
Æóðíàë îá÷èñë. ïðèêë. ìàòåì.Âèï. 1, 2009, ñòîð. 10-25 J. Numer. Appl. Math.No. 97, 2009, pp. 10-25AN ALTERNATING BOUNDARY INTEGRAL BASED METHOD FORINVERSE POTENTIAL FLOW AROUND IMMERSED BODIESUDC 519.6 R. S.CHAPKO AND B.T. JOHANSSONAbstrat. We propose and investigate an alternating iterative proedure for theinverse problem of alulating the stream funtion on immersed bodies in an irrotati-onal two-dimensional potential �ow, given the stream funtion and its normal deri-vative on the surrounding hannel walls. In the proedure, mixed boundary-valueproblems are solved in the hannel with either a Dirihlet or a Neumann onditi-on imposed on the immersed bodies, to generate a sequene of approximations tothe stream funtion. Convergene of these approximations to the stream funtion isshown in an appropriate norm, and it is proven that the proedure is a regularizingmethod.1. IntrodutionThe Laplae equation an be used as a model of potential �ow of inompressible �uidsin terms of the stream funtion for two-dimensional regions. This is then a model for�ows whih are irrotational at every point in the �ow �eld. Di�erent types of boundaryonditions an be presribed on the solid boundaries surrounding the �ow. However, thevalue of the stream funtion is unknown on any immersed objet and has to be alulatedalong with the solution. We propose and investigate a tehnique for �nding this value onthe immersed objets given the knowledge of both the solution and its normal derivativeon the hannel walls surrounding the �ow.To formulate this situation in mathematial terms, let the region D0 ⊂ IR2 be thestrip
D0 := {x = (x1, x2) ∈ IR2 : x1 ∈ IR, 0 < x2 < L}modelling a hannel with walls Γ0 = Γ1

0

⋃

Γ2
0, where Γ1

0 := {x1,∞(t) = (t, 0), t ∈ IR} and
Γ2

0 := {x2,∞(t) = (t, L), t ∈ IR}. For simpliity, we put L = π. Moreover, let Dℓ with
D̄ℓ ⊂ D0, ℓ = 1, . . . , n, be the immersed objets, whih are bounded disjoint domainswith losed boundaries Γℓ given through parametri representations

Γℓ := {xℓ(t) = (x1ℓ(t), x2ℓ(t)) : 0 ≤ t ≤ 2π}, ℓ = 1, . . . , n, (1.1)where xℓ : IR → IR2 are C2-smooth and 2π�periodi with |x′
ℓ(t)| > 0 for all t ∈ [0, 2π]and ℓ = 1, . . . , n. Put D := D0\

⋃n
ℓ=1 D̄ℓ; see Figure 1 for an example of the on�guration.The stream funtion for the invisid inompressible �ow in the above two-dimensionalhannel satis�es the two-dimensional Laplae equation, and to �nd the numerial value ofthe stream funtion on the immersed objets we onsider the Cauhy problem of �ndinga bounded funtion u ∈ C2(D)

⋂

C1(D̄) satisfying the Laplae equation
∆u = 0 in D (1.2)

†Key words. Alternating method, Cauhy problem, Green's funtions, Laplae equation, potential �ow,trigonometri- and sin-quadrature rules. 10



AN ALTERNATING BOUNDARY INTEGRAL BASED METHOD 11
Γ1

Γ2

Γ3

D3

D2

D1

Γ
1

0

Γ
2

0

D

. . . . . .

. . . . . .

Fig. 1. The hannel with walls Γ1

0
and Γ2

0
, and three immersed objetsand the boundary onditions

u = f1 and ∂u

∂ν
= f2 on Γ0, (1.3)with u being uniformly bounded at in�nity. Due to this ondition at in�nity uniquenessis lear from results for ellipti Cauhy problems, see, for example, [1℄ and [2℄. We shallassume that the data is suh that there exists a solution. Even though there is a uniquesolution giving the sought values on the objets, this solution does not in general dependontinuously on the data, i.e. the problem is ill-posed in the sense of Hadamard makinglassial methods inappropriate.There are various tehniques for �nding the solution to potential �ow problems, see, forexample, [9℄ and [12℄. We propose an iterative proedure based on the alternating methodpresented in [6℄. The alternating method was originally proposed for bounded domainsand we therefore extend it to our unbounded �uid �ow hannel setting. The situation ofthe Cauhy problem in a half-plane was reently onsidered in [4℄. The alternating methodhas suessfully been applied in several engineering problems in, for example, �uid �owand heat ondution.In eah iteration of the proedure, mixed diret problems are solved in the solutiondomain D, where an initial guess of the normal derivatives on the immersed bodies areused to start the proess. For the diret mixed �uid �ow problems in this study, we proposeand investigate a numerial method and even though the solution domain is unbounded,this method does not need any arti�ial boundary. Instead, the mixed problems are eahredued to a boundary integral equation over the immersed bodies. This approah makesthe implementation of the alternating method very e�ient.The outline of the paper is the following. In Setion 2, the alternating method andthe neessary diret mixed problems are introdued. In Setion 3, a numerial method forthe diret problems is introdued and well-posedness of the equations solved are proved,see Theorem 3.1 and Theorem 3.2. Convergene of the alternating proedure is disussedin Setion 4, and it is shown that the method is regularizing, see further Theorem 4.1.In the �nal setion, i.e. Setion 5, numerial examples are given showing that auratenumerial values of the �ow on the immersed obstales an be obtained in an e�ientway.



12 R.S. CHAPKO AND B.T. JOHANSSON2. An alternating method for the Cauhy problem (1.2)�(1.3)To formulate the alternating iterative proedure for solving (1.2)�(1.3), we introduethe following mixed boundary value problem:
∆u = 0 in D, (2.1)

∂u

∂ν
= hℓ on Γℓ, ℓ = 1, . . . , n, and u = f1 on Γ0, (2.2)and also the mixed boundary value problem

∆u = 0 in D, (2.3)
u = gℓ on Γℓ, ℓ = 1, . . . , n, and ∂u

∂ν
= f2 on Γ0. (2.4)By a solution to (2.1)�(2.2) or (2.3)�(2.4), we mean a lassial solution whih is uniformlybounded at in�nity, i.e.

u(x) = O(1), |x| → ∞. (2.5)Let f1 and f2 be the given funtions in (1.3). The alternating iterative proedure foronstruting the solution to (1.2)�(1.3) runs as follows:
• The �rst approximation u0 to the solution u of (1.2)�(1.3), is onstruted by solvingproblem (2.1)�(2.2) with hℓ = h0

ℓ , where h0
ℓ for ℓ = 1, . . . , n, is an arbitrary initialguess on the immersed boundary Γℓ.

• Having onstruted u2k, we �nd u2k+1 by solving problem (2.3)�(2.4) with gℓ =
u2k|Γℓ

, ℓ = 1, . . . , n.
• Then we �nd the element u2k+2 by solving problem (2.1)�(2.2) with

hk
ℓ =

∂u2k+1

∂ν
|Γℓ

,where ℓ = 1, . . . , n.3. Numerial approximation for the mixed problems3.1. Mixed Dirihlet-Neumann boundary value problemWe onstrut the solution to the mixed boundary value problem (2.3)�(2.4), whih isassumed to be regular at in�nity.For the planar strip D0 the orresponding Green's funtion has the form
N(x, y) =

1

4π
ln

[

1

cosh(x1 − y1) − cos(x2 − y2)

]

+
1

4π
ln

[

1

cosh(x1 − y1) − cos(x2 + y2)

]

.Note that in the planar ase the above introdued Green's funtion is unbounded atin�nity. Using the single-layer potential approah with the Green's funtion N for thestrip D0, we an seek the solution of the mixed problem (2.3)�(2.4) in the form
u(x) =

n
∑

ℓ=1

∫

Γℓ

ϕℓ(y)N(x, y) ds(y) +

∫

Γ0

f2(y)N(x, y) ds(y) + α , x ∈ D, (3.1)with unknown densities ϕℓ on Γℓ and a onstant α. In order to satisfy the boundednessondition at in�nity, the side ondition
n
∑

ℓ=1

∫

Γℓ

ϕℓ(y) ds(y) = 0



AN ALTERNATING BOUNDARY INTEGRAL BASED METHOD 13is imposed.As is evident from the approah (3.1), some additional onditions on the boundaryfuntion f2 have to be imposed. Firstly, for the existene of the integral, the funtion f2is required to have an appropriate asymptoti behaviour on the real axis, and, seondly,the integral of f2 over the boundary Γ0 has to vanish to satisfy the regularity onditionat in�nity. We summarize these properties as the following onditions:
f2(x) = O(|x|−1−ε), ε > 0, |x| → ∞,

∫

Γ0

f2(y) ds(y) = 0. (3.2)Using the ontinuity of the single-layer potentials and the properties of the Green'sfuntion, the problem (2.3)�(2.4) an, by using the representation (3.1), be redued tothe integral equations


































n
∑

ℓ=1

∫

Γℓ

ϕℓ(y)N(x, y) ds(y) + α = gk(x) −
∫

Γ0

f2(y)N(x, y) ds(y), x ∈ Γk, k = 1, . . . , n,

n
∑

ℓ=1

∫

Γℓ

ϕℓ(y) ds(y) = 0, (3.3)to be solved for the densities ϕℓ, ℓ = 1, . . . , n, and the onstant α.The well-posedness of the integral equation (3.3) in orresponding H�older or Sobolevspaes follows from lassial results [8℄. For example, we have the following result in theSobolev spae setting:Theorem 3.1 For any given f2 ∈ C(Γ0) with the property (3.2), and gℓ ∈ H1/2(Γℓ),
ℓ = 1, . . . , n, the system of equations (3.3) possesses a unique solution ϕℓ ∈ H−1/2(Γℓ),
ℓ = 1, . . . , n, and α ∈ IR.Here, the spae H1/2(Γℓ) denotes the standard Sobolev trae spae on the immersed body
ℓ, where ℓ = 1, . . . , n, and H−1/2(Γℓ) is the orresponding dual spae.Using the parameterization (1.1), and similarly for the other di�erent boundary partsof the solution domain D, we an transform the system (3.3) into the parametri form







































1

2π

n
∑

ℓ=1

2π
∫

0

µℓ(τ)Hkℓ(t, τ)dτ + α = wk(t), t ∈ [ 0, 2π ], k = 1, . . . , n,

n
∑

ℓ=1

2π
∫

0

µℓ(τ) dτ = 0

(3.4)with the 2π-periodi kernels
Hkℓ(t, τ) := 2πN(xk(t), xℓ(τ)), t, τ ∈ [ 0, 2π ], k 6= ℓ,

Hℓℓ(t, τ) := −1

2
ln

(

4

e
sin2 t − τ

2

)

+ H1
ℓℓ(t, τ),

H1
ℓℓ(t, τ) :=



















2πN(xℓ(t), xℓ(τ)) +
1

2
ln

(

4

e
sin2 t − τ

2

) for t 6= τ,

− ln (| sinx2ℓ(t)||x′
ℓ(t)|) −

1

2
for t = τ,
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wk(t) := gk(xk(t)) −

2
∑

ℓ=1

∞
∫

−∞

f ℓ
2(τ)N(xk(t), xℓ,∞(τ)) dτ, t ∈ [ 0, 2π ] (3.5)and the densities µℓ(t) := ϕℓ(xℓ(t))|x′
ℓ(t)|, ℓ = 1, . . . , n. Here, we used the notation

f ℓ
2(t) := f2(xℓ,∞(t)), ℓ = 1, 2.For the full disretization of the integral equation of the �rst kind (3.4), whih hasa logarithmi singularity, we employ a quadrature method together with the quadraturerule [3,8℄ based on trigonometri interpolation. For this purpose, we hoose an equidistantmesh by setting

ti := iπ/M, i = 0, . . . , 2M − 1, M ∈ IN, (3.6)and use the quadrature rules
1

2π

2π
∫

0

f(τ) dτ ≈ 1

2M

2M−1
∑

j=0

f(tj) (3.7)and
1

2π

2π
∫

0

f(τ) ln

(

4

e
sin2 t − τ

2

)

dτ ≈
2M−1
∑

j=0

Rj(t) f(tj) (3.8)with weight funtions
Rj(t) := − 1

2M

{

1 + 2

M−1
∑

m=1

1

m
cosm(t − tj) +

cos(t − tj)

M

}

.These quadrature formulas are obtained by replaing f with its trigonometri interpolati-on polynomial and then integrating expliitely, see [8℄. We point out that in the ase of aperiodi and analyti funtion f , we obtain exponential onvergene.For the numerial alulation of the integrals in (3.5), we apply the so-alled sin-quadrature rule
∞
∫

−∞

f(τ) dτ ≈ h∞

M1
∑

i=−M1

f(ih∞), M1 ∈ IN, h∞ =
c√
M1

, c > 0. (3.9)This quadrature formula is obtained by replaing f with a sin approximation (see [10℄)and then integrating expliitely. In the ase of analyti funtions f , whih satisfy f(t) =
O(e−c|t|) for |t| → ∞ and some positive onstant c, the quadrature (3.9) has exponentialonvergene. We note that for integrands with a di�erent asymptoti behavior than in(3.9), if it is needed, some speial transformations an be used (see [10℄).Thus, after the appliation of the quadrature method to the integral equations (3.4)and the quadrature rule (3.9) for the omputation of the integral in the right-hand sideof (3.5), we obtain the following system of linear equations































n
∑

ℓ=1

2M−1
∑

j=0

µ̃ℓjH̃kℓ(ti, tj) + α = w̃k(ti) , i = 0, . . . , 2M − 1, k = 1, . . . , n

n
∑

ℓ=1

2M−1
∑

j=0

µ̃ℓj = 0

(3.10)



AN ALTERNATING BOUNDARY INTEGRAL BASED METHOD 15to be solved for µ̃ℓj ≈ µℓ(tj) with matrix oe�ients
H̃kℓ(ti, tj) :=















1

2M
Hkℓ(ti, tj) for k 6= ℓ,

−1

2
Rj(ti) +

1

2M
H1

ℓℓ(ti, tj) for k = ℓ,and the right-hand side
w̃k(tj) := gk(xk(tj)) − h∞

M1
∑

i=−M1

2
∑

ℓ=1

f ℓ
2(ih∞)N(xk(tj), xℓ,∞(ih∞)), j = 0, . . . , 2M − 1.A onvergene and error analysis for this numerial sheme is desribed in [3℄ in aH�older spae setting, and in [8℄ in a Sobolev spae setting. This analysis exhibits thedependene of the onvergene rate on the smoothness of the boundary urves Γℓ of theimmersed bodies, i.e. the proposed method belongs to the lass of algorithms without"saturation e�et".In the alternating proedure we have to obtain the normal derivative on the boundarypart Γk, and this derivative an be alulated from the above boundary integral formulati-on. Indeed, from the properties of the single-layer potentials, the normal derivative of thesolution on Γk an be alulated by the formula

∂u

∂ν
(xk(t))=− µk(t)

2|x′
k(t)|+

1

2π

n
∑

ℓ=1

2π
∫

0

µℓ(τ)L1
ℓk(t, τ) dτ+

1

2π

∞
∫

−∞

2
∑

ℓ=1

f ℓ(τ)L2
ℓk(t, τ) dτ, t∈[0, 2π],(3.11)where ν is the outward unit normal to Γk, k = 1, . . . , n, and the kernels are given as

L1
kk(t, t) :=

cotx2k(t)x′
1k(t)|x′

k(t)|2 + x′
2k(t)x′′

1k(t) − x′
1k(t)x′′

2k(t)

2|x′
k(t)|3 ,

L1
ℓk(t, τ) :=





2x′
2k(t) sinh(x1k(t)−x1ℓ(τ))(cosh(x1k(t)−x1ℓ(τ))− cosx2k(t) cos x2k(τ)

−x′
1k(t)(2 cosh(x1k(t) − x1ℓ(τ)) sin x2k(t) cosx2ℓ(τ) − sin 2x2k(t))









2|x′
k(t)|(cos(x2k(t) − x2ℓ(τ)) − cosh(x1k(t) − x1ℓ(τ)))

×(cosh(x1k(t) − x1ℓ(τ)) − cos(x2k(t) + x2ℓ(τ)))



for t 6= τ and ℓ, k = 1, . . . , n,
L2

1k(t, τ) := − sin x2k(t)x′
1k(t) + sinh(τ − x1k(t))x′

2(t)

|x′
k(t)|(cos x2k(t) − cosh(τ − x1k(t)))and

L2
2k(t, τ) := − sinx2k(t)x′

1k(t) − sinh(τ − x1k(t))x′
2(t)

|x′
k(t)|(cos x2k(t) + cosh(τ − x1k(t)))

.The approximation for (3.11) an be obtained by using the quadratures (3.7) and (3.9).3.2. Mixed Neumann-Dirihlet boundary value problemThe Neumann-Dirihlet mixed problem, i.e. to �nd a funtion u that solves the mixedboundary value problem (2.1)�(2.2), whih is regular at in�nity, an be numerially solved



16 R.S. CHAPKO AND B.T. JOHANSSONby the approah of the previous setion but with some additional hanges. For the sakeof ompleteness we inlude some of the details.The Green's funtion for the Dirihlet problem in the strip D0 has the form:
G(x, y) =

1

4π
ln

(

cosh(x1 − y1) − cos(x2 + y2)

cosh(x1 − y1) − cos(x2 − y2)

)and, as one an hek, it is bounded at in�nity. Thus, for the boundary value problem(2.1)�(2.2), we again employ the single layer potential approah
u(x) =

n
∑

ℓ=1

∫

Γℓ

ϕℓ(y)G(x, y) ds(y) −
∫

Γ0

f1(y)
∂G(x, y)

∂ν(y)
ds(y), x ∈ D. (3.12)Then (2.1)�(2.2) is redued to the following system of integral equations of the seondkind

−1

2
ϕk(x) +

n
∑

ℓ=1

∫

Γℓ

ϕℓ(y)
∂G(x, y)

∂ν(x)
ds(y) = gk(x) +

∫

Γ0

f(y)
∂2G(x, y)

∂ν(x)∂ν(y)
ds(y), x ∈ Γk(3.13)for k = 1, . . . , n. We note here that it is neessary to have the following asymptotibehaviour for the boundary funtion

f1(x) = O(|x|1−ǫ), ǫ > 0, |x| → ∞. (3.14)As for the system of integral equations for the Dirihlet-Neumann problem, we havea well-posedness result also in the Neumann-Dirihlet ase.Theorem 3.2 For any given f1 ∈ C(Γ0) with the property (3.14), and gℓ ∈ L2(Γℓ), ℓ =
1, . . . , n, the system of integral equations (3.13) possesses a unique solution ϕk ∈ L2(Γk),
ℓ = 1, . . . , n.Taking into aount the parametri representation (1.1) together the similar representati-ons introdued in Setion 1, we an rewrite equation (3.13) in the parametri form
−1

2

µk(t)

|x′
k(t)|+

1

2π

n
∑

ℓ=1

2π
∫

0

µℓ(τ)K1
kℓ(t, τ)dτ = gk(xk(t))+

2
∑

ℓ=1

∞
∫

−∞

f ℓ
1(τ)K2

kℓ(t, τ) dτ, t ∈ [0, 2π],(3.15)where k = 1, . . . , n, µk(t) := ϕk(xk(t))|x′
k(t)| and

K1
kk(t, t) :=

− cotx2k(t)x′
1k(t)|x′

k(t)|2 + x′
2k(t)x′′

1k(t) − x′
1k(t)x′′

2k(t)

2|x′
k(t)|3 ,

K1
kℓ(t, τ) :=





x′
2k(t) sinh(x1k(t) − x1ℓ(τ)) sin x2k(t) sin x2k(τ)

+x′
1k(t)(cosh(x1k(t) − x1ℓ(τ)) cos x2k(t) − cosx2ℓ(τ)) sin x2ℓ(τ)









|x′
k(t)|(cos(x2k(t) − x2ℓ(τ)) − cosh(x1k(t) − x1ℓ(τ)))

×(cosh(x1k(t) − x1ℓ(τ)) − cos(x2k(t) + x2ℓ(τ)))
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K2

kℓ(t, τ):=





















x′
2k(t)((−4−2 cos 2x2k(t)−2 cosh(2(x1k(t)−τ))) sin x2k(t) sinh(τ−x1k(t))

+(−1)ℓ2 sin 2x2k(t) sinh(2(x1k(t) − τ))) + (−1)ℓx′
1k(t)(4 + 4 cos2 x2k(t)

+2 cos 2x2k + 2 cos 2x2k(t) + 2(2 + cos 2x2k(t)) cosh(2(x1k(t) − τ))

+2 cosx2k(t) cosh(τ − x1k(t))(6 + cos 2x2k(t) + cosh(2(x1k(t) − τ))))





















8π|x′
k(t)|(cos x2k(t) + (−1)ℓ cosh(τ − x1k(t))4)for ℓ = 1, 2.The numerial solution of the integral equation (3.15) is obtained by the Nystr�ommethod using the quadrature rules (3.7) and (3.9). The error and onvergene analysis ofthis method an be found in [8℄.From (3.12) we obtain the following parametri representation of the solution on Γkfor the mixed problem (2.1)�(2.2)

u(xk(t)) =
1

2π

n
∑

ℓ=1

2π
∫

0

µℓ(τ)Q1
kℓ(t, τ)dτ −

2
∑

ℓ=1

∞
∫

−∞

f ℓ
1(τ)Q2

kℓ(t, τ) dτ, (3.16)where t ∈ [0, 2π], k = 1, . . . , n, and the kernels have the form
Q1

kℓ(t, τ) := 2πG(xk(t), xℓ(τ)), t, τ ∈ [ 0, 2π ], k 6= ℓ,

Q1
ℓℓ(t, τ) := −1

2
ln

(

4

e
sin2 t − τ

2

)

+ Q̃1
ℓℓ(t, τ),

Q̃1
ℓℓ(t, τ) :=



















2πG(xℓ(t), xℓ(τ)) +
1

2
ln

(

4

e
sin2 t − τ

2

) for t 6= τ,

ln (2| sinx2ℓ(t)|/|x′
ℓ(t)|) −

1

2
for t = τ,and

Q2
kℓ(t, τ) :=

− sin x2k(t)

2π(cosh(τ − x1k(t)) + (−1)ℓ cosx2k(t))for ℓ = 1, 2, respetively. For the approximation of (3.16) the quadratures (3.7)�(3.9) areused.4. Convergene of the alternating proedureWe have the following onvergene result:Theorem 4.1 Assume that problem (1.2)�(1.3) has a bounded solution, where f1 sati-s�es (3.14), and f2 satis�es (3.2). Let uk be the k-th approximate solution onstrutedin the alternating proedure desribed in Setion 2. Then the approximation tends to theorret funtion value on eah immersed body, more preisely
lim

k→∞
‖u − uk‖H1/2(Γℓ) = 0 (4.1)for ℓ = 1, . . . , n, and any su�iently smooth initial data elements hℓ

0, whih start theproedure.



18 R.S. CHAPKO AND B.T. JOHANSSONHere, H1/2(Γℓ) denotes the standard Sobolev trae spae on the immersed body ℓ, where
ℓ = 1, . . . , n.Note that it is possible also to obtain onvergene for the �ow in the hannel, i.e. toshow that u − uk tends to zero in the domain D in an appropriate norm.Proof. The above onvergene result for the iterative proedure in the ase of exat datafollows along the lines of the original ideas given for bounded domains in [6℄ and [7℄.Extensions to a semi-in�nite domain with one submerged objet was given in [4℄. For thesake of ompleteness, we brie�y outline the main steps in obtaining onvergene for theabove hannel setting situation and with multiple submerged bodies.We put the given boundary funtions on the immersed obstales into a vetor, forexample, with h = (h1, . . . , hn), we say that u is a solution to (2.1)�(2.2) with h and f1,if hℓ is the ℓ-th omponent of h, and similar for problem (2.3)�(2.4).We let U0 be the solution to (2.1)�(2.2), with a given (su�iently smooth) funtion
h = (h1, . . . , hn) and f1 = 0. Similarly, let U1 be the solution to (2.3)�(2.4) with f2 = 0and g =

(

U0|Γ1
, . . . , U0|Γn

). We de�ne the operator B by
Bh =

(

∂U1

∂ν
|Γ1

, . . . ,
∂U1

∂ν
|Γn

)

, (4.2)and it is lear that B is well-de�ned. In the similar way, let Ũ0 be the solution to (2.1)�(2.2) with h = 0, and let Ũ1 be the solution to (2.3)�(2.4) with g = (Ũ0|Γ1
, . . . , Ũ0|Γn

).With the notation
G(f1, f2) =

(

∂Ũ1

∂ν
|Γ1

, . . . ,
∂Ũ1

∂ν
|Γn

)

. (4.3)it follows that the Cauhy problem (1.1)-(1.2) is equivalent with �nding a solution (a �xedpoint) to equation
Bh + G(f1, f2) = h. (4.4)Thus, to investigate the onvergene of the iterative alternating proedure it is enough toinvestigate the properties of the operator B. We introdue the inner produt

(h, g) =

∫

D

∇u · ∇v dx, (4.5)where u solves (2.1)�(2.2) with h = (h1, . . . , hn) and f1 = 0, and similarly v solves (2.1)�(2.2) with hℓ = gℓ, where g = (g1, . . . , gn) and f1 = 0. Note that the strip domain D isa Poinar�e domain, i.e. the Poinar�e inequality holds therein, see further [5℄. Thus, it isstraightforward to hek that (·, ·) is a well-de�ned inner produt. We use ‖ · ‖ for theorresponding norm.Therefore, following [6℄, it an be shown, employing Green's formula, that B is self-adjoint, non-negative, non-expansive, and the number one is not an eigenvalue; thusonvergene follows; for further details see [4℄.In the ase of noisy data f δ
1 and f δ

2 , where δ > 0, and
‖G(f δ

1 , f δ
2 ) − G(f1, f2)‖ ≤ δ, (4.6)using the properties of B, the disrepany priniple an be employed for any given δ asa stopping rule for �xed point iterations for equation (4.4), see [11, Chapt. 3, Set. 3℄.Thus, if k = k(δ) is the smallest integer with

‖hδ
k+1 − hδ

k‖ ≤ bδ (4.7)
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δ
k(δ) onverges to the exat solution of (4.4) when δ → 0, i.e. theproposed alternating proedure is a regularizing method. In (4.7), the ℓ-th omponent of

hδ
k is

(hδ
k)ℓ =

∂u2k−1

∂ν
|Γℓ

,and these elements are obtained as desribed in (i)�(iii), where (f δ
1 , f δ

2 ) replaes the exatdata (f1, f2) in (2.2) and (2.4).5. Numerial examplesEx. 1. We onsider the hannel strip D0 with one irular immersed body (see Fig. 2)
Γ1 := {x1(t) = (0.5 cos t, 0.5 sin t + 1.5), t ∈ [0, 2π]}.The boundary funtion on the inlusion has the form:

g1(t) = cos(t), t ∈ [0, 2π].The given �ux on Γ0 is f2 = 0. Boundary values f1 are alulated as the trae of theorresponding potential on Γ0. To avoid the �inverse rime� these values are alulatedon a �ner mesh and we shall also add noise to the data.The results of the Cauhy data reonstrutions on the body Γ1 are presented in Fig. 3
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Fig. 2. Strip with a irular inlusion
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20 R.S. CHAPKO AND B.T. JOHANSSONand Fig. 4, where the funtion value and the normal derivative are shown both for exatand noisy data. We used the following disretization parameters M = 32 and M1 =
1000. In the ase of exat data, a very aurate reonstrution is obtained both of thefuntion and the normal derivative but the number of iterations needed is rather large.We then added 5% random pointwise errors to the values of f1, and, as expeted, thereonstrutions are less aurate and the normal derivative is a�eted most by the noisein the Cauhy data. The disrepany priniple, as disussed in the previous Setion, wasused to terminate the iterations.The orresponding L2 errors

ek := ‖u2k − g‖L2(Γ1)and
qk := ‖∂u2k

∂ν
− ∂u

∂ν
‖L2(Γ1)are re�eted in Fig. 5.
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 a) Exat data b) 5% noiseFig. 5. L2-errors ek and qk for the irular inlusion in Ex. 1Ex. 2. Next, we onsider the ase of the hannel strip D0 with one immersed kite shapedobjet (see Fig. 6) desribed by

Γ1 := {x1(t) = (0.6 cos t + 0.39 cos2t − 0.39 + 2.11, 0.8 sin t + 1.5), t ∈ [0, 2π]}.
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Fig. 6. Strip with the kite inlusionAll other input data and method parameters are as in the previous example.Again, in the ase of exat data, even with this more ompliated shape of theimmersed body, an aurate reonstrution of the funtion is obtained, see Fig. 7a).However, the reonstrution of the normal derivative is not that aurate, see Fig. 8a).Noise in the data in�uene as in the previous example, see Fig. 7b) and Fig 8b). Theorresponding L2 errors ek and qk are given in Fig. 9.
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Fig. 10. Strip with two inlusionsEx. 3. We onsider the hannel strip with two immersed bodies: one the irular (Γ1)and one kite shaped Γ2 (see Fig. 10)
Γ1 := {x1(t) = (0.5 cos t − 2.5, 0.5 sin t + 1.5), t ∈ [0, 2π]}and
Γ2 := {x2(t) = (0.5 cos t + 2.5, 0.5 sin t + 1.5), t ∈ [0, 2π]}.The boundary funtions on the inlusions have the form:

g1(t) = cos(t), g2(t) = sin(t), t ∈ [0, 2π].The given �ux on Γ0 is
f2 = 0.The boundary value f1 are alulated as the trae of the orresponding potential on Γ0.Again, to avoid the �inverse rime�, these values are alulated on a �ner mesh and wealso add noise to the data.The results of the reonstrution of the Cauhy data on Γ1 and Γ2 in the ase of exatdata are presented in Fig. 11�13, and in the ase of noisy data in Fig. 14�16.
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 a) irle shaped boundary Γ1 b) kite shaped boundary Γ2Fig. 13. L2-errors ek and qk for exat data in Ex. 3For exat data, both the funtion value and its normal derivative are auratelyreonstruted, see Fig. 11�12. Note that the reonstrutions are slightly less aurateon the kite shaped obstale. The L2 errors ek and qk for exat data are given in Fig. 13.For the ase of 5% random pointwise errors added to the values of f1, the reonstruti-ons of the funtion and its normal derivative on the immersed bodies are given in



24 R.S. CHAPKO AND B.T. JOHANSSONFig. 14�15. The disrepany priniple was used to stop the iterations. Again, less auratereonstrutions are obtained on the kite shaped obstale. The L2 errors ek and qk for noisydata are given in Fig. 16.
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