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AN ALTERNATING BOUNDARY INTEGRAL BASED METHOD FOR
INVERSE POTENTIAL FLOW AROUND IMMERSED BODIES
UDC 519.6

R.S.CHAPKO AND B.T.JOHANSSON

ABsTRACT. We propose and investigate an alternating iterative procedure for the
inverse problem of calculating the stream function on immersed bodies in an irrotati-
onal two-dimensional potential flow, given the stream function and its normal deri-
vative on the surrounding channel walls. In the procedure, mixed boundary-value
problems are solved in the channel with either a Dirichlet or a Neumann conditi-
on imposed on the immersed bodies, to generate a sequence of approximations to
the stream function. Convergence of these approximations to the stream function is
shown in an appropriate norm, and it is proven that the procedure is a regularizing
method.

1. Introduction

The Laplace equation can be used as a model of potential flow of incompressible fluids
in terms of the stream function for two-dimensional regions. This is then a model for
flows which are irrotational at every point in the flow field. Different types of boundary
conditions can be prescribed on the solid boundaries surrounding the flow. However, the
value of the stream function is unknown on any immersed object and has to be calculated
along with the solution. We propose and investigate a technique for finding this value on
the immersed objects given the knowledge of both the solution and its normal derivative
on the channel walls surrounding the flow.

To formulate this situation in mathematical terms, let the region Dy C IR? be the
strip

Dy :={z = (z1,22) €ER? 12y € R,0 < 2 < L}

modelling a channel with walls Ty = I'} |JT'2, where T} := {1 o (¢) = (¢,0),t € IR} and
2 = {235(t) = (t,L),t € R}. For simplicity, we put L = 7. Moreover, let D, with
Dy C Dy, ¢ = 1,...,n, be the immersed objects, which are bounded disjoint domains
with closed boundaries I'y given through parametric representations

Tpi={xe(t) = (x10(t), 220(1)) : 0 <t < 2w}, £ =1,...,n, (1.1)

where z; : R — IR? are C2-smooth and 27-periodic with |zj(t)| > 0 for all ¢ € [0,27]
and ¢ =1,...,n. Put D := Dy\J,_, Dy; see Figure 1 for an example of the configuration.

The stream function for the inviscid incompressible flow in the above two-dimensional
channel satisfies the two-dimensional Laplace equation, and to find the numerical value of
the stream function on the immersed objects we consider the Cauchy problem of finding
a bounded function u € C?(D) [ C(D) satisfying the Laplace equation

Au=0 in D (1.2)

T Key words. Alternating method, Cauchy problem, Green’s functions, Laplace equation, potential flow,
trigonometric- and sinc-quadrature rules.
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Fig. 1. The channel with walls Fé and I‘g, and three immersed objects

and the boundary conditions

u= f; and %:fz on Iy, (1.3)
ov

with u being uniformly bounded at infinity. Due to this condition at infinity uniqueness
is clear from results for elliptic Cauchy problems, see, for example, [1] and [2]. We shall
assume that the data is such that there exists a solution. Even though there is a unique
solution giving the sought values on the objects, this solution does not in general depend
continuously on the data, i.e. the problem is ill-posed in the sense of Hadamard making
classical methods inappropriate.

There are various techniques for finding the solution to potential flow problems; see, for
example, [9] and [12]. We propose an iterative procedure based on the alternating method
presented in [6]. The alternating method was originally proposed for bounded domains
and we therefore extend it to our unbounded fluid flow channel setting. The situation of
the Cauchy problem in a half-plane was recently considered in [4]. The alternating method
has successfully been applied in several engineering problems in, for example, fluid flow
and heat conduction.

In each iteration of the procedure, mixed direct problems are solved in the solution
domain D, where an initial guess of the normal derivatives on the immersed bodies are
used to start the process. For the direct mixed fluid flow problems in this study, we propose
and investigate a numerical method and even though the solution domain is unbounded,
this method does not need any artificial boundary. Instead, the mixed problems are each
reduced to a boundary integral equation over the immersed bodies. This approach makes
the implementation of the alternating method very efficient.

The outline of the paper is the following. In Section 2, the alternating method and
the necessary direct mixed problems are introduced. In Section 3, a numerical method for
the direct problems is introduced and well-posedness of the equations solved are proved,
see Theorem 3.1 and Theorem 3.2. Convergence of the alternating procedure is discussed
in Section 4, and it is shown that the method is regularizing, see further Theorem 4.1.
In the final section, i.e. Section 5, numerical examples are given showing that accurate
numerical values of the flow on the immersed obstacles can be obtained in an efficient
way.
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2. An alternating method for the Cauchy problem (1.2)—(1.3)

To formulate the alternating iterative procedure for solving (1.2) (1.3), we introduce
the following mixed boundary value problem:

Au=0 in D, (2.1)
ou
a—:h[ on Iy, £=1,...;n, and u=f; on Ty, (2.2)
v
and also the mixed boundary value problem
Au=0 in D, (2.3)
ou
u=¢gy on Iy, £=1,...,n, and a—:fg on T. (2.4)
v

By a solution to (2.1) (2.2) or (2.3) (2.4), we mean a classical solution which is uniformly
bounded at infinity, i.e.
u(z) = O(1), |z| — oo. (2.5)
Let f1 and fo be the given functions in (1.3). The alternating iterative procedure for
constructing the solution to (1.2)—(1.3) runs as follows:

e The first approximation ug to the solution u of (1.2)—(1.3), is constructed by solving
problem (2.1)—(2.2) with h, = hY, where h for £ = 1,...,n, is an arbitrary initial
guess on the immersed boundary I'y.

e Having constructed usy, we find wusggi1 by solving problem (2.3) (2.4) with g, =
ugk|r,, £=1,...,n.

e Then we find the element usgo by solving problem (2.1) (2.2) with

Bk Ougk+1
= B |Fu

where / =1,....n

3. Numerical approximation for the mixed problems

3.1. Mixed Dirichlet-Neumann boundary value problem

We construct the solution to the mixed boundary value problem (2.3) (2.4), which is
assumed to be regular at infinity.

For the planar strip Dy the corresponding Green’s function has the form

1 1
N =—1 —1 .
() Ar [cosh(xl — 1) — cos(xz — yg)]+47r . [cosh(xl —y1) — cos(x2 + ya)

Note that in the planar case the above introduced Green’s function is unbounded at
infinity. Using the single-layer potential approach with the Green’s function N for the
strip Dg, we can seek the solution of the mixed problem (2.3) (2.4) in the form

u(x) :Z/gog(y)N x,y)ds(y /f2 (r,y)ds(y) +a, z€D, (3.1)

with unknown densities ¢, on I'y and a constant «. In order to satisfy the boundedness
condition at infinity, the side condition
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is imposed.

As is evident from the approach (3.1), some additional conditions on the boundary
function fy have to be imposed. Firstly, for the existence of the integral, the function f;
is required to have an appropriate asymptotic behaviour on the real axis, and, secondly,
the integral of fy over the boundary I'y has to vanish to satisfy the regularity condition
at infinity. We summarize these properties as the following conditions:

folw) = O(la]719), & > 0, |a] — o0, / foly) ds(y) = 0. (32)
o

Using the continuity of the single-layer potentials and the properties of the Green’s
function, the problem (2.3) (2.4) can, by using the representation (3.1), be reduced to
the integral equations

Z/g@g N(z,y)ds(y) + /f2 N(z,y)ds(y), v €Ty, k=1,...,n
(=17,
Z/w(y) ds(y) =0,
(=17,
(3.3)
to be solved for the densities @y, £ =1,...,n, and the constant a.

The well-posedness of the integral equation (3.3) in corresponding Holder or Sobolev
spaces follows from classical results [8]. For example, we have the following result in the
Sobolev space setting:

Theorem 3.1 For any given fo € C(I'g) with the property (3.2), and g, € H'/?(Ty),
¢ =1,...,n, the system of equations (3.3) possesses a unique solution @, € H_1/2(1"g),
{=1,...,n,and o € R.

Here, the space H'/2 (T'¢) denotes the standard Sobolev trace space on the immersed body
l, where £ =1,...,n, and H_1/2(Fg) is the corresponding dual space.

Using the parameterization (1.1), and similarly for the other different boundary parts
of the solution domain D, we can transform the system (3.3) into the parametric form

2
1 n
2—Z/M VEie(t, 7)dr + o = wit), t€[0,27], k=1,....n,
s

=179
27
/M@
0
with the 2m-periodic kernels
Hy(t,7) = 27N (2 (t),xe(7)), t,7€[0,2r], k#L,

{=1

Qt_

1 4
H[[(t,'r) = —5 In (E sin T) + Hélé(t,'r),

1 4 t—
2N (z(t), xo(T)) + 3 In (— sin? 5 T) for t# T,
e
Hflf(th) =

for t=r,

N =

—In (| sin2a (1) || (t)]) —
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the right-hand sides
2 oo

wi(t) = g (xk(t)) — Z / AN (2 (t), 2000 (7)) dT, T €[0,27] (3.5)

=1

and the densities p(t) = @e(ae(t))|z)(t)], ¢ = 1,...,n. Here, we used the notation
Fi0) = folweoe(®), £ = 1.2.
For the full discretization of the integral equation of the first kind (3.4), which has
a logarithmic singularity, we employ a quadrature method together with the quadrature
rule [3,8] based on trigonometric interpolation. For this purpose, we choose an equidistant
mesh by setting
t;:=air/M, i=0,...,2M —1, M € IN, (3.6)

and use the quadrature rules

2M—1
o [ fmar~ o > 1) (3.7
/ :
nd
' 1 T t—T 2t
o [ fom (_smz : )m > w0 (3.8)
/ s

with weight functions

1 g | cos(t — t;)
R;(t) := ~5a7 1+2 Z Ecosm(t—tj)—i— — (-

m=1

These quadrature formulas are obtained by replacing f with its trigonometric interpolati-
on polynomial and then integrating explicitely, see [8]. We point out that in the case of a
periodic and analytic function f, we obtain exponential convergence.

For the numerical calculation of the integrals in (3.5), we apply the so-called sinc-
quadrature rule

[e%s) M,
/ ) dr mhe Y fliha), My €N, ho = L c> 0. (3.9)
% j=— M,

c
VM
This quadrature formula is obtained by replacing f with a sinc approximation (see [10])
and then integrating explicitely. In the case of analytic functions f, which satisfy f(t) =
O(e=“I*) for |t| — oo and some positive constant ¢, the quadrature (3.9) has exponential
convergence. We note that for integrands with a different asymptotic behavior than in
(3.9), if it is needed, some special transformations can be used (see [10]).

Thus, after the application of the quadrature method to the integral equations (3.4)
and the quadrature rule (3.9) for the computation of the integral in the right-hand side
of (3.5), we obtain the following system of linear equations

n 2M-—1
Z Z oy Hyo(tist;) +a = wg(t;), i=0,...,2M =1, k=1,...,n
=1 ;=0
(3.10)



AN ALTERNATING BOUNDARY INTEGRAL BASED METHOD 15

to be solved for fig; =~ pe(t;) with matrix coefficients

R mka(tlat ) for k 7& f,
Hkg(ti,tj) = . .
S Ro(t) + i Hhlt ) o k=t
and the right-hand side
Wi (t;) == g (zi(t; Z Zfz (ihoo) N (21 (t;), Te,00 (ihoc)),  J=0,...,2M — 1.
—M; (=1

A convergence and error analysis for this numerical scheme is described in [3] in a
Holder space setting, and in [8] in a Sobolev space setting. This analysis exhibits the
dependence of the convergence rate on the smoothness of the boundary curves I'y of the
immersed bodies, i.e. the proposed method belongs to the class of algorithms without
"saturation effect".

In the alternating procedure we have to obtain the normal derivative on the boundary
part I'x, and this derivative can be calculated from the above boundary integral formulati-
on. Indeed, from the properties of the single-layer potentials, the normal derivative of the
solution on I'y can be calculated by the formula

n 27 2
ou 1 1 e
0 —00
(3.11)
where v is the outward unit normal to I'y, k = 1,...,n, and the kernels are given as

LL (1.1 o= T2 OT O OF + 2 (), (1) = 21, ()25,(1)
kk\Y : 2|$;€(t)|3 |

25, (t) sinh(z1x (£) —21(7)) (cosh (214 (£) =214 (7)) — cos oy (t) cos wak (T)

— 2, (8)(2 cosh(z1x (t) — 210(7T)) sin wog () cos z2¢(T) — sin 2xay(t))
2|, (t)|(cos(w2k(t) — w2e(T)) — cosh(@1y(t) — 210(7)))

L%k(t, T) =

x (cosh(x1 (t) — 21¢(7)) — cos(xak (t) + 22¢(7)))
fort#A7and ,k=1,...,n

sin zog (t)x],, () + sinh(7 — z14 (1)) x5 ()

Lig(t,7) = — |z}, (t)](cos zax(t) — cosh(T — x1x(t)))

and
sin zor, (t) @), (t) — sinh(7 — 1 (t)) x5 (t)
|z}, ()| (cos @a (t) 4+ cosh(T — z1x(t)))

The approximation for (3.11) can be obtained by using the quadratures (3.7) and (3.9).

L%k(ta T) =

3.2. Mixed Neumann-Dirichlet boundary value problem

The Neumann-Dirichlet mixed problem, i.e. to find a function u that solves the mixed
boundary value problem (2.1) (2.2), which is regular at infinity, can be numerically solved
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by the approach of the previous section but with some additional changes. For the sake
of completeness we include some of the details.
The Green’s function for the Dirichlet problem in the strip Dy has the form:

1 (cosh(:cl — 1) — cos(za + y2)>

G(z,y) = In In cosh(z1 — y1) — cos(za — y2)

and, as one can check, it is bounded at infinity. Thus, for the boundary value problem
(2.1)—(2.2), we again employ the single layer potential approach

uw) =Y [ewGendst) - [ AT P dsw), zeD. (312
o

e=1py,

Then (2.1)—(2.2) is reduced to the following system of integral equations of the second
kind

o)+ 3 [0 22D dsty) = (o) + [ F) e ds(y), w e

ov(a) v(2)90(y)
=17, I
(3.13)
for K = 1,...,n. We note here that it is necessary to have the following asymptotic
behaviour for the boundary function
filx)=0(z]'79), €e>0, |z|]— . (3.14)

As for the system of integral equations for the Dirichlet-Neumann problem, we have
a well-posedness result also in the Neumann-Dirichlet case.

Theorem 3.2 For any given f; € C(I'g) with the property (3.14), and g, € L*(Ty), { =
1,...,n, the system of integral equations (3.13) possesses a unique solution ¢y, € L?(T'y),
{=1,...,n.

Taking into account the parametric representation (1.1) together the similar representati-
ons introduced in Section 1, we can rewrite equation (3.13) in the parametric form

27 2

om0 [ KLt = @)+ [ HEOKE € dr e 0,21),
0 =1

— 00

(3.15)
where k =1,...,n, ux(t) := pr(xi(t))|z)(t)] and

KL (1) = — cot o (1)@, () |2}, (D) * + by ()2, (1) — 2], ()2l (t)
ltot): DEAOLE ’

xhy, (t) sinh(z1x () — 14(7)) sin za (t) sin wa ()

+a';,(t) (cosh(z1x (t) — z14(7)) cos zax (t) — cos x2,(T)) sin x4 (7)
|27, (8)] (cos(war (t) — 220(T)) — cosh(x1x(t) — 214(7)))

x (cosh(z1y (1) — 14(T)) — cos(war (t) + z20(T)))
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fort#A7and £,k=1,...,n, and
[ 2, (1) ((—4—2 cos 2xak (1) —2 cosh(2(z1 (t)—7))) sin wa (t) sinh (7 —x1x(¢)) ]
+(—1) 2 sin 294 (¢) sinh(2(z1k (8) — 7)) + (—1) @, (1) (4 + 4 cos” war (1)

+2 cos 229, + 2 cos 2xax (t) + 2(2 + cos 2xax (1)) cosh(2(z1x(t) — 7))

+2 cos x2p(t) cosh(T — x1(t))(6 + cos 2xay (t) + cosh(2(z1x(t) — 7))))
87|z} (t)|(cos xar (t) + (—1)¢ cosh(r — z15(t))*)

K%ﬁ(ta T)::

for/ =1,2.

The numerical solution of the integral equation (3.15) is obtained by the Nystrém
method using the quadrature rules (3.7) and (3.9). The error and convergence analysis of
this method can be found in [8].

From (3.12) we obtain the following parametric representation of the solution on I'j
for the mixed problem (2.1) (2.2)

n 27 2 00
1
=35> [wmQhini - [ @kt (310)
=17 =1
where t € [0,27], k = 1,...,n, and the kernels have the form

Qiy(t,7) := 210G (xp(t), ze(7)), t,7€[0,21], k#L,

1 4 L, t—T1 ~
Qp(t,7) == 3 In (E sin® T) + Qu(t,7),
1 (4 ,t-
27G(xo(t), e (7)) + 3 In (— sin® T) for t# T,
- e
Q%Z(taT) =
1
In (2| sinzae(t)|/]|zy(t)]) — 3 for t=r,
and ) 0
—sinz
Qh(t.7) = =

27 (cosh(r — z1(t)) + (—1)¢ cos zax(t))

for £ = 1, 2, respectively. For the approximation of (3.16) the quadratures (3.7)—(3.9) are
used.

4. Convergence of the alternating procedure
We have the following convergence result:

Theorem 4.1 Assume that problem (1.2)—(1.3) has a bounded solution, where f; sati-
sfies (3.14), and fo satisfies (3.2). Let uy, be the k-th approximate solution constructed
in the alternating procedure described in Section 2. Then the approximation tends to the
correct function value on each immersed body, more precisely

Jim u— ugll go/aqr,) = 0 (41)
for { = 1,...,n, and any sufficiently smooth initial data elements hj, which start the

procedure.



18 R.S.CHAPKO AND B.T.JOHANSSON

Here, H1/2(Fg) denotes the standard Sobolev trace space on the immersed body ¢, where
{=1,...,n.

Note that it is possible also to obtain convergence for the flow in the channel, i.e. to

show that u — uy tends to zero in the domain D in an appropriate norm.
Proof. The above convergence result for the iterative procedure in the case of exact data
follows along the lines of the original ideas given for bounded domains in [6] and [7].
Extensions to a semi-infinite domain with one submerged object was given in [4]. For the
sake of completeness, we briefly outline the main steps in obtaining convergence for the
above channel setting situation and with multiple submerged bodies.

We put the given boundary functions on the immersed obstacles into a vector, for
example, with h = (hq,..., h,), we say that v is a solution to (2.1) (2.2) with h and fi,
if hy is the ¢-th component of h, and similar for problem (2.3)—(2.4).

We let Uy be the solution to (2.1)—(2.2), with a given (sufficiently smooth) function
h = (h1,...,h,) and f; = 0. Similarly, let U; be the solution to (2.3)—(2.4) with fo =0

and g = (U0|p1, ce U0|pn). We define the operator B by

~ (ouy oU,
Bh— (Eh‘l,...,gh‘n), (42)

and it is clear that B is well-defined. In the similar way, let Uy be the solution to (2.1)
(2.2) with h = 0, and let U; be the solution to (2.3)-(2.4) with g = (Uo|r,, .. .,U()|I‘n).
With the notation ~ 5
oUy o,
G = =—lry,- = . 4.3
(fla f2) < v |F17 -y |Fn> ( )

it follows that the Cauchy problem (1.1)-(1.2) is equivalent with finding a solution (a fixed
point) to equation
Bh + G(f1, f2) = h. (4.4)

Thus, to investigate the convergence of the iterative alternating procedure it is enough to
investigate the properties of the operator B. We introduce the inner product

(h,g) = | Vu-Vudz, (4.5)
/

where u solves (2.1)—(2.2) with h = (hq,...,h,) and f1 = 0, and similarly v solves (2.1)—
(2.2) with hy = g¢, where g = (g1,...,9,) and f; = 0. Note that the strip domain D is
a Poincaré domain, i.e. the Poincaré inequality holds therein, see further [5]. Thus, it is
straightforward to check that (-,-) is a well-defined inner product. We use || - || for the
corresponding norm.

Therefore, following [6], it can be shown, employing Green’s formula, that B is self-
adjoint, non-negative, non-expansive, and the number one is not an eigenvalue; thus
convergence follows; for further details see [4].

In the case of noisy data f{ and fJ, where § > 0, and

IG(f7, £3) = G(f1, f2)|| <6, (4.6)

using the properties of B, the discrepancy principle can be employed for any given  as
a stopping rule for fixed point iterations for equation (4.4), see [11, Chapt. 3, Sect. 3].
Thus, if k£ = k(0) is the smallest integer with

kg1 — B3| < bS (4.7)
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for given b > 1, then hi(é) converges to the exact solution of (4.4) when § — 0, i.e. the
proposed alternating procedure is a regularizing method. In (4.7), the ¢-th component of
hi is

_ Ougg—

(h‘i)f = v |Fev

and these elements are obtained as described in (i) (iii), where (f{, fJ) replaces the exact
data (f1, f2) in (2.2) and (2.4).

5. Numerical examples
Ex. 1. We consider the channel strip Do with one circular immersed body (see Fig. 2)

Iy := {z1(t) = (0.5cost,0.5sint + 1.5),¢ € [0, 27]}.
The boundary function on the inclusion has the form:
g1(t) = cos(t), te€[0,2n].

The given flux on T’y is fo = 0. Boundary values f; are calculated as the trace of the
corresponding potential on T'g. To avoid the “inverse crime” these values are calculated
on a finer mesh and we shall also add noise to the data.

The results of the Cauchy data reconstructions on the body I'; are presented in Fig. 3

1
251 r0 |
D
AR |
1 O rl |
1 |
osf 2 —
I_O

1

0.5¢

0,
_0.5,
L L L L L L _17 L L \~~\-_’ L L L
0 1 2 3 4 5 6 0 1 2 3 4 5 6
a) Exact data, k™ = 1000 b) 5% noise, k* = 34

Fig. 3. Reconstruction of the boundary function on I'; in Ex. 1
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and Fig. 4, where the function value and the normal derivative are shown both for exact
and noisy data. We used the following discretization parameters M = 32 and M; =
1000. In the case of exact data, a very accurate reconstruction is obtained both of the
function and the normal derivative but the number of iterations needed is rather large.
We then added 5% random pointwise errors to the values of fi, and, as expected, the
reconstructions are less accurate and the normal derivative is affected most by the noise
in the Cauchy data. The discrepancy principle, as discussed in the previous Section, was
used to terminate the iterations.

The corresponding L? errors

er = |lugk — gllL2ry)
and
Qi = ”W - $||L2(F1)

are reflected in Fig. 5.

2F

_2— . . . . . 1 - . . . . . 1
0 1 2 3 4 5 6 0 1 2 3 4 5 6
a) Exact data, k* = 1000 b) 5% noise, k* =24
Fig. 4. Reconstruction of the normal derivative on I'; for Ex. 1
0.25
0.2r
01
0.15¢
0.1+
0.05 qk 1
) 0.05¢ €
k
0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0 200 400 600 800 1000 0 20 40 60 80 100
a) Exact data b) 5% noise

Fig. 5. L2-errors ey, and g, for the circular inclusion in Ex. 1

Ex. 2. Next, we consider the case of the channel strip Dy with one immersed kite shaped
object (see Fig. 6) described by

Iy :={z1(t) = (0.6 cost + 0.39 cos 2t — 0.39 + 2.11,0.8sint + 1.5),¢ € [0, 27] }.
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Fig. 6. Strip with the kite inclusion
All other input data and method parameters are as in the previous example.

Again, in the case of exact data, even with this more complicated shape of the
immersed body, an accurate reconstruction of the function is obtained, see Fig. 7a).
However, the reconstruction of the normal derivative is not that accurate, see Fig. 8a).
Noise in the data influence as in the previous example, see Fig. 7b) and Fig 8b). The
corresponding L? errors e, and g are given in Fig. 9.

1 1

0.5f 0.5f

—-0.5¢ —-0.5¢

o 1 2 3 4 5 6 o 1 2 3 4 5 6
a) Exact data, k* = 1000 b) 5% noise, k* = 348

Fig. 7. Reconstruction of the boundary function on I'; in Ex. 2

1

0.5¢

o 1 2 3 4 5 6 0
a) Exact data, k™ = 1000 b) 5% noise, k* = 335

Fig. 8. Reconstruction of the normal derivative on I'; in Ex. 2
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a) Exact data b) 5% noise

Fig. 9. L2-errors ey, and g, for the kite shaped inclusion in Ex. 2

-
[u

Fig. 10. Strip with two inclusions

Ex. 3. We consider the channel strip with two immersed bodies: one the circular (T'y)
and one kite shaped I'y (see Fig. 10)

Iy :={x1(t) = (0.5cost — 2.5,0.5sin¢ + 1.5),¢ € [0, 27|}
and
Iy := {x2(t) = (0.5 cost + 2.5,0.5sint + 1.5),¢ € [0, 2] }.

The boundary functions on the inclusions have the form:
g1(t) = cos(t), ¢g2(t) =sin(t), te]0,2n].

The given flux on I'y is
fo=0.

The boundary value f; are calculated as the trace of the corresponding potential on T'y.
Again, to avoid the “inverse crime”, these values are calculated on a finer mesh and we
also add noise to the data.

The results of the reconstruction of the Cauchy data on I'y and I's in the case of exact
data are presented in Fig. 11 13, and in the case of noisy data in Fig. 14 16.
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a) circle shaped boundary T’y b) kite shaped boundary T's

Fig. 11. Reconstruction of boundary functions for exact data, k* = 1000, in Ex. 3

o 1 2 3 4 5 6 o 1 2 3 4 5 &
a) circle shaped boundary T’y b) kite shaped boundary T's

Fig. 12. Reconstruction of normal derivatives for exact data, k* = 1000, in Ex. 3
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a) circle shaped boundary I't b) kite shaped boundary I's

Fig. 13. L2-errors ey, and g, for exact data in Ex. 3

For exact data, both the function value and its normal derivative are accurately
reconstructed, see Fig. 11 12. Note that the reconstructions are slightly less accurate
on the kite shaped obstacle. The L? errors e, and g, for exact data are given in Fig. 13.

For the case of 5% random pointwise errors added to the values of f;, the reconstructi-
ons of the function and its normal derivative on the immersed bodies are given in
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Fig. 14 15. The discrepancy principle was used to stop the iterations. Again, less accurate
reconstructions are obtained on the kite shaped obstacle. The L? errors ey, and g, for noisy
data are given in Fig. 16.

0.5f 0.5f

—-0.5¢ —-0.5¢

-1r ‘ ‘ ‘ ‘ ‘ ‘ -1r ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 0 1 2 3 4 5 6
a) circle shaped boundary I'1, k* = 461 b) kite shaped boundary I'z, k* = 146

Fig. 14. Reconstruction of boundary functions for 5% noise in Ex. 3

o 1 2 3 4 5 6 o 1 2 3 4 5 6
a) circle shaped boundary I'1 , k* = 443 b) kite shaped boundary 'z, k* = 50

Fig. 15. Reconstruction of normal derivatives for 5% noise in Ex. 3

0 100 200 300 400 500 0 100 200 300 400 500
a) circle shaped boundary I't b) kite shaped boundary I's

Fig. 16. L2-errors ey, and gy, for 5% noise in Ex. 3
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