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ON THE NUMERICAL SOLUTION OF A MIXED INITIAL
BOUNDARY VALUE PROBLEM FOR THE HEAT EQUATION IN A

DOUBLE-CONNECTED PLANAR DOMAIN
UDC 519.6

R.S.CHAPKO AND V.G.VAVRYCHUK

ABSTRACT. We consider an initial boundary value problem for parabolic equati-
on in the planar double-connected domain with the Dirichlet and the Neumann
boundary value conditions. This mixed problem is reduced by Rothe’s method to
the sequence of elliptic boundary value problems with first and second orders of the
time approximation. Then the indirect boundary integral equation method is used.
The boundary layer potentials are constructed using the fundamental solutions of
the sequence of the elliptic equations. The obtained integral equations of the first ki-
nd contain the logarithmic and hypersingular kernels. They are solved by a discrete
collocation method based on trigonometrical quadratures. The presented numeri-
cal experiments confirm a posterior error estimates and show the feasibility of the
proposed method.

1. Introduction

The time depended problems that are modeled by initial boundary value problems
for parabolic or hyperbolic partial differential equations have a large number of appli-
cations in engineering and various applied sciences like elastodynamics, fluid dynamics or
acoustics. On the other hand the initial boundary value problem can arise as some partial
sub-problem during numerical solution of more complicate applied problems, for example
inverse problems. In this contest we refer to [6] for the inverse non-linear parabolic problem
related to boundary reconstruction and to [12] for the inverse linear parabolic problem
for the reconstruction of Cauchy data on the boundary. In the latter reference the iterati-
ve method is proposed which requires the solution of the mixed initial boundary value
problem for parabolic equation on each step. Therefore to realize this approach numeri-
cally one needs the solver for the corresponding direct time-dependent problem. There
are a large number of methods for the numerical solution for this kind of problems. We
want to use the integral equations approach and the reason for this is the advantages of
this method like decreasing of the dimension of the problem, reducing the problem in an
unbounded domain to an integral equation on the boundary etc.

One can distinguish three approaches in the application of boundary integral methods
on parabolic and hyperbolic initial boundary value problems: boundary-time integral
equations, integral transform methods, and time-stepping methods [2,8]. Boundary-time
integral equations method use the fundamental solution of the parabolic or hyperbolic
partial differential equations. By the direct or indirect approach the integral equations of
the first or the second kind, which are of Volterra type in the time variable and Fredholm
type in the space variables, are obtained. Of course, there is extensive literature available
on this direct application of integral equation techniques for the full time dependent
problems (see [1,10,13,14] and the references therein).

In the second group of methods an integral transformation like the Laplace, Fourier
or Laguerre transformation is used to achieve the reduction of a time dependent problem

T Key words. Heat equation, mixed problem, Rothe’s method, boundary integral equation method,
trigonometrical quadrature method.
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ON THE NUMERICAL SOLUTION OF A MIXED PROBLEM 27

to stationary boundary value problems (see [1,5] and the references therein), which can
be numerically solved by boundary integral equation techniques.

Time-stepping methods start from a time discretization of the original initial boundary
value problem via an implicit scheme and then they use boundary integral equations to
solve the resulting elliptic problems in each time step. A fundamental solution, which is
also a discrete convolution operator, can be given explicitly for simple time discretization
schemes like the backward Euler method (“Rothe’s method” [4]). For a whole class of
higher order one step or multistep methods, the fundamental solution can be constructed
using Laplace transformation and the operational quadrature method [14]. In this paper
we use the combination of Rothe’s method with integral equations to a mixed initial
boundary value problem for the heat equation in a double-connected domain D and
investigate the variants of first and second orders of the time approximation.

We consider the mixed initial boundary value problem for the heat equation

ou

i Au in D x (0,T). (1.1)

T2

Fig. 1. Double-connected domain D

We assume that the boundaries I'y, I's are smooth enough and 7" > 0 is some constant.
We are looking for a classical solution of (1.1) which is twice continuously differentiable
with respect to the space variable and continuously differentiable with respect to the time
variable on D x (0,T) and which satisfies the homogeneous initial condition

u(z,0)=0, ze€D (1.2)
and the boundary conditions
ou
u = fl on Fl X (O,T), 5 = fQ on FQ X (O,T), (13)

where v is the outward unit normal vector to the boundary T's, fi; and f; are given
functions which satisfy compatibility conditions.

fl(I,O):O, rz el and fQ(I,O) =0, xels.

The plan of this paper is as follows. In Section 2 we describe the basic features of the
Rothe method and the boundary integral equation method. The first and second order
of time approximation are proposed. The following Section 3 briefly describes how well
established numerical methods can be applied to solve these boundary integral equations.
Also we proceed here with some convergence and error analysis, and in Section 4 we
demonstrate the feasibility of our method through some numerical examples.
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2. Rothe’s methos and boundary integrals approach

Rothe’s method combined with integral equations is described in details in [4]. This
approach consists in replacing some initial boundary value problem with a sequence of
stationary boundary value problems by semi-discretization in the time. The time deri-
vative in the heat equation (1.1) is discretized by a finite difference approximation. Thus,
on the equidistant mesh {¢, = (n + 1)h, n = —=1,....N -1, h = T/N, N € IN} we
approximate the solution u of (1.1) by the sequence u,, n =0,..., N — 1 that solves the

equations
1
Ay = YUy — VUp_1, u_1 =0, ~°= 7 (2.1)
To obtain the second order of the approximation in the time we assume that u is two
times continuosly differentiable with respect to time variable. So we can use the following

differences

%(:v,tn) _ (@, tn) —hu(:v,tn—l) n guﬁ(ﬂc,tn —0h), 6, € [0,1],
ou w(x,tn) —u(z, t,_ h ~ ~
E(Iatnfl) = ( ) 3 ( 1 - Eutt(zatn —0nh), 0, €]0,1].

After substitution of these relationships in (1.1) and adding the obtained equations we

get
2 2
2t = 21 = Aty — Aty + O(h?) =0

and as result we receive the sequence

Aun =Y Bumitim, fo =2 ﬁi=<—1)i%,z’=1,...,N—1. (2:2)

h,
m=0
Now we summarize both approaches in the following sequence of mixed stationary

boundary value problems related with the problem (1.1) (1.3)

n—1
Au, — 72un = Z Brn—mUm in D, (23)
m=0
Ouy,
Uy = fé on Iy, 8L = fﬁ on I'y, (2.4)
1%

where n = 0,...,N — 1, f¢ = fu(-,t,), £ = 1,2, 4> = By and the form of the known
constants 3; depends on the used semi-discretization approach (2.1) or (2.2).
We proceed by noting the following results on uniqueness and stability.

Theorem 2.1 The sequence (2.3) (2.4) has at most one solution.

Proof. By the Green’s theorem any solution v € C?(D) N CY(D) of Av —~%v =0in D
which has vanishing boundary values v = 0 on I'; and dv/0v = 0 on 'y must vanish
identically in D. Then the statement of the theorem follows by induction. O

Now we introduce the fundamental solution to the sequence of elliptic differential
equations (2.3).

Definition 2.2 The functions sequence (®,), n =0,...,N — 1 is called a fundamental
sequence for the equations (2.3) if

Amq)n(xay) - Z ﬁn—mq)m(‘T?y) = 5(5[: - y)
m=0
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We consider the polynomials, which will be used for the representation of ®,,

(%] [25]
= tnam™™, wa(r) = D apampr®™
m=0 m=0
forn=0,1,...,N — 1 (wp = 0) with an,0 =1 and the remaining coefficients recursively
defined through
1
An.n = _2,)/—” 61an71,n71;
1 k+1]° —
nk==—>4|—=— n - n—mm,k— , k=n-1,...,1

The coefficients a,,  are chosen such that v, wy, solve the system of ordinary differential
equations

UZ(T) + %’U ( ) - 27w Z ﬁn mvm

1 1 —
_27’0:1(T) + wx (T) - ;w; (T) + T_2wn (T) - n; 6n7mwm (T)
Analogously to [5] we can find the explicit representation of the fundamental solutions.

Theorem 2.3 The functions

P (2,y) = Ko(Y|z = ylon(lz — y[) + Ki(v]z — ywa(lz - y)), (2.5)

n=0,...,N—1 are the fundamental solutions of (2.3). Here Ky and K; are the modified
Hankel functions of order zero and one, respectively.

We note here, that in [9] it was found some different representation of the fundamental
solutions ®,,, which has the recurrence nature.

For the sequence of equations (2.3) we introduce both the single- and double layer potenti-
als:

1 n
= - m(Y)Pr—m(x,y)d , D 2.6
23 [ @) ds), e (26)
and
1 / o)
= — gm(y) =—— Pp_m(z,y)ds(y) =z € D, 2.7
22 [ 0 gy B ) (27)
with continuous densities ¢, for n = 0,...,N — 1 and ¢ = 1,2. Hence, by the classical

jump- and regularity properties of the logarithmic potentials (see [13]) we reformulate the
boundary value problem (2.3)-(2.4) as a sequence of boundary integral equations.

Theorem 2.4 The combination of single- and double layer potentials

m=0 r

G (Y)Pri—m (, y)ds(y) + % > / %%((;Ey)ddy), reD
1 m=0

(2.8)
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solves the sequence of boundary value problems (2.3) (2.4) provided the densities solve
the sequence of integral equations of the first kind

: /F oA Bo(a)dsto) + [ 2 e Tgn i dsy) = Gh(w), T,

1 1, . 0%o(z,y) 1 0 5, 0Po(z,y) e
p /Fl <Pn(y);y7($)d5(y) + - /r2 <Pn(y)a?/7(y)d5(y) =G(), v € F(22 )

forn=20,...,N — 1 with right hand sides

Gp(x) = f —% i / o (Y) P (2, y)ds (y) — = Z /F M((fy)ds(y)

and

In order to simplify the second integral equation we apply the following relationship
between the normal derivate of double-layer potential (2.6) and the sigle-layer potential
(2.7):

9 0Py —m(2,y) , "9 94m
mZ::o ov(x) /p2 4m (y) ov(y) mZ::O 90(z) Jr, 00 (1) Pn—m(z,y)ds(y)
- Z 671 m— kq)k I y) < ( ) V(y)> dS(y), RS FQa
r
" k:O (2.10)

where 6 is the unit tangent vector to I'y and by (-,-) we denote the scalar product in IR?.
Assume that our boundaries have the following parametric representations:

= {ze(s) = (xe1(8), xe2(s)), s € [0,27]}, £=1,2, (2.11)

where z; : [0,27) — IR? are injective and three times differentiable. Then after calculati-
on with the use of (2.10) and extraction of hypersingularity the following parametrized
systems are obtained

27 2
% i (0)Hy' (s, 0)do + —/ (0)Hg?(s,0)do = G (s),
27
o [ itomg oo - [ oo T 6.0 do = G20,

(2.12)
where s € (0,27, p;.(s) == @k (@1(5)), p2(s) == >0 _sp2(z2(s)), n=0,...,N — 1 and

GL(s) == f( Z/ OVHIL, (5,0) + 02 (0)H!2, (s,0)] do
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and

n—1 2
GH o) = 126 = 52 3 [ [ (@) T2 (5.0) + V(O (5.0)]
m=0

where f,(s) = fu(z1(s)), f2(s) = fi(z2(5))|25(5)], ¥7(s) = @} (w2(s)). Here we have the
kernels with logarithmic singularity

H!M(s,0) = 2|2} (0)|®n(21(5),71(0)), n=0,...,N —1,

Ki(ylra2(s,0)|)

H = 2
0 (870) B |T22(S,U)|

[2h2(8, 0') — hl (S, U)]

1
+292 Ko (y|raz(s, 0)|) [ha(s, 0) — ha(s,0)] = ===
2 sin 5

and
H2(s,0) = 2Ko(v|ra2(s, o)) [(0h(Ir2a(s, 0)]) + 7)1 (s, 0) + vi (Jraa(s, o)) ha(s, 0)]
+2K1(y|ra2(s, 0)|) [w), ([r22(s, 0) )1 (s, 0) + wi (|raa(s, 0)| ) ha(s, 0)]
—2h1(5,o')Zﬂn,kq)k(-IQ(S),fQ(U)),

k=0

form=1,..., N — 1. In the computation of the kernels we use the following formulas for
the derivatives of the modified Hankel functions

Ky(2) = —Kae),  Ki(2) = ~Ko() — K ().

The regular kernels have the form

Ki(ylriz(s,0)|)
Ir12(s, o)

R s 3.0) s o)) ).

Hy?(s,0) = =2(r1a(s,0), v(@2(0))) [ (0) { Ko(vlr12(s, o) )vp ([r12(s, o))

Hy?(s,0) = 2y (r12(s, ), v(@2(0))) |25(0)],

H3'(s,0) := -2y

+K1(ylr12(s, o) wy (|r12(s, o))}

and

H'(s,0) = 2 (ra1(s,0), v(2(s))) |21 (0) { Ko (1721 (s, 0) o (21 (5, )]

+EK1(7|ra1(s,0)|) wi(|r21(s’0)|)_|7”21(7750)| ;

Here we introduced the following functions and notations
rij(s,0) = wi(s) — xj(0), 4,5 =12,

1(5,0) = () 400 o) = LN U0 )
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[n 1]
—y Z 2kt 17 +22kanw -2

[%] ["Tl]
wy (r) = —VZan,sz%_l +2 Z kan 2k 17
k=1 k=1
[n 1 [%]
=7 Z Qn, 2k7” — 4y Z kay 2k+17“ (k — k2)an72k,2r2k,
k=2
[n21] (5] [252]
wh(r) =~° an k1T — 272 (2k — D)ap2xr® ' —4 Z (k — k*)an 2par? "
k=0 k=1 k=2

We transform the kernels with logarithmic singularity to the form

4 —
HﬁZ(S,O') = Hﬁ%(S,U) 1n_Sin2STU +H£€.(S70)7 = 1,2
€

where
Hpyo(s,0) = [=To(v|r11 (s, ) )on(|ria (s, 0)]) + Li(v[ria (s, o) Jwn ([r11 (s, 0) )] |21 ()]

forn=0,...,N —1,

HE(s.0) = VW [2ha (5, 0)— i (5,0)] — 1o (1lraa(s, o)) [ (5. )i (s, 0]

H5(s,0) = —Io(vlraa(s, 0)]) [ (Iraz(s, 0)|)ha (s, 0)+vi ([ra2 (s, o) ha(s, 0)+7>ha(s, o)]

+1 (y|raz(s, o)) [wy(Ir2a (s, o)) ha (s, 0) + wh (|raz(s, o)) ha(s, o)]

+hi(s,0) Y B [To(vIr2z(s, o) Yo (Ir22 (s, 0)]) = L (v|raz(s, o) wi(|r22(s, 0)])]
k=0

forn=1,...,N —1 and

S§—0

4
HLS (5,0) = HY (5,0) — Hio(s,0) In - sin?

with diagonal terms

2
HE(s,5) = Tlab(s)P HE3(5.5) = (=% + 7an1 — 2a2)|5(5)/% + (s |25n N

~ 2
Hp1(s,8) = (—Ci(s) — 2Cp + ;an,l)lx’l(S)l,

" 1" / " 2
(5(s), 25'(s)) + (25 (s), 3(s)) _ (25(s), 25 (s))

1 1z
3 [as(s)f? 2 |ws(s)? |25 (s)[*

72
+ 5 lwn(s))” (205 + Ca(s) — 1),

Hg%(svs) =-—=+

1
6
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and

- 2
H33(s, 5) = (C2(5)+2Cp) (Yan,1 — 2an2 — 72)I$’2(8)I2+;(72an,1 = 3y 2+2an,3)|a(s)|?

- 62(5) ag.1
2 s
P 3 (4D - ).

~ 20,./ 2
Here Cy(s) = lnw and Cf is the Euler constant. Also we assume that a,; = 0
for n < k.
To rewrite the sequence (2.12) in the operator form we introduce integral operators

o
do,

(S5 1) (s) == S /277 w(o)HY (s,0)In 1 sin? 2=
m 27 Jo mo® e

Uda

(Su)(s) := %/0 7Tu(a) lngsin2 o

and

27
(B ) (s) = = / (o) HE (5, 0)do.

"o

According to the smooth properties of the kernels we have that the operators A are
compact in the corresponding Holder spaces. Thus the systems (2.12) has the following
equivalent operator representation

n—1
U+ Bo)fin = fo— Y Buomthm, n=0,...,N—1, (2.13)
m=0

where we introduced the vectors fi,, := (,u,ll,ufl)T, U = (,u,ll,z/JfL)T, fo=(fL AT and
operator matrices

u (S 0N g ._ Se+AL—-S B B .- SE o+ AL B2
—\o T )0 B! Sg+A3 )T Bh  Sh 4+ A2

form=1,...,N — 1.

Theorem 2.5 For any sequences f} in C1:?[0, 27] and f2 in C%[0, 27] the system (2.12)
possesses a unique solution pl in C%[0, 2] and p2 in C1[0, 27].

Proof. Since the operators S : C%<[0,27] — C*[0,27] and T : C1*[0, 27r] — C%%[0, 27]
are bounded and have bounded inverses [13], we can reduce the first equation in (2.13)
to the form (I 4+ Do)fioc = §o, where Dy = {DE}, D§* . C%*[0,2n] — C%20,27],
Dt che[0,27] — CL0,27], k = 1,2, £ = 1,2 are compact. Then from the theorem
2.1 and the Riesz-Schauder theory [13] lead us to the existence of the solution fiy €
C%[0,27] x C*[0,27]. The statement of the theorem follows by induction. ]
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3. Numerical solution of integral equations

For integral equations of the form (2.12) we use a discrete collocation method based on
trigonometric interpolation with equidistant grid points [4]. For this method, we choose
M € IN and an equidistant mesh by setting

km
sk:zﬁ, k=0,...,2M — 1,

and use the following quadrature rules

2M—1

1 [ 4  ,s8—0
2/, g(o)In <E sin® ~ 5 > do ~ é Ryj—k) 9(sk), (3.1)
1 2 o — 5 2n—1
o g’ (o) cot 5 Ldo ~ Z Tk 9(5k), (3.2)
k=0
1 2 1 2M—1
Py g(o)do =~ 0 Z g(sk) (3.3)
0 k=0
with the weights
1% 1 mgr (=1)
R = -—— e p—
Vi mz::l m M 2M?
BY; sin~2 2]—M , 7 odd,
T, =< 0, jeven, j#0,
M .
_7 ) J= Oa

These quadratures are obtained by replacing the integrand g by its trigonometric
interpolation polynomial of degree M with respect to the grid points sg, k =0,...,2M —1.

We use the quadrature rules (3.1) (3.3) to approximate the three types of integrals in
(2.12) and collocate the approximated equation at the nodal points to obtain the linear
system

2M—1

1 1

> |:M711k {Rijéé(Sja sk) + mHéll(sju Sk)} + Mi,ka32(5ja Sk)] =G

k=0
2M—1 /1’1 1

n,k
> [2M HE (s, 55)+ i, 1 {ﬂj—k|+le—k|H§§($j,Sk) + 537 Hgf(sj,sk)} =G7
k=0
(3.4)

forj=0,...,2M —1,n=0,..., N — 1, which we have to solve for the nodal values ufw-
of the approximating trigonometric polynomial ,uf%M. Of course, the approximate values
wa» for the right hand side are also obtained via using (3.1) and (3.3). To write the linear
systems in operator form we consider the interpolation operators Py : C[0,27] — Ty,
where 7); is the space of trigonometrical polynomials of the degrees M. Then we can
rewrite the system (3.4) in the equivalent operator form

n—1

(U+PMBQ7M)/1”7M:PM'];"— ZPMBn—m,M"Lm,Mu n=0,...,N —1. (35)

m=0
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The convergence and error analysis for this quadrature method can be established on the
basis of the collectively compact operators theory (see [4]) or on the basis of some estimate
of trigonometric interpolation in Holder spaces (see for example [7]). In the latter case
this analysis is based on the estimate

In M
| Prrit = pllm,e < € V—mih—a el e, (3.6)

for the trigonometric interpolation which is valid for 0 < m < /¢, 0 < a < # < 1, and
some constant ¢ depending only on m, ¢, o and .

Theorem 3.1 For I'y, [y € C*2 ¢ > 1, f} € C%P|0,27], f2 € C*~1P[0,2n] and for
sufficiently large M the system of approximate equations (3.5) for everyn =0,...,N —1
has a unique solution fin apr € Tar. For the exact solution fi, to (2.13) we have the error

estimates I M
~ ~ n ~
fin = fin,mllm,a < OHW”UnHEﬁ (3.7)

for0<m </{,0< a< <1 and some constants C}, depending only on «, 3, m, .
Proof. Let X = C™~159[0,27] x C™*[0,27] and Y = C™2[0, 27r] x C™~19(0, 27]. By the

smoothness properties of the kernels in the operators B* and from the estimate (3.6) it
can be shown that

) ) In M
| Pr B i — B pil| o <

< ¢ yrmmrp=a I#lles,  kii=1,2.

Analogous estimates hold for other operators in the matrix B, (for the case of the
operators with logarithmic singularity see [15]). This implies, in particular, for £ = m
the norm convergence

| PriBoar — Bollx—y — 0, M — occ.

Therefore, from the Neumann series, we can conclude that, for sufficiently large n; and
ng, the operators U + Py, ny By, : X — Y are invertible and the inverse operators are
uniformly bounded. Then the error estimate (3.7) for n = 0 follows from the identity

fionr — fio = (U + ParBoat) ™ {(Parfo — fo) + (Bo — PauBo,ar)fio}-

The statement of the theorem follows by induction. O

4. Numerical experiments
Example 1. To test our method we will use the double connected domain with the

boundaries (see Fig. 2)
I'y = {(0.06 cos(t),0.1 + 0.12sin(t) — 0.1sin*(t)), s € [0, 2]},
'y = {(0.2 cos(t),0.2 4+ 0.2 cos(2t) + 0.3 sin(t)), s € [0, 27]}.

Let us choose the boundary conditions of elliptic problems sequence as
fé(xat):‘l)n(%ﬂ), .’IIEFl,

0
ov(x)
where @, is the fundamental solution and g € D. It is obvious that the exact solution of
this sequence will be

un () = Oz, 7).
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Fig. 2. The domain D for numerical experiments.

Tabl. 1. Numerical results for the first order approximation.

n=0 n=>5 n =10
M =16 | 1.505-107° 3.858 .10~ 8.211-10~*
M =32 5521-1078 1.199 - 106 2.456 - 1076
M =64 | 5549-10" | 4.768-10712 | 1.074-10~11

Let us choose § = (0,0.8) and the test point 2 = (0, —0.2). In the Table 1 we show
absolute errors of first order approximation for different amount of points in quadratures.
The absolute errors of the elliptic problems sequence in the case of second order approxi-
mation of the time derivate are given in the Table 2. These results empirically proof
correctness of the developed methods and their consistency with the obtained error esti-
mation.

Tabl. 2. Numerical results for the second order approximation.

n=20 n=>5 n =10
M =16 | 1.303-107% | 3.392-10"* | 8.011-10~*
M=32| 6723-107% | 1.072-10°% | 2.403-106
M =64 |3.310-10""* | 4.126-10"'2 | 1.048-10~ 1!

Example 2. For testing the nonstationary problem we define a boundary function as
the restriction of the fundamental solution

1 —|z — g
u(z,t) = e exp (74&

Table 3 gives absolute errors of the solution of nonstationary problem in different moments
of time (the parameters x and ¢ are as in the previous example). There we can observe
linear and quadratic convergence with respect to the time stepsize h in the case of first-
and second-order approximation respectively. We have also solved mixed initial boundary

), je D, t>0.
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value problem with fi(z,t) = t(1 —t) and fa(z,t) = to? — t(1 — t)x3. The numerical
solution in different time moments are illustrated in the figures below.

Tabl. 3. Numerical results of the nonstationary problem.

O(h) O(h?)

t |M| N=10 N =20 N =40 N =10 N =20 N =40
0.2|16(3.6363 - 103 [1.8222 - 103 |7.8118 - 104 |4.0537 - 10~3 [1.4497 - 10~%|6.6200 - 10—*
32(3.7517-1073[1.9317 - 103 [8.8993 - 10~ |3.9243 - 103 | 2.4923 - 10~%|4.7892 - 10~°
64(3.7521 - 10~3[1.9320 - 10—3{8.9029 - 10—%(3.9239 - 10—3 [2.4958 - 10~%|4.7533 - 105
0.4|16(7.3118 - 1075 [1.1243 - 104 [1.5682 - 10~4|1.1377 - 10~3 |2.0642 - 10—%|8.4101 - 10— 2
32(2.4404 -10~4(5.9221 - 102 [1.8372 - 1075 |9.6896 - 10~4 [4.2692 - 105 |3.3700 - 10—
64(2.4455 - 10~%[5.9736 - 1075 |1.8899 - 10—5(9.6846 - 10— [4.2176 - 10~°{2.8315 - 10~
0.616(2.4393 - 10~ [2.1034 - 10=4|1.9306 - 10—%|3.4879 - 10—*|1.0880 - 10—* —
32(7.9836 - 10~5(4.3238 - 1075{2.2137 - 10~5(1.8731 - 10— [6.0893 - 10—6{1.5064 - 10—
64(7.9360 - 102 [4.2751 - 10 [2.1639 - 10~° |1.8684 - 10~ |5.6016 - 106 |7.6298 - 10~ 7
0.8/16(2.1890 - 10~ [1.8603 - 10=4|1.7209 - 10=%4|8.9494 - 10~5|1.6334 - 10—* —
32(7.0743 -1075(3.4614 - 10~5|1.7267 - 10~5(5.6398 - 10—°[2.1477 - 10-6{1.1390 - 106
64(7.0319 - 1077 (3.4180 - 1077 [1.6822 - 10~° |5.6815 - 105 [2.5832 - 106 |4.4396 - 10~ 7
1.0{16(1.8085 - 10~%|1.5914 - 10—+ {1.5038 - 10~%{1.5191 - 10—5[1.0136 - 10—3
32(4.8266 - 107°(2.3492 - 102 [1.1746 - 10~°|1.1533 - 104 [2.7563 - 106 |1.2450 - 10—
64[4.7890 - 10°(2.3106 - 10~ [1.1351 - 10> |1.1570 - 104 [3.1433 - 106 |2.5307 - 10— 7
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