
Æóðíàë îá÷èñë. ïðèêë. ìàòåì.Âèï. 1, 2009, ñòîð. 70-78 J. Numer. Appl. Math.No. 97, 2009, pp. 70-78VARIATION-GRADIENT METHOD OF THE SOLUTION OF ONECLASS OF NONLINEAR MULTIPARAMETER EIGENVALUEPROBLEMSUDC 519.6 V.V.KHLOBYSTOV AND B.M.PODLEVSKYIAbstrat. In the �nite-dimensional real Eulidean spae the nonlinear generalizedspetral problem is put in aordane to the variation problem on the minimum ofsome funtional. The equivalene of spetral and variation problems is proved. Onthe base of gradient proedure the numerial algorithm of �nding of its eigenvaluesand eigenvetors is o�ered. Under ertain onditions over the operators the loalonvergene of method is proved.1. IntrodutionThe generalized eigenvalue problems T (λ)x = 0 with the operator-funtion T (λ) :
Rm → X(H) (X(H) is a set of the linear bounded operators in the �nite-dimensionalreal Hilbert spae), whih linearly or nonlinearly depends on a several spetral parameters
λ1, λ2, ... , λm arise in many �elds of analysis and mathematial physis. In partiular,suh problems play important role when one investigates the stableness of mehanialand eletrodynami systems, researhes the branhing and the bifuration of solutions ofthe nonlinear integral equations of Hammerstein type. So, when it is neessary to �ndthe branhing points of nonlinear integral equations, whih we got as a result of solvingof the synthesis problem [6℄, two-parameter eigenvalue problems with nonlinear spetralparameters whih are inluded analytially in the kernel of a linear operator, are arisen.These problems are a not adequately explored both from the theoretial point of view,and from the point of view of the onstrution of numerial methods of their solution.This, to a onsiderable degree explains the interest both to di�erent aspets of spetraltheory of nonlinear multiparameter eigenvalue problems (see, for example, [1℄-[5℄) and tothe numeral methods of the solution of suh problems (see, for example, [7℄-[10℄).This paper is generalization of results of the work [11℄ in the ase of the nonlineareigenvalue problems. The feature of nonlinearity onsists in the fat that this probleman generally have not the solutions or, opposite, it have them as a ontinuum set.On the given time there are many opened questions related to this problem, forexample, suh as the existene of solutions and their quantity, the development of numeralmethods for solving of suh spetral problems for the algebrai, di�erential and integralequations.Generally speaking, the nonlinear ourene of spetral parameters in equation
T (λ)x = 0 leads to the ontinuum solutions of the problem. In this ase it an be reduedto the sequential deision of one-parameter problems presribing de�nite value to other
n − 1 parameters. So, in partiular, for the two-parameter problem the alulation of ei-genpairs (λ1, λ2) and orresponding eigenvetors an be redued to the sequential solutionof one-parameter nonlinear problems, when one of parameters is set, similarly as it is arri-ed out for a linear two-parameter eigenvalue problem in the paper [12℄. On this way weobtain the dependene, for example,λ1(λ2), i.e. the proper urve, that orresponds to theeigenvetor.
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VARIATION-GRADIENT METHOD 71If the operator-funtion T (λ) is presented by a blok-diagonal matrix obtained as aresult of disretization of linked systems of the di�erential equations, then suh probleman also have the �nite or the enumerable number of solutions. In this ase the numeri-al omputing of the equation T (λ)x = 0 by the method when for n − 1 parameterssome de�nite values are presribed, and one-parameter eigenvalue problem are solved, isnot e�etive. Instead of this, it is expediently to do iterations regarding to all variablessimultaneously assuming (λ1, λ2, ... , λm) as a vetor.In this paper exatly suh lass of problems, for whih the multiparameter eigenvalueproblem is substituted by an equivalent variational problem of minimization of somequadrati funtional, is onsidered. In the basis of numerial algorithm of minimizationof funtional the variant of gradient proedure lies as the method of the numerial �ndingof eigenvetor. The set of eigenvalues of the problem is determined from the system ofnonlinear algebrai equations, onstruting by the found approximation to the eigenvetor.Let H = Rn be the real Eulidean spae with the salar produt (·, ·) and the norm
|| · || and let T (λ) : Rm → X(H) be the matrix with the elements nonlinearly dependingon λ1, λ2, ... , λm. Assume that the matrix T (λ) is twie di�erentiable by Frehet, i.e.for any λk ∈ R, k = 1, 2, ... , m, there are the partial derivatives ∂T (λ)

∂λk
, k = 1, 2, ... , m,and ∂2T (λ)

∂λk∂λl
, k, l = 1, 2, ... , m.Nonlinear multiparameter eigenvalue problems onsist in �nding of suh set of spetralparameters λ∗ = {λ∗

1, ... , λ∗
m}, for whih the nontrivial solution x 6= 0 of equation

T (λ)x = 0 (1.1)exists. We will name suh set of spetral parameters λ∗ = {λ∗
1, ... , λ∗

m} by generalizedeigenvalue or eigen set, and the orresponding vetor x ∈ H we will name the generalizedeigenvetor of the problem (1.1).2. Eigenvetors as the points of minimumWe onsider now the problem of �nding of suh set of parameters
λ(x) = {λ1(x), ... , λm(x) } and suh vetors x on whih funtional

F (x) =
1

2
‖T (λ(x))x ‖

2
, ∀x ∈ H\{0} (2.1)reahes its minimum value, i.e.

F (x) → min, x ∈ U ⊂ H = En, (2.2)where U is a some onvex set in En.A points set of minimum of F (x) on U we will denote as
U∗ = {x : x ∈ U, F (x) = 0}.We will prove the equivalene of the problems (1.1) and (2.2).Consider the inrement of funtional F (x + h) − F (x) for arbitrary x, x + h ∈ Uwhere U is some onvex set in H . After simple transformations we obtain that

F (x + h) − F (x) = ( T (λ)x , [ T (λ)h + dT (λ, h)x ]) +

+
1

2
{(T (λ)h, T (λ)h ) + 2(T (λ)h, dT (λ, h)x) + (dT (λ, h)x, dT (λ, h)x )+

+ 2 (T (λ)x, dT (λ, h)h ) + (T (λ)x, d2T (λ, h)x)
}

+ o(‖h‖2), (2.3)



72 V.V.KHLOBYSTOV AND B.M.PODLEVSKYIwhere
dT (λ, h) =

∂T (λ)

∂λ1
dλ1(x, h) +

∂T (λ)

∂λ2
dλ2(x, h) + ... +

∂T (λ)

∂λm

dλm(x, h). (2.4)Sine the expression for the seond di�erential d2T (λ, h) is bulky and it will not be usedbelow, it is not pointed here. Consequently, the �rst di�erential of F (x) will be writtenas
dF (x, h) = ( T (λ)x , [ T (λ)h + dT (λ, h)x ]) =

= (T (λ)x , T (λ)h ) + (T (λ)x , dT (λ, h)x ). (2.5)Taking into aount (2.4), the seond omponent in (2.5) is present as
(T (λ)x , dT (λ, h)x ) =

= (T (λ)x,
m

∑

i=1

dλi(x, h)
∂T (λ)

∂λi

x) = (T (λ)x,
m

∑

i=1

dλi(x, h)Bix),where Bi = ∂T (λ)
∂λi

, i = 1, 2, ... , m, and we will onsider it as the system of the nonlinearalgebrai equations
fi(λ) ≡ (T (λ)x, Bi(λ)x) = 0, i = 1, 2, ... , m (2.6)for determination λ(x) = {λ1(x), λ2(x), ... , λm(x)} for any �xed value of the vetor x.It follows that

dF (x, h) = (T (λ)x , T (λ)h ).Therefore, for the gradient of funtional (2.1) we get
gradF (x) ≡ ∇F (x) = T ∗(λ)T (λ)x.Thus,

(∇F (x), x) = 2F (x),so, suh assertion is satis�ed.Lemma 2.1 Let λ(x) = {λ1(x), ... , λm(x) } be the solution of the system of nonlinearequations (2.6). Then every eigenvetor of problem (1.1) is the stationary point of funti-onal (2.1) and onversely, every stationary point of funtional (2.1) is the eigenvetor ofproblem (1.1).Lemma 2.2 The funtional (2.1) is a onvex on a stationary set.Proof. In aordane with de�nition (see, for example, [13, p.88℄) from the formula(2.3) for the seond di�erential of funtional (2.1) we have
d2F (x, h) ≡ (F ′′(x)h, h) = ‖ T (λ)h + dT (x, h)x‖

2
+

+(T (λ)x, dT (λ, h)h) + (T (λ)x, d2T (λ, h)x), (2.7)where F ′′(x) is a matrix of seond derivatives. Sine on the set of the stationary points
T (λ)x = 0 then from (2.7) it follows

d2F (x, h) ≡ (F ′′(x)h, h) = ‖ T (λ)h + dT (x, h)x‖
2
≥ 0, (2.8)i.e. the funtional F (x) is a onvex one [13, p.173℄. Lemma is proved.�Now on the basis of the lemma 2.1 and lemma 2.2 suh assertion is on�rmed.



VARIATION-GRADIENT METHOD 73Theorem 2.3 Every eigenvetor of problem (1.1) is the point of minimum of funtional(2.1) and onversely, every point of minimum of funtional (2.1) is the eigenvetor ofproblem (1.1).Proof. From lemma 2.1 follows, that every eigenvetor of the problem (1.1) is thestationary point of funtional (2.1) and onversely. We will show now, that the stationarypoint is the minimum of funtional (2.1). Indeed, let λ∗ = {λ∗
1, ..., λ

∗
m} and x∗ are theeigen set and eigenvetor of the problem (1.1). Then T (λ∗)x∗ = 0 and from the formulaof the �nite inrements for F (x)

F (x∗ + h) − F (x∗) = (∇F (x∗), h) +
1

2
(F ′′(x∗)h, h) + α(h, x),where α(h, x)/‖h‖

2
→ 0 for ‖h‖ → 0, taking into aount the equality ∇F (x∗) = 0(lemma 2.1) and inequality (2.8) (lemma 2.2) we get that F (x∗ + h) − F (x∗) ≥ 0, i.e.

F (x∗ + h) ≥ F (x∗).It means that x∗ is the point of minimum of F (x). Theorem is proved.�Thus, solving of problem (1.1) is equivalent to �nding the stationary points of funti-onal (2.1) whih are its points of minimum.3. Numerial algorithmThis result allows to onstrut the gradient proedure as a method of the numerialsolution of the problem (1.1), when for the given value of vetor xk the orrespondingvalue λ(k) ≡ λ(xk) = col{λi(xk)}m
i=1 is �nding as the solution of the system of nonlinearalgebrai equations (2.6), and a next approximation to the eigenvetor is searhed as

xk+1 = xk − γ(xk)∇F (xk) , k = 0, 1, 2, .... (3.1)Here a onstant γk = γ(xk) at every step is determined from the ondition of minimumof funtional (2.1) in diretion of its gradient ∇F (xk). As long as
F (xk+1) =

1

2

∥

∥T (λ(k))xk+1

∥

∥

2
=

1

2
(T (λ(k))xk, T (λ(k))xk)−

−γk(T (λ(k))xk, T (λ(k))∇F (xk)) +
1

2
γ2

k(T (λ(k))∇F (xk), T (λ(k))∇F (xk))from the neessary ondition of minimum of funtional ∂F
∂γ

= 0 we �nd that
γ(xk) =

(∇F (xk),∇F (xk))

(T (λ(k))∇F (xk), T (λ(k))∇F (xk))
=

‖∇F (xk) ‖
2

∥

∥ T (λ(k))∇F (xk)
∥

∥

2 .Consequently, the iterative proess will be realized by means the formulas
yk+1 = xk − γ(xk)∇F (xk) , k = 0, 1, 2, ... (3.2)

xk+1 = yk+1/|| yk+1 || (3.3)
γ(xk) =

{

‖∇F (xk) ‖2

‖T (λ(k))∇F (xk)‖2 , if ∇F (xk) 6= 0,

0 , otherwise ,
(3.4)i.e. the solution is seahed in the lass of the normalized vetors, and the system ofnonlinear equation (2.6) is solved by one of the known methods. In partiular, the iterative



74 V.V.KHLOBYSTOV AND B.M.PODLEVSKYIproess regarding to the eigenvalue an be realized by means of Newton's method, i.e. foreah k = 0, 1, ...

λ(l)(xk) = λ(l−1)(xk) −
[

J(λ(l−1)(xk), xk)
]−1

f(λ(l−1)(xk), xk), l = 1, 2, ..., (3.5)where the supersript (l) is the number of iteration of Newton's method,
J(λ, x) = matr

{

∂fi(λ, x)

∂λj

}m

i,j=1

, (3.6)
f(λ, x) = col{fi(λ, x)}

m
i=1.Sine fi(λ, x) = (T (λ)x, Bi(λ)x), i = 1, 2, ... , m, for the elements of matrix (3.6) weget suh expressions

∂fi(λ, x)

∂λj

= (T (λ)x,
∂2T (λ)

∂λi∂λj

x) + (
∂T (λ)

∂λj

x,
∂T (λ)

∂λi

x) i, j = 1, ... , m (3.7)or
∂fi(λ, x)

∂λj

= (T (λ)x,
∂2T (λ)

∂λi∂λj

x) + (Bj(λ)x, Bi(λ)x), i, j = 1, ... , m.Consequently, the algorithm of �nding the eigenvetor x and eigen set λ(x) =
{λ1(x), ... , λm(x) } of problem (1.1) an be onstrut in a formAlgorithm.1. Start with the initial approximations λ(0) = (λ

(0)
1 , ..., λ

(0)
m ) and x0 to the eigenvalueand eigenvetor of the problem (1.1)2. for k=1,2 . . . until onvergene do3. for l=1,2 . . . until onvergene do4. Calulate the elements of matrix (3.6)

Jij = (T (λ(l−1))xk−1,
∂2T (λ(l−1))

∂λ
(l−1)
i ∂λ

(l−1)
j

xk−1) + (
∂T (λ(l−1))

∂λ
(l−1)
j

xk−1,
∂T (λ(l−1))

∂λ
(l−1)
i

xk−1),

i, j = 1, ... , mand the elements of vetor f(λ(l−1), xk−1) = (f1, ... , fm):
fi = (Tn(λ(l−1))xk−1,

∂Tn(λ(l−1))

∂λ
(l−1)
i

xk−1), i, j = 1, ... , m,5. By elements Jij and fi we build a matrix (3.6) J(λ(l−1), xk−1) and the vetor
f(λ(l−1), xk−1) and then alulate the next approximation for λ(l)(xk−1) by the formula(3.5)6. end for l7. Calulate the gradient ∇F (λ(xk−1), xk−1) = T ∗(λ(xk−1))T (λ(xk−1))xk−18. if ∇F (λ(xk−1), xk−1) = 0 go to 109. Calulate the next approximation xk by the formulas (3.2)-(3.4)10. end for k.When we hoie of the initial approximation in de�nite sense of nearness to the ei-genvetor, iterative proess (3.2)-(3.4) onverges to the stationary points of funtional(2.1), in whih its minimum is ahieved that is to the eigenvetor x∗ of the problem (1.1).Thus, for the proposed above iterative proess suh theorem of loal onvergene issatis�ed.



VARIATION-GRADIENT METHOD 75Theorem 3.1 Let U be some losed neighborhood of eigenspae Nλ of the problem (1.1)(U ⊃ Nλ ) and for some initial approximation x0 ∈ U the Lebesgue set
M(x0) = {x : x ∈ U, F (x) ≤ F (x0)} (3.8)is a bounded set, moreover, let the gradient of funtional F (x) satisfy the ondition

‖F ′(x) − F ′(y)‖ ≤ L‖x − y‖, ∀x, y ∈ U, L > 0 (3.9)and the matrix (3.6), with the elements alulated by the formula (3.7), is nonsingular one.Then for the sequene {xk} obtained by the iterative proess (3.2)-(3.4) the orrelations
lim

k→∞
F (xk) = 0, lim

k→∞
ρ(xk, U∗) = lim

k→∞
ρ(xk, Nλ) = lim

k→∞
ρ(xk, x∗) = 0are satis�ed. It means that iterative proess (3.2)-(3.4) onverges to the point of minimumof funtional (2.1), i.e. it onverges to the eigenvetor x∗ of the problem (1.1).Proof. Assume that ∇F (xk) 6= 0, for k = 0, 1, ... . In other ase, if for some k ≥ 0will appear that ∇F (xk) = 0 then from orrelations (3.2)-(3.4) we get nominally that

xk = xk+1 = ...and assertion of theorem is satis�ed. Consequently, as
F (xk+1) = F (xk − γkF ′(xk)) ≤ inf

γ≥0
(F (xk − γF ′(xk))) ≤ F (xk − γF ′(xk))for any γ ≥ 0 then

F (xk) − F (xk+1) ≥ F (xk) − F (xk − γF ′(xk)).Now, on the basis of inequality
|F (x) − F (y) − (F ′(y), x − y)| ≤ L‖x − y‖

2
/2whih follows from ondition (3.9) for the gradient of funtional F (x), for y = xk, x =

xk+1 = xk − γF ′(xk) we obtain that
F (xk) − F (xk+1) ≥ γ(1 − Lγ/2)‖F ′(xk)‖

2for any γ, k = 0, 1, .... Thus,
F (xk) − F (xk+1) ≥ max (γ(1 − Lγ/2)) · ‖F ′(xk)‖

2
=

1

2L
‖F ′(xk)‖

2
,from where

F (xk+1) ≤ F (xk) − ‖F ′(xk)‖
2
/2L,that is

F (xk+1) ≤ F (xk). (3.10)Summing the inequality (3.10) over k from 0 to n − 1, we obtain
F (xn) ≤ F (x0), n = 1, 2, ...,i.e. the sequene {xk} belongs to the Lebesgue set

M(x0) = { x ∈ U : F (x) ≤ F (x0)},whih under the ondition of theorem is the bounded set, and onsequently, the points setof minimum of funtional F (x) is not empty and onsists of only one point x∗, to whihthe sequene obtained by (3.2)-(3.4) with the initial approximation x0 ∈ U onverges (seetheorem 1 from [13, p.186℄). The theorem is proved.�



76 V.V.KHLOBYSTOV AND B.M.PODLEVSKYI4. Some remarks and onlusions1. If the matrix T (λ) linearly depends on the parameters λ1, ... , λm, i.e. T (λ) =

A +
m
∑

i=1

λiBi, where A, Bi : H → H , i = 1, ... , m, are some matries then ∂2T (λ)
∂λi∂λj

x = 0,matrix (3.6), and the elements of vetor f(λ, x) = col{fi(λ, x)}
m
i=1 will take the form

J(λ, x) = matr{(Bjx, Bix)}
m

i,j=1, (4.1)
fi(λ, x) = (Ax, Bix) +

m
∑

j=1

λj(Bjx, Bix), i = 1, 2, ... , m. (4.2)In this ase the iterative proess (3.5) will be redued to the solution of the linear equationssystem. Indeed, substituting the matrix (4.1) and vetor (4.2) in (3.5), we obtain
λ(l)(xk) = λ(l−1)(xk) −

[

matr{(Bjxk, Bixk)}
m

i,j=1

]−1

α(xk)−

−λ(l−1)(xk)
[

matr{(Bjxk, Bixk)}m

i,j=1

]−1

matr{(Bjxk, Bixk)}m

i,j=1,i.e.
λ(xk) = −

[

matr{(Bjxk, Bixk)}
m

i,j=1

]−1

α(xk), k = 0, 1, ... ,where α(xk) = col{(Axk, Bixk)}
m
i=1. It means that λ(xk) = col{λi(xk)}

m
i=1 is the solutionof the linear system

matr{(Bjxk, Bixk)}
m

i,j=1λ(xk) = −α(xk), (4.3)for eah xk, k = 0, 1, ... [11℄.If matrix T (λ) linearly depends of one parameter λ (m = 1), i.e. T (λ) = A+λB, thenfrom (4.3), and also diretly from (2.6) follows, that for alulation of λ(x) we get thelassi Rayleight ratio
λ(x) = −(Ax, x)/(Bx, x).From this follows that the nonlinear system of equations (2.6) an be onsidered asgeneralization of lassi Rayleight funtional over multiparameter spetral problems.2. It is possible the other statement of the variation problem, when the set of spetralparameters λ = {λ1, ... , λm } and vetor x are onsidered as independent variables onwhih funtional

F (u) =
1

2
‖T (λ)x ‖2, ∀u = {x, λ} ∈ H = Rn\{0} ⊕ Rm, (4.4)aquires the minimum value, i.e.

F (u) → min, u ∈ U ⊂ Hwhere U is a onvex set from H in whih salar produt and norm are determined by astandard way.If one onsider the inrement of the funtional F (u + ∆u)−F (u) = F (x + h, λ + q)−
F (x, λ), for any u, u + ∆u ∈ U , then simple transformations we obtain that

F (u + ∆u) − F (u) = F (x + h, λ + q) − F (x, λ) =

= ( T (λ)x , T (λ)h ) + (T (λ)x,

m
∑

i=1

∂T (λ)

∂λi

xqi) +
1

2
{ (T (λ)h, T (λ)h) +
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+ 2(T (λ)h,

m
∑

i=1

∂T (λ)

∂λi

xqi) + (

m
∑

i=1

∂T (λ)

∂λi

xqi,

m
∑

i=1

∂T (λ)

∂λi

xqi )+

+ 2 (T (λ)x,

m
∑

i=1

∂T (λ)

∂λi

hqi ) + (T (λ)x, d2T (λ, q)x)

}

+ o(‖∆u‖
2
),Thus, the �rst di�erential of funtional (4.4) will aquire a form

dF{(x, λ); (h, q)} = ( T (λ)x , T (λ)h ) +

m
∑

i=1

(T (λ)x , Bi(λ)x )qi =

= ( T (λ)x , T (λ)h ) + (f(λ, x) , q ),where f(λ, x) is the vetor with omponents {(T (λ)x, B1(λ)x) , ... , (T (λ)x, Bm(λ)x)},from this for the gradient of funtional (4.4) we get the form
gradF (x, λ) ≡ ∇F (x, λ) = {T ∗(λ)T (λ)x, f(λ, x)}. (4.5)Consequently, these two approahes are di�ered by onstrution of algorithm of �ndingof the eigen set and the eigenvetor. For the �rst approah onsidered in this paper,it is needed the solution of nonlinear with regard to λ system of equations (2.6), i.e.in the algorithm it is needed to apply the iterative Newton's proedure (3.5) with theinitial approximation x0 for the eigenvetor. For the seond approah, the solution of thesystem (2.6) is not needed. Therefore, the iterative proess (3.5) is not needed, but, fromother side, it is needed to have not only the initial approximation x0 for the eigenvetor,but also the initial approximation λ0 for the orresponding eigenvalue. Constrution andjusti�ation of the algorithm, using the gradient in a form (4.5) are the objets of theseparate onsideration and researh.3. In the o�ered algorithm the onstant γk at every step is determined from theondition of minimum of funtional in diretion of gradient. There are possible othermethods of hoie of the value, as by orrelations of type (10)

xk+1 = xk − γkpk k = 0, 1, ... (4.6)the whole lass of methods di�ering by the hoie of diretion of desent pk and the valueof step γk is set. It is marked in work [14, p. 253℄, that in the ase when the some funtional
g(x) : Rn → R1 satis�es the ondition g(x) ≥ 0, for all x ∈ Rn the value of γk an bealulated by one step of Newton's iteration for the salar equation g(xk − γkpk) = 0, i.e.

γk = g(xk)/g′(xk)pk.For pk = ∇g(xk)T the iterative proess (4.6) will take a form
xk+1 = xk − [g(xk)/‖∇g(xk)‖2]∇g(xk)T , k = 0, 1, ....Bibliography1. Binding P.A. On the use of degree theory for nonlinear multiparameter eigenvalue problems// J. Math. Anal. Appl. 1980. Vol. 73. P. 381-391.2. Browne P.J. A ompleteness theorem for a non-linear multiparameter eigenvalue problem //J. Di�erential Equations. 1977. Vol. 23. P. 285-292.3. Browne P.J., Sleeman B.D. Non-linear multiparameter eigenvalue problems for ordinarydi�erential equations // J. Math. Anal. Appl. 1980. Vol. 77. P. 425-432.4. Gadgiev G.A. About one multi-temporary equation and it redued to multiparameter ei-genvalue problem // Dokl. Aad. Si. USSR. 1985. Vol. 285. N 3. P. 530-533. (in Russian)
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