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t. In the �nite-dimensional real Eu
lidean spa
e the nonlinear generalizedspe
tral problem is put in a

ordan
e to the variation problem on the minimum ofsome fun
tional. The equivalen
e of spe
tral and variation problems is proved. Onthe base of gradient pro
edure the numeri
al algorithm of �nding of its eigenvaluesand eigenve
tors is o�ered. Under 
ertain 
onditions over the operators the lo
al
onvergen
e of method is proved.1. Introdu
tionThe generalized eigenvalue problems T (λ)x = 0 with the operator-fun
tion T (λ) :
Rm → X(H) (X(H) is a set of the linear bounded operators in the �nite-dimensionalreal Hilbert spa
e), whi
h linearly or nonlinearly depends on a several spe
tral parameters
λ1, λ2, ... , λm arise in many �elds of analysis and mathemati
al physi
s. In parti
ular,su
h problems play important role when one investigates the stableness of me
hani
aland ele
trodynami
 systems, resear
hes the bran
hing and the bifur
ation of solutions ofthe nonlinear integral equations of Hammerstein type. So, when it is ne
essary to �ndthe bran
hing points of nonlinear integral equations, whi
h we got as a result of solvingof the synthesis problem [6℄, two-parameter eigenvalue problems with nonlinear spe
tralparameters whi
h are in
luded analyti
ally in the kernel of a linear operator, are arisen.These problems are a not adequately explored both from the theoreti
al point of view,and from the point of view of the 
onstru
tion of numeri
al methods of their solution.This, to a 
onsiderable degree explains the interest both to di�erent aspe
ts of spe
traltheory of nonlinear multiparameter eigenvalue problems (see, for example, [1℄-[5℄) and tothe numeral methods of the solution of su
h problems (see, for example, [7℄-[10℄).This paper is generalization of results of the work [11℄ in the 
ase of the nonlineareigenvalue problems. The feature of nonlinearity 
onsists in the fa
t that this problem
an generally have not the solutions or, opposite, it have them as a 
ontinuum set.On the given time there are many opened questions related to this problem, forexample, su
h as the existen
e of solutions and their quantity, the development of numeralmethods for solving of su
h spe
tral problems for the algebrai
, di�erential and integralequations.Generally speaking, the nonlinear o

uren
e of spe
tral parameters in equation
T (λ)x = 0 leads to the 
ontinuum solutions of the problem. In this 
ase it 
an be redu
edto the sequential de
ision of one-parameter problems pres
ribing de�nite value to other
n − 1 parameters. So, in parti
ular, for the two-parameter problem the 
al
ulation of ei-genpairs (λ1, λ2) and 
orresponding eigenve
tors 
an be redu
ed to the sequential solutionof one-parameter nonlinear problems, when one of parameters is set, similarly as it is 
arri-ed out for a linear two-parameter eigenvalue problem in the paper [12℄. On this way weobtain the dependen
e, for example,λ1(λ2), i.e. the proper 
urve, that 
orresponds to theeigenve
tor.

†Key words. Multiparameter eigenvalue problem, numeri
al algorithm, gradient method.70



VARIATION-GRADIENT METHOD 71If the operator-fun
tion T (λ) is presented by a blo
k-diagonal matrix obtained as aresult of dis
retization of linked systems of the di�erential equations, then su
h problem
an also have the �nite or the enumerable number of solutions. In this 
ase the numeri-
al 
omputing of the equation T (λ)x = 0 by the method when for n − 1 parameterssome de�nite values are pres
ribed, and one-parameter eigenvalue problem are solved, isnot e�e
tive. Instead of this, it is expediently to do iterations regarding to all variablessimultaneously assuming (λ1, λ2, ... , λm) as a ve
tor.In this paper exa
tly su
h 
lass of problems, for whi
h the multiparameter eigenvalueproblem is substituted by an equivalent variational problem of minimization of somequadrati
 fun
tional, is 
onsidered. In the basis of numeri
al algorithm of minimizationof fun
tional the variant of gradient pro
edure lies as the method of the numeri
al �ndingof eigenve
tor. The set of eigenvalues of the problem is determined from the system ofnonlinear algebrai
 equations, 
onstru
ting by the found approximation to the eigenve
tor.Let H = Rn be the real Eu
lidean spa
e with the s
alar produ
t (·, ·) and the norm
|| · || and let T (λ) : Rm → X(H) be the matrix with the elements nonlinearly dependingon λ1, λ2, ... , λm. Assume that the matrix T (λ) is twi
e di�erentiable by Fre
het, i.e.for any λk ∈ R, k = 1, 2, ... , m, there are the partial derivatives ∂T (λ)

∂λk
, k = 1, 2, ... , m,and ∂2T (λ)

∂λk∂λl
, k, l = 1, 2, ... , m.Nonlinear multiparameter eigenvalue problems 
onsist in �nding of su
h set of spe
tralparameters λ∗ = {λ∗

1, ... , λ∗
m}, for whi
h the nontrivial solution x 6= 0 of equation

T (λ)x = 0 (1.1)exists. We will name su
h set of spe
tral parameters λ∗ = {λ∗
1, ... , λ∗

m} by generalizedeigenvalue or eigen set, and the 
orresponding ve
tor x ∈ H we will name the generalizedeigenve
tor of the problem (1.1).2. Eigenve
tors as the points of minimumWe 
onsider now the problem of �nding of su
h set of parameters
λ(x) = {λ1(x), ... , λm(x) } and su
h ve
tors x on whi
h fun
tional

F (x) =
1

2
‖T (λ(x))x ‖

2
, ∀x ∈ H\{0} (2.1)rea
hes its minimum value, i.e.

F (x) → min, x ∈ U ⊂ H = En, (2.2)where U is a some 
onvex set in En.A points set of minimum of F (x) on U we will denote as
U∗ = {x : x ∈ U, F (x) = 0}.We will prove the equivalen
e of the problems (1.1) and (2.2).Consider the in
rement of fun
tional F (x + h) − F (x) for arbitrary x, x + h ∈ Uwhere U is some 
onvex set in H . After simple transformations we obtain that

F (x + h) − F (x) = ( T (λ)x , [ T (λ)h + dT (λ, h)x ]) +

+
1

2
{(T (λ)h, T (λ)h ) + 2(T (λ)h, dT (λ, h)x) + (dT (λ, h)x, dT (λ, h)x )+

+ 2 (T (λ)x, dT (λ, h)h ) + (T (λ)x, d2T (λ, h)x)
}

+ o(‖h‖2), (2.3)



72 V.V.KHLOBYSTOV AND B.M.PODLEVSKYIwhere
dT (λ, h) =

∂T (λ)

∂λ1
dλ1(x, h) +

∂T (λ)

∂λ2
dλ2(x, h) + ... +

∂T (λ)

∂λm

dλm(x, h). (2.4)Sin
e the expression for the se
ond di�erential d2T (λ, h) is bulky and it will not be usedbelow, it is not pointed here. Consequently, the �rst di�erential of F (x) will be writtenas
dF (x, h) = ( T (λ)x , [ T (λ)h + dT (λ, h)x ]) =

= (T (λ)x , T (λ)h ) + (T (λ)x , dT (λ, h)x ). (2.5)Taking into a

ount (2.4), the se
ond 
omponent in (2.5) is present as
(T (λ)x , dT (λ, h)x ) =

= (T (λ)x,
m

∑

i=1

dλi(x, h)
∂T (λ)

∂λi

x) = (T (λ)x,
m

∑

i=1

dλi(x, h)Bix),where Bi = ∂T (λ)
∂λi

, i = 1, 2, ... , m, and we will 
onsider it as the system of the nonlinearalgebrai
 equations
fi(λ) ≡ (T (λ)x, Bi(λ)x) = 0, i = 1, 2, ... , m (2.6)for determination λ(x) = {λ1(x), λ2(x), ... , λm(x)} for any �xed value of the ve
tor x.It follows that

dF (x, h) = (T (λ)x , T (λ)h ).Therefore, for the gradient of fun
tional (2.1) we get
gradF (x) ≡ ∇F (x) = T ∗(λ)T (λ)x.Thus,

(∇F (x), x) = 2F (x),so, su
h assertion is satis�ed.Lemma 2.1 Let λ(x) = {λ1(x), ... , λm(x) } be the solution of the system of nonlinearequations (2.6). Then every eigenve
tor of problem (1.1) is the stationary point of fun
ti-onal (2.1) and 
onversely, every stationary point of fun
tional (2.1) is the eigenve
tor ofproblem (1.1).Lemma 2.2 The fun
tional (2.1) is a 
onvex on a stationary set.Proof. In a

ordan
e with de�nition (see, for example, [13, p.88℄) from the formula(2.3) for the se
ond di�erential of fun
tional (2.1) we have
d2F (x, h) ≡ (F ′′(x)h, h) = ‖ T (λ)h + dT (x, h)x‖

2
+

+(T (λ)x, dT (λ, h)h) + (T (λ)x, d2T (λ, h)x), (2.7)where F ′′(x) is a matrix of se
ond derivatives. Sin
e on the set of the stationary points
T (λ)x = 0 then from (2.7) it follows

d2F (x, h) ≡ (F ′′(x)h, h) = ‖ T (λ)h + dT (x, h)x‖
2
≥ 0, (2.8)i.e. the fun
tional F (x) is a 
onvex one [13, p.173℄. Lemma is proved.�Now on the basis of the lemma 2.1 and lemma 2.2 su
h assertion is 
on�rmed.



VARIATION-GRADIENT METHOD 73Theorem 2.3 Every eigenve
tor of problem (1.1) is the point of minimum of fun
tional(2.1) and 
onversely, every point of minimum of fun
tional (2.1) is the eigenve
tor ofproblem (1.1).Proof. From lemma 2.1 follows, that every eigenve
tor of the problem (1.1) is thestationary point of fun
tional (2.1) and 
onversely. We will show now, that the stationarypoint is the minimum of fun
tional (2.1). Indeed, let λ∗ = {λ∗
1, ..., λ

∗
m} and x∗ are theeigen set and eigenve
tor of the problem (1.1). Then T (λ∗)x∗ = 0 and from the formulaof the �nite in
rements for F (x)

F (x∗ + h) − F (x∗) = (∇F (x∗), h) +
1

2
(F ′′(x∗)h, h) + α(h, x),where α(h, x)/‖h‖

2
→ 0 for ‖h‖ → 0, taking into a

ount the equality ∇F (x∗) = 0(lemma 2.1) and inequality (2.8) (lemma 2.2) we get that F (x∗ + h) − F (x∗) ≥ 0, i.e.

F (x∗ + h) ≥ F (x∗).It means that x∗ is the point of minimum of F (x). Theorem is proved.�Thus, solving of problem (1.1) is equivalent to �nding the stationary points of fun
ti-onal (2.1) whi
h are its points of minimum.3. Numeri
al algorithmThis result allows to 
onstru
t the gradient pro
edure as a method of the numeri
alsolution of the problem (1.1), when for the given value of ve
tor xk the 
orrespondingvalue λ(k) ≡ λ(xk) = col{λi(xk)}m
i=1 is �nding as the solution of the system of nonlinearalgebrai
 equations (2.6), and a next approximation to the eigenve
tor is sear
hed as

xk+1 = xk − γ(xk)∇F (xk) , k = 0, 1, 2, .... (3.1)Here a 
onstant γk = γ(xk) at every step is determined from the 
ondition of minimumof fun
tional (2.1) in dire
tion of its gradient ∇F (xk). As long as
F (xk+1) =

1

2

∥

∥T (λ(k))xk+1

∥

∥

2
=

1

2
(T (λ(k))xk, T (λ(k))xk)−

−γk(T (λ(k))xk, T (λ(k))∇F (xk)) +
1

2
γ2

k(T (λ(k))∇F (xk), T (λ(k))∇F (xk))from the ne
essary 
ondition of minimum of fun
tional ∂F
∂γ

= 0 we �nd that
γ(xk) =

(∇F (xk),∇F (xk))

(T (λ(k))∇F (xk), T (λ(k))∇F (xk))
=

‖∇F (xk) ‖
2

∥

∥ T (λ(k))∇F (xk)
∥

∥

2 .Consequently, the iterative pro
ess will be realized by means the formulas
yk+1 = xk − γ(xk)∇F (xk) , k = 0, 1, 2, ... (3.2)

xk+1 = yk+1/|| yk+1 || (3.3)
γ(xk) =

{

‖∇F (xk) ‖2

‖T (λ(k))∇F (xk)‖2 , if ∇F (xk) 6= 0,

0 , otherwise ,
(3.4)i.e. the solution is sea
hed in the 
lass of the normalized ve
tors, and the system ofnonlinear equation (2.6) is solved by one of the known methods. In parti
ular, the iterative
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ess regarding to the eigenvalue 
an be realized by means of Newton's method, i.e. forea
h k = 0, 1, ...

λ(l)(xk) = λ(l−1)(xk) −
[

J(λ(l−1)(xk), xk)
]−1

f(λ(l−1)(xk), xk), l = 1, 2, ..., (3.5)where the supers
ript (l) is the number of iteration of Newton's method,
J(λ, x) = matr

{

∂fi(λ, x)

∂λj

}m

i,j=1

, (3.6)
f(λ, x) = col{fi(λ, x)}

m
i=1.Sin
e fi(λ, x) = (T (λ)x, Bi(λ)x), i = 1, 2, ... , m, for the elements of matrix (3.6) weget su
h expressions

∂fi(λ, x)

∂λj

= (T (λ)x,
∂2T (λ)

∂λi∂λj

x) + (
∂T (λ)

∂λj

x,
∂T (λ)

∂λi

x) i, j = 1, ... , m (3.7)or
∂fi(λ, x)

∂λj

= (T (λ)x,
∂2T (λ)

∂λi∂λj

x) + (Bj(λ)x, Bi(λ)x), i, j = 1, ... , m.Consequently, the algorithm of �nding the eigenve
tor x and eigen set λ(x) =
{λ1(x), ... , λm(x) } of problem (1.1) 
an be 
onstru
t in a formAlgorithm.1. Start with the initial approximations λ(0) = (λ

(0)
1 , ..., λ

(0)
m ) and x0 to the eigenvalueand eigenve
tor of the problem (1.1)2. for k=1,2 . . . until 
onvergen
e do3. for l=1,2 . . . until 
onvergen
e do4. Cal
ulate the elements of matrix (3.6)

Jij = (T (λ(l−1))xk−1,
∂2T (λ(l−1))

∂λ
(l−1)
i ∂λ

(l−1)
j

xk−1) + (
∂T (λ(l−1))

∂λ
(l−1)
j

xk−1,
∂T (λ(l−1))

∂λ
(l−1)
i

xk−1),

i, j = 1, ... , mand the elements of ve
tor f(λ(l−1), xk−1) = (f1, ... , fm):
fi = (Tn(λ(l−1))xk−1,

∂Tn(λ(l−1))

∂λ
(l−1)
i

xk−1), i, j = 1, ... , m,5. By elements Jij and fi we build a matrix (3.6) J(λ(l−1), xk−1) and the ve
tor
f(λ(l−1), xk−1) and then 
al
ulate the next approximation for λ(l)(xk−1) by the formula(3.5)6. end for l7. Cal
ulate the gradient ∇F (λ(xk−1), xk−1) = T ∗(λ(xk−1))T (λ(xk−1))xk−18. if ∇F (λ(xk−1), xk−1) = 0 go to 109. Cal
ulate the next approximation xk by the formulas (3.2)-(3.4)10. end for k.When we 
hoi
e of the initial approximation in de�nite sense of nearness to the ei-genve
tor, iterative pro
ess (3.2)-(3.4) 
onverges to the stationary points of fun
tional(2.1), in whi
h its minimum is a
hieved that is to the eigenve
tor x∗ of the problem (1.1).Thus, for the proposed above iterative pro
ess su
h theorem of lo
al 
onvergen
e issatis�ed.



VARIATION-GRADIENT METHOD 75Theorem 3.1 Let U be some 
losed neighborhood of eigenspa
e Nλ of the problem (1.1)(U ⊃ Nλ ) and for some initial approximation x0 ∈ U the Lebesgue set
M(x0) = {x : x ∈ U, F (x) ≤ F (x0)} (3.8)is a bounded set, moreover, let the gradient of fun
tional F (x) satisfy the 
ondition

‖F ′(x) − F ′(y)‖ ≤ L‖x − y‖, ∀x, y ∈ U, L > 0 (3.9)and the matrix (3.6), with the elements 
al
ulated by the formula (3.7), is nonsingular one.Then for the sequen
e {xk} obtained by the iterative pro
ess (3.2)-(3.4) the 
orrelations
lim

k→∞
F (xk) = 0, lim

k→∞
ρ(xk, U∗) = lim

k→∞
ρ(xk, Nλ) = lim

k→∞
ρ(xk, x∗) = 0are satis�ed. It means that iterative pro
ess (3.2)-(3.4) 
onverges to the point of minimumof fun
tional (2.1), i.e. it 
onverges to the eigenve
tor x∗ of the problem (1.1).Proof. Assume that ∇F (xk) 6= 0, for k = 0, 1, ... . In other 
ase, if for some k ≥ 0will appear that ∇F (xk) = 0 then from 
orrelations (3.2)-(3.4) we get nominally that

xk = xk+1 = ...and assertion of theorem is satis�ed. Consequently, as
F (xk+1) = F (xk − γkF ′(xk)) ≤ inf

γ≥0
(F (xk − γF ′(xk))) ≤ F (xk − γF ′(xk))for any γ ≥ 0 then

F (xk) − F (xk+1) ≥ F (xk) − F (xk − γF ′(xk)).Now, on the basis of inequality
|F (x) − F (y) − (F ′(y), x − y)| ≤ L‖x − y‖

2
/2whi
h follows from 
ondition (3.9) for the gradient of fun
tional F (x), for y = xk, x =

xk+1 = xk − γF ′(xk) we obtain that
F (xk) − F (xk+1) ≥ γ(1 − Lγ/2)‖F ′(xk)‖

2for any γ, k = 0, 1, .... Thus,
F (xk) − F (xk+1) ≥ max (γ(1 − Lγ/2)) · ‖F ′(xk)‖

2
=

1

2L
‖F ′(xk)‖

2
,from where

F (xk+1) ≤ F (xk) − ‖F ′(xk)‖
2
/2L,that is

F (xk+1) ≤ F (xk). (3.10)Summing the inequality (3.10) over k from 0 to n − 1, we obtain
F (xn) ≤ F (x0), n = 1, 2, ...,i.e. the sequen
e {xk} belongs to the Lebesgue set

M(x0) = { x ∈ U : F (x) ≤ F (x0)},whi
h under the 
ondition of theorem is the bounded set, and 
onsequently, the points setof minimum of fun
tional F (x) is not empty and 
onsists of only one point x∗, to whi
hthe sequen
e obtained by (3.2)-(3.4) with the initial approximation x0 ∈ U 
onverges (seetheorem 1 from [13, p.186℄). The theorem is proved.�



76 V.V.KHLOBYSTOV AND B.M.PODLEVSKYI4. Some remarks and 
on
lusions1. If the matrix T (λ) linearly depends on the parameters λ1, ... , λm, i.e. T (λ) =

A +
m
∑

i=1

λiBi, where A, Bi : H → H , i = 1, ... , m, are some matri
es then ∂2T (λ)
∂λi∂λj

x = 0,matrix (3.6), and the elements of ve
tor f(λ, x) = col{fi(λ, x)}
m
i=1 will take the form

J(λ, x) = matr{(Bjx, Bix)}
m

i,j=1, (4.1)
fi(λ, x) = (Ax, Bix) +

m
∑

j=1

λj(Bjx, Bix), i = 1, 2, ... , m. (4.2)In this 
ase the iterative pro
ess (3.5) will be redu
ed to the solution of the linear equationssystem. Indeed, substituting the matrix (4.1) and ve
tor (4.2) in (3.5), we obtain
λ(l)(xk) = λ(l−1)(xk) −

[

matr{(Bjxk, Bixk)}
m

i,j=1

]−1

α(xk)−

−λ(l−1)(xk)
[

matr{(Bjxk, Bixk)}m

i,j=1

]−1

matr{(Bjxk, Bixk)}m

i,j=1,i.e.
λ(xk) = −

[

matr{(Bjxk, Bixk)}
m

i,j=1

]−1

α(xk), k = 0, 1, ... ,where α(xk) = col{(Axk, Bixk)}
m
i=1. It means that λ(xk) = col{λi(xk)}

m
i=1 is the solutionof the linear system

matr{(Bjxk, Bixk)}
m

i,j=1λ(xk) = −α(xk), (4.3)for ea
h xk, k = 0, 1, ... [11℄.If matrix T (λ) linearly depends of one parameter λ (m = 1), i.e. T (λ) = A+λB, thenfrom (4.3), and also dire
tly from (2.6) follows, that for 
al
ulation of λ(x) we get the
lassi
 Rayleight ratio
λ(x) = −(Ax, x)/(Bx, x).From this follows that the nonlinear system of equations (2.6) 
an be 
onsidered asgeneralization of 
lassi
 Rayleight fun
tional over multiparameter spe
tral problems.2. It is possible the other statement of the variation problem, when the set of spe
tralparameters λ = {λ1, ... , λm } and ve
tor x are 
onsidered as independent variables onwhi
h fun
tional

F (u) =
1

2
‖T (λ)x ‖2, ∀u = {x, λ} ∈ H = Rn\{0} ⊕ Rm, (4.4)a
quires the minimum value, i.e.

F (u) → min, u ∈ U ⊂ Hwhere U is a 
onvex set from H in whi
h s
alar produ
t and norm are determined by astandard way.If one 
onsider the in
rement of the fun
tional F (u + ∆u)−F (u) = F (x + h, λ + q)−
F (x, λ), for any u, u + ∆u ∈ U , then simple transformations we obtain that

F (u + ∆u) − F (u) = F (x + h, λ + q) − F (x, λ) =

= ( T (λ)x , T (λ)h ) + (T (λ)x,

m
∑

i=1

∂T (λ)

∂λi

xqi) +
1

2
{ (T (λ)h, T (λ)h) +
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+ 2(T (λ)h,

m
∑

i=1

∂T (λ)

∂λi

xqi) + (

m
∑

i=1

∂T (λ)

∂λi

xqi,

m
∑

i=1

∂T (λ)

∂λi

xqi )+

+ 2 (T (λ)x,

m
∑

i=1

∂T (λ)

∂λi

hqi ) + (T (λ)x, d2T (λ, q)x)

}

+ o(‖∆u‖
2
),Thus, the �rst di�erential of fun
tional (4.4) will a
quire a form

dF{(x, λ); (h, q)} = ( T (λ)x , T (λ)h ) +

m
∑

i=1

(T (λ)x , Bi(λ)x )qi =

= ( T (λ)x , T (λ)h ) + (f(λ, x) , q ),where f(λ, x) is the ve
tor with 
omponents {(T (λ)x, B1(λ)x) , ... , (T (λ)x, Bm(λ)x)},from this for the gradient of fun
tional (4.4) we get the form
gradF (x, λ) ≡ ∇F (x, λ) = {T ∗(λ)T (λ)x, f(λ, x)}. (4.5)Consequently, these two approa
hes are di�ered by 
onstru
tion of algorithm of �ndingof the eigen set and the eigenve
tor. For the �rst approa
h 
onsidered in this paper,it is needed the solution of nonlinear with regard to λ system of equations (2.6), i.e.in the algorithm it is needed to apply the iterative Newton's pro
edure (3.5) with theinitial approximation x0 for the eigenve
tor. For the se
ond approa
h, the solution of thesystem (2.6) is not needed. Therefore, the iterative pro
ess (3.5) is not needed, but, fromother side, it is needed to have not only the initial approximation x0 for the eigenve
tor,but also the initial approximation λ0 for the 
orresponding eigenvalue. Constru
tion andjusti�
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