the radius of convergence ball, the uniqueness ball of the
solution and rate of convergence of the method. Similar results under the generalized
Holder conditions are also presented. The results of numerical experiments, that
represent the convergence analysis of Secant type method are given.

1. Introduction

Let us consider the nonlinear least squares problem:
find
1
min f(z) := §F(x)TF(3:), (1.1)
where m > n, residual function F': R™ — R™ is nonlinear by x.
For solving problem (1.1) we introduce the iterative Secant type method

Tp1 =T — (AL A)TTATF(2,), n=0,1,.., (1.2)

where A, = F(2pn, Zn + @n(Tn-1 — x)), F(z,y) is the divided difference of first order for
function F'(z) on the points = and y, o, € [0, 1] and {«,} is nonincreasing sequence, x_1
and x( are given.

In particular, when o, = 1 from (1.2) we receive the Secant method [8], and when
ay, = 0 classic Gauss-Newton method [5].

In papers [3,4,10] the Newton, Gauss-Newton and Secant type methods are studi-
ed under the hypothesis that the derivative operator satisfies the generalized Lipschitz
conditions, that is some integrable function is used instead of Lipschitz constant. The
generalized Lipschitz conditions for divided differences are presented in [7] where the
Secant method for solving nonlinear operator equations in Banach space is studied.

In this work we study the convergence of the Secant type method (1.2) for nonlinear
least squares problems under generalized Lipschitz conditions. Let us note that Lipschitz
condition with constant is the particular case of the generalized Lipschitz condition. We
have shown, that under proper choice of parameter «,, method (1.2) converges faster than
the Secant method, namely with rate 1 + p. We have obtained the radius of convergence
of the method. Similar results under the generalized Holder condition are also presented.
We have also carried out numerical experiments, that represent the convergence analysis
of Secant type method (1.2).

T Key words. Nonlinear least squares problem, secant type method, generalized Lipschitz conditions,
divided difference, convergence ball, uniqueness ball, rate of convergence.
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2. Definitions and auxiliary lemmas
We state the definition of the divided difference of first order for operator F' [1].

Definition 2.1 Let x,y are two fixed points in Euclidean space R™. The bounded linear
operator F'(z,y), that maps from R™ into R™, is called the divided difference of first order
for operator F' on the points x and y, if it satisfies the following equality

F(z,y)(z —y) = F(x) — F(y). (2.1)

In the case, when © = y we take that F(x,2) = F'(z), where F’(x) is the Jacobian matrix
of nonlinear operator F' on point x.
Lipschitz condition in region D C R™ for the divided differences of first order has the
form
1P (. ) — Flu,0)|| < L(llz — ull + |1y — o), (2.2)

where x,y,u,v € D, L is Lipschitz constant.
But L in Lipschitz conditions does not have to be a constant, it also can be some
positive integrable function. In this case condition (2.2) can be written in the form [7]

[lz—u||+[ly—]l
HNLM—FWWMSA L(z)dz, (2.3)

where z,y,u,v € D. Condition (2.3) is called the generalized Lipschitz condition that
have the L average.

Let R™*™ is the set of all m x n matrixes A. Denote by A" the pseudoinverse matrix
by Moore-Penrose to A and, if A has full column rank, then AT = (AT A)~1AT.

Lemma 2.2 [9,11] Assume that A,E € R™*" B = A+ E, | AT|||E|| < 1, rank(A) =
rank(B), then

LA™
1B < , (2.4)
1—[lAT]| E]]
and if rank(A) = rank(B) = min{m,n}, we can obtain
V2| AT £l
1B — AT < - (2.5)
1 AT||E]

Lemma 2.3 [3] Assume that A, E € R™*"(m >n), B=A+E, |[EAT|| < 1, rank(A) =
n, then rank(B) = n.

Lemma 2.4 [3] Let

1

T

t
h(t) / L(uw)u®* tdu, oa>1,0<t<r, (2.6)
0

where L(u) is positive integrable function and monotonically nondecreasing in [0,r]. Then
h(t) is nondecreasing with respect to t.

3. Convergence of method (1.2)
Theorem 3.1 Let F' : R" — R™ is continuous in region D C R™. Assume that:

1) problem (1.1) has solution z, in region Q(x.,r) = {x € D : ||z — .|| < r} and there
exists F' (x,) and it has full column rank;
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2) in region Q(x.,r) function F(x) has the divided difference of the first order F(z,y),
which has full column rank and satisfies Lipschitz condition with the L average :

[lz—u||+[ly—]l
| () — Fu,v)|| < / L(z)dz, (3.1)

where x,y,u,v € Q(z.,r) and L is nondecreasing;

3) r satisfies inequality

B [, L(z)dz N V2a3? 02T L(2)dz <
1- 5] z)dz  r(l— ﬁfOQT L(z)dz)

Then method (1.2) converges for all x_1,x¢ € Q such, that p(x_1) < p(zg) and

q1

ot = 2l € Ly =l = + dollens . (3.3)
where
pa) = llz —z.l; a=|[Fz)l; B=F(e)"F'(z)] " F (x)"]| (3.4)
and values
\/_ 62 (2—ao)p(zo)+aop(z—1) L(z)dz
qo = 5
plz_1)(1 - 6f02 ao)p(zo)+aop(r—_1) L(2)dz) (35)
ﬁfo(l—%)ﬁ(%)-mop(w—l) L(z)dz ’
Q=

1— 5f0(2—(10)/)(10)+aop($—1) L(2)dz

are less than 1.

Proof. Let choose arbitrary x_1,xo € €, where r satisfies (3.2), then ¢;(¢ = 0,1), determi-
ned by (3.5), are less than 1. In fact, by the monotonicity of L with lemma 2.4 function
1 fo z)dz is nondecreasing by t. Then we have

V203 [FTe0P ot aor ) )z (2 — ag)p(0) + aop(z—1))
o)1~ T L2102 (2 — o)) + conle1)
V2a3? O2r L(z)dz
T 2r2(1 - B [ L(2)dz)

< 2= ao)llz — || + agflz—1 — 2]
- 2r

((2 = ao)p(zo) + aop(z-1))

<1

5f(1 0Pl taop( ) L(2)dz((1 — ao)p(x0) + aop(w-1))
(1= o200 oren) [)dz) (1= ag)p(ao) + aop(-1))
ﬂfOTL z)dz
r(1-— ﬁfOQTL z)dz

< (L= ao)llzg — || + aoflz—1 — 2]

q1 =

(1 = ao)p(x0) + app(r-1))

<1

r
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Denote: A, = F(2y,Tn 4+ 0n(Tn_1 — @), Ay = F (z.) = F(z4,x,). Then, under the
assumptions of theorem, we obtain estimate

ITAT AT AT An = A < B eItz =e ) a
< ﬁf @C—ap)l|zn—z«|[+an|[zn—1—z|| L(z)dz
< ﬁfo 2)dz <1, Vap_1,%n € Uz, 7).

By lemmas 2.2 and 2.3, and fact, that A,, has full column rank, taking B = F(z,, =, +
an(Tn—1 — xn)), A= F(z«,y+), E = B — A we obtain

_ p
A7 An] 7 AL < - = , Va1, 2n € Qe 7);
1 ﬁfol\wn Tl +l|zntan(Tn—1—Tn) 2| L(2)dz

Va2 flenmealtlontenno =) =wall p oy g
ﬁfnmnfz*||+nxn+an<wn el L yde

ITAS An] TR AT — [AT A TAT| <

Using (1.2), we can write
Tnt1 — Tu = Ty — Tu — [AL A TYAT F(2,) = [AT AT AT (A (2 — 224)
—F(z) + F(z.)) — [AT An] TATF (2) + [AT AT TAT F (2.

Hence,
[Znt1 = 2ll < [[A7 An] T AT An — F (20, 20 [l2n — 24

HI[AT AN AT — (AT A AT F (2|
6‘[0||1n+0¢n(90n—1*90n)7m*|\ L(2)dz
ﬁfollwn—w*H+|Iwn+an(wn—1—wn)—w*H L(z)dz
V2a3? fllzn—w*H+|Iwn+an(wn71—wn)—w*H L(z)dz
6f|‘mn7m*|l+|‘mn+an(zn 1= %p) =z | L(2)dz ‘

(R

Taking n = 0 above, we obtain
21 — 2| < (@1 + o) lwo — @l < [lzo — ]| <.

Hence, 1 € Q(z,,r). It follows that (1.2) can be continued an infinite number of ti-
mes. By mathematical induction, all {z,},>0 belong to Q(z.,r) and p(z,) decreases
monotonically. Thus, for all n =0, 1, ..., we have

5f(1 n)p(Tn )+ p(Tn— I)L( Ydzp(zn)
ﬁf(2 an)p(®n)+om p(Tn— I)L( )dz

(1 - an)p($n) + anp(xn 1
(1 - an)p(xn) + an/’(zn 1

Vaa 62f”‘“"’““”a"p(“*’ L(2)d=((2 = an)p(@a) + Cup(n-1)

(1 — g [Eremplenrranelons) L) (2 — an)p(en) + anpl(@n—1)
BT L) da((~ an)p(en) + anplin))pla

(1= ao)p(mo) + aop(z—1))(1 — ﬁfé%ao)p(moHaop(w v L(z)dz)

L V2ag? [Tt L (2~ an)plen) + anpln-1)

)

((2—ao)p(xo)+aop(a: 1) 1_5f<2 a0)p(ea)tanp@1) [ ovg
q1
= plz-1)

s — .| <

)
)
)
)
n)

P(Inq)f’(ﬂ?n) + q0p($n71);
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So, inequality (3.3) is true. OJ

Corollary 3.2 Order of convergence of iterative process (1.2) in the case of zero residual

1+5
SR

So, the rate of convergence of method (1.2) is not less than the rate of convergence of
Secant method for arbitrary «,.

is equal

4. The uniqueness ball for the solution of problem (1.1)

In this section we present investigation of the uniqueness ball for the solution of
problem (1.1). The proof is carried out on the example of application of method (1.2) for
solving problem (1.1).

Theorem 4.1 Let x, satisfies (1.1), F(x) is continuous in Q(x.,r). Moreover, F(x) has
the divided difference of first order, and F (x.) = F(x., ) = A, has full column rank,
which satisfies generalized Lipschitz condition with the L average:

(z)+p(y)
IF(,y) — Flaw )] < / L(2)dz, (4.1)

where z,y € Q(z.,7), p(x) = ||x — x| and L is nondecreasing. Let r satisfies inequality

5/ 2)dz +—/0 L(z)dz < 1, (4.2)

where @ and [ are determined in (3.4),
o = I[AT ALY, (4.3)
Then problem (1.1) has unique solution x, in Q(x.,r).
Proof. Let g € Q, 29 # . is also a solution (1.2). Then we have
[AT AP AT F(20) = 0. (4.4)
Hence,
To — T = 20 — Ts — [AT A TTATF(20) = [AT A )7YAT (As (20 — 24)
—F(x0) + F(x.)) — [AT A TVAG F(wo) + [AT AL AT F (o)
— [AT A VAT (A, — F(wo,5.)) (0 — v.) + [ATA] "1 (AT — AT)F (o).
Under assumption (4.1) we obtain
lzo — ]| < [ATAJ AL AL = F(z0, z.0) |20 — 24|
HI[AT A HIAG — ATIIE (o)
< ﬂfp(mo) L( )dzp(a:o) +aBo [, 2p(o) L(z)dz.

Since L(u) > 0, it follows from lemma 2.4 that o fot L(u)u®~1du is monotonic nondecreas-

ing by t. Then, taking into account (4.2) we get

w0 — .|| < B L) L(z)dzp(x0) + p(fS) 22070) 1(2)dzp(o)

07
< B [T L(z)dzllzo — au] + 20 %

o L(z)dz]lwo — .|
< [lzo — @.]l.

This is in contradiction with our assumption. Thus, it follows that zg = z,. O
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5. Corollaries

Let us consider the traditional approach to study of method (1.2), which is based on
the fact that, divided differences of the first order satisfy Lipschitz condition (2.2). By
taking L to be a constant, the following corollaries are obtained under theorems 3.1 1 4.1.

Corollary 5.1 Suppose that

1) x, satisfies (1.1), function F(x) is continuous in Q)(z., r), there exist Jacobian matrix
F'(z,) and it has full column rank;

2) in region Q(x.,r) function F(x) has the divided difference of the first order F(z,y),
which has full column rank and satisfy Lipschitz condition:

1F(2,y) — F(u,v)|| < Lz — ull + [ly — o], (5.1)
where x,y,u,v € (), L is positive number;

3)
. 1—2v2a3%L

L (5.2)

where a, 3 are determined in (3.4)

Then method (1.2) converges for all x_1,z9 € Q such that p(x_1) < p(xo), where
a, B3, p(x) are determined in (3.4). For

_ V2032 L((2 — ao)llzo — | + collos — )
lzor = 2l (1 = BL((2 — ao)llvo — ]| + collw—r — 2. ]))’
= AL — ao)llzo — 2] + aolw—1 — .]])

1= BL(2 = ao)llzo — @] + aollz—1 — z.]|

q0
(5.3)

inequality (3.3) holds.

Corollary 5.2 Suppose that

1) x, satisfies (1.1), function F(x) is continuous in Q(z., r), there exist Jacobian matrix
F'(z,) and it has full column rank;

2) in region Q(x.,r) function F(x) has the divided difference of the first order F(z,y),
and it has full column rank and satisfies Lipschitz condition:

[F(z,y) = F(xs, 2.)|| < L(l|lz — 2l + ly — z.]]), (5.4)
where x,y € Q and L is positive number;

3)
__ bL
1 —2ab0L’

where «, 3, By are determined in (3.4) and (4.3).

r

Then problem (1.1) has unique solution x, in Q(x.,r).
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6. Convergence analysis under Holder condition

We have studied the local convergence of method(1.2) under generalized Lipschitz
conditions. We have also proved that sequence x,, generated by method (1.2) converges to
a solution x, of problem (1.1) superlinearly. In this section we will study the convergence
of method (1.2) under generalized Holder condition in the case, when «,, = O(||z,, — z]|).

Theorem 6.1 Let F' : R™ — R™ is continuous in region D C R™. Suppose, that:

1) problem (1.1) has solution x. in Q(z.,r) = {x € D : ||x — x.|| < r} and there exist
the Jacobian matrix F' (z.) and it has full column rank;

2) in region Q(x.,r) function F(z) has the divided difference of first order F(z,y),
which has full column rank and satisfies Hiolder condition with 0 < p < 1:

lz—u|?+(ly—v]|I?
IF(,y) — Flu,v)] < / L(2)dz, (6.1)

where x,y,u,v € Q(z.,r) and L is nondecreasing;

3) r satisfies inequality

Bl L= V2aB? [ L
1-5[2”’ dz 1-5 [ L
Then method (1.2) converges for all x_1,x¢ € Q such that p(z_1) < p(xo) and
(1= an + O(W)plan 1))
iz
2]
1+ (1 —a,+01)p(xn-1))P
p(wo)? + 0
where o and (3 are determined in (3.4), v0 = ((1 — ao)p(x0) + aop(x—1)) and values

_VIB [T L) B L(z)de 64

P ;41 20 )P4 ~P
l—ﬂfo zo) +16 L(z)dz 1 _5109( 0)?+70 L(z)dz

(6.2)

[zn — . [P+

Znt1 — 2l <@
(6.3)
+4o

[n — 2|7,

are less than 1.

Proof. By theorem 3.1 it is easy to see that
6[0 " L(z)dz ]|z — .|
e f”(“ R L)z "
\/_0462 p(wn)P+77 L(2)dz
(plan)? +AR)(1 = B L<z>dz>

8Jy" L(2)dz]wn — .
T —Mo T L z)az)
V2a3? fop(mo)“rﬁ L(z)dz
(plao)? +8)(1 = B [ L(z)d2)

—q (I—on+ O( )p(Tn—1))" |@p — a|[PT

”Yo
1+ (1 — apn + O( )p(xn—l))p
p(x0)P + 6

[€nt1 — @] <

+ (p(zn)? +F)

+

(p(zn)? + %)

+qo0

||$n _x*Hp,
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where v, = (1 — an)p(xn) + anp(rn-1)). So (6.3) holds. O

It follows from (6.3) that in the case of null residual in the solution (o = 0) value
go = 0 and rate of convergence of the iterative process (1.2) is equal 1+ p. If p = 1, that
corresponds with Lipschitz condition, we obtain the quadratic convergence as in Gauss-
Newton method and it is higher than in Secant method ((1 + v/5)/2). At the same time
the amount of evaluations per one iteration are equal both in method (1.2) and Secant
method.

7. Numerical experiments

In this section, we apply the studied above iterative Secant type method (1.2) to solve
some test examples, proposed in [6], and compare the convergence behavior of this method
under different values of parameter a,,. As a,, € [0, 1], we will carry out evaluations with
bound values of parameter,that is o, = 1 (Secant method) and «a,, = 0 (classical Gauss-
Newton method), with constant values v, from a unit interval and taking «,, as a variable
value.

In evaluations we use the Euclidian norm ||z|| = /) ., z7, and calculate the elements

of the divided difference matrix as

F(I’ y) C E(xla ey Ly Y41, 7yn) - Fi(‘rlu ey Tj—1,Y5, 7yn)
’ 3 T — vy, ’ (71)

1=12,...m,5=1,2,...,n

The auxiliary initial approximations we evaluate as x_; = o+ 10~%. We find the solution
with accuracy ¢ = 1078, And in tables we denote that Az,, = ||z, — Zp—1]-

In the following tables 1-3 we present the results of numerical experiments. The
comparison is conducted by the number of iterations performed to find the solution with
a given accuracy.

Tabl. 1. The number of iterations to receive the solution of test problems under the constant values o,

Example fn
0] o2] o04] o06] 08] 1

Rosenbrock function 2 3 3 3 3 3
Wood function 51 56 60 65 69 74
Powell singular function 12 13 13 14 19 16
Box-3D Function 6 6 7 7 7 8
Freudenstein and Roth

function 30 12 21 57 29 19
Kowalik and Osborne

function 10 10 12 21 20 16
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Tabl. 2. The number of iterations to receive the solution of test problems under the variable values o,

Qo
Example
Axp,ifAx, <1,
107 2Az, | 107*Az, I’iwa" >
Rosenbrock function 3 2 3
Wood function 51 51 53
Powell singular function 12 12 13
Box-3D function 6 6 6
Freudenstein and Roth function 13 19 9
Kowalik and Osborne function 10 15 11

Let us present more detailed results for Box-3D function (n = 3,m = 15) under
different values of «,.

Tabl. 3. Boz-3D function residual at each of the iterations

Tterations a, =0 a, =1 oy, = 1072Ax,
1 9.77530447E-02 | 9.77323734E-02 | 9.77323734E-02
2 6.28363713E-03 | 2.24070118E-02 | 8.68229361E-03
3 8.79598795E-05 | 1.93329610E-03 | 1.60820273E-04
4 2.63517737E-08 | 8.33557862E-05 | 9.89442135E-08
5 2.79495793E-15 | 5.37082031E-07 | 4.14185366E-14
6 2.41542623E-29 | 1.64970794E-10 | 6.97021661E-27
7 3.36221280E-16
8 2.13441781E-25

The above presented results in tables show that under successful choice of parameter
o, the proposed method (1.2) converges faster than Secant method and often practically
is not worse than the Gauss-Newton method. Moreover, unlike the Gauss-Newton method,
this method does not demand the analytically set derivatives.

8. Conclusion

In this paper for solving the nonlinear least squares problem the iterative Secant type
method is proposed. It is proved that process, generated by this method converges and the
superlinear order of convergence is established. It is studied the local convergence of the of
the proposed method under generalized Lipschitz conditions and under Hélder conditions.
On the basis of the carried out theoretical studies, practical calculations and comparison
of the results it can be argued that the proposed modification with the successful choice
of parameter «,, prevails the classic Secant method. The studied method is the effective
method for solving the nonlinear least squares problems.
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