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VARIATION-GRADIENT METHOD OF THE SOLUTION OF ONE
CLASS OF NONLINEAR MULTIPARAMETER EIGENVALUE

PROBLEMS
UDC 519.6

V.V.KHLOBYSTOV AND B.M.PODLEVSKYI

ABSTRACT. In the finite-dimensional real Euclidean space the nonlinear generalized
spectral problem is put in accordance to the variation problem on the minimum of
some functional. The equivalence of spectral and variation problems is proved. On
the base of gradient procedure the numerical algorithm of finding of its eigenvalues
and eigenvectors is offered. Under certain conditions over the operators the local
convergence of method is proved.

1. Introduction

The generalized eigenvalue problems T'(A\)z = 0 with the operator-function T'(\) :
R™ — X(H) (X(H) is a set of the linear bounded operators in the finite-dimensional
real Hilbert space), which linearly or nonlinearly depends on a several spectral parameters
A1, A2, ..., Ay arise in many fields of analysis and mathematical physics. In particular,
such problems play important role when one investigates the stableness of mechanical
and electrodynamic systems, researches the branching and the bifurcation of solutions of
the nonlinear integral equations of Hammerstein type. So, when it is necessary to find
the branching points of nonlinear integral equations, which we got as a result of solving
of the synthesis problem [6], two-parameter eigenvalue problems with nonlinear spectral
parameters which are included analytically in the kernel of a linear operator, are arisen.
These problems are a not adequately explored both from the theoretical point of view,
and from the point of view of the construction of numerical methods of their solution.
This, to a considerable degree explains the interest both to different aspects of spectral
theory of nonlinear multiparameter eigenvalue problems (see, for example, [1]-[5]) and to
the numeral methods of the solution of such problems (see, for example, [7]-[10]).

This paper is generalization of results of the work [11] in the case of the nonlinear
eigenvalue problems. The feature of nonlinearity consists in the fact that this problem
can generally have not the solutions or, opposite, it have them as a continuum set.

On the given time there are many opened questions related to this problem, for
example, such as the existence of solutions and their quantity, the development of numeral
methods for solving of such spectral problems for the algebraic, differential and integral
equations.

Generally speaking, the nonlinear occurence of spectral parameters in equation
T(MN)z = 0 leads to the continuum solutions of the problem. In this case it can be reduced
to the sequential decision of one-parameter problems prescribing definite value to other
n — 1 parameters. So, in particular, for the two-parameter problem the calculation of ei-
genpairs (A1, A2) and corresponding eigenvectors can be reduced to the sequential solution
of one-parameter nonlinear problems, when one of parameters is set, similarly as it is carri-
ed out for a linear two-parameter eigenvalue problem in the paper [12]. On this way we
obtain the dependence, for example,\ (A2), i.e. the proper curve, that corresponds to the
eigenvector.

T Key words. Multiparameter eigenvalue problem, numerical algorithm, gradient method.
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If the operator-function T'(\) is presented by a block-diagonal matrix obtained as a
result of discretization of linked systems of the differential equations, then such problem
can also have the finite or the enumerable number of solutions. In this case the numeri-
cal computing of the equation T'(A\)x = 0 by the method when for n — 1 parameters
some definite values are prescribed, and one-parameter eigenvalue problem are solved, is
not effective. Instead of this, it is expediently to do iterations regarding to all variables
simultaneously assuming (A1, A2, ..., Ap,) as a vector.

In this paper exactly such class of problems, for which the multiparameter eigenvalue
problem is substituted by an equivalent variational problem of minimization of some
quadratic functional, is considered. In the basis of numerical algorithm of minimization
of functional the variant of gradient procedure lies as the method of the numerical finding
of eigenvector. The set of eigenvalues of the problem is determined from the system of
nonlinear algebraic equations, constructing by the found approximation to the eigenvector.

Let H = R™ be the real Euclidean space with the scalar product (-,-) and the norm
[| - || andlet T(\) : R™ — X (H) be the matrix with the elements nonlinearly depending

on A1, Az, ..., App. Assume that the matrix T'(\) is twice differentiable by Frechet, i.e.
for any A\y € R, k=1, 2, ..., m, there are the partial derivatives BBT/\(:), k=1,2,..,m,
2
and ST g 1=1,2 .. m.
Nonlinear multiparameter eigenvalue problems consist in finding of such set of spectral
parameters \* = {\}, ..., A\* }, for which the nontrivial solution x # 0 of equation
TNz =0 (1.1)
exists. We will name such set of spectral parameters A* = {A}, ... , A%} by generalized

eigenvalue or eigen set, and the corresponding vector x € H we will name the generalized
eigenvector of the problem (1.1).

2. Eigenvectors as the points of minimum

We consider now the problem of finding of such set of parameters
AMz) ={ (z), ..., Mn(z)} and such vectors z on which functional

1
F(z) = QIIT(A(ﬂ:))JCIIQ, Va € H\{0} (2.1)
reaches its minimum value, i.e.
F(z) > min, €U C H=E", (2.2)

where U is a some convex set in E”.
A points set of minimum of F(x) on U we will denote as

U.={z: z€U, F(z)=0}

We will prove the equivalence of the problems (1.1) and (2.2).
Consider the increment of functional F(x + h) — F(z) for arbitrary z, x +h € U
where U is some convex set in H. After simple transformations we obtain that

Fz+h)—F)=(TW\z, [T\h +dT(\h)z]) +
+ % {(TN)h, T(M)h) + 2(T(MNh, dT(\, h)x) + (dT(\ h)x, dT(\, h)x)+

+2(T(N)z, dT(\h)h) + (T(Nz,d* T\ h)z) } + o(||h]?), (2.3)
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where

aT())
W

aT())
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dT'(\, h) = dhi(z, h) + dha(z, h) + ... + dAm (z, h). (2.4)
Since the expression for the second differential d>T'(\, k) is bulky and it will not be used
below, it is not pointed here. Consequently, the first differential of F'(x) will be written
as

dF(x,h) = ( TNz, [T(\Nh +dT(\ h)z]) =
=(TN)z, TVh)+ (T(N)z, dT(X\, h)zx). (2.5)
Taking into account (2.4), the second component in (2.5) is present as
(TMNzx, dT(\ h)x) =

= (TN, Y dXi(z,h) 8;)(\:\)13) = (T(N)z, Y dXi(z,h)Biz),

=1 i=1

where B; = ag)(\f\), i1=1,2, ..., m, and we will consider it as the system of the nonlinear

algebraic equations
i) =T Nz, B[{(Nx)=0, i=1,2, ..., m (2.6)

for determination A(x) = {\1(x), A2(2), ... , A ()} for any fixed value of the vector x.
It follows that
dF (z,h) = (T(N)zx, T(MNh).

Therefore, for the gradient of functional (2.1) we get

grad F(x) VF(z)=T"(\)T(\z.

Thus,
(VF(z),z) = 2F(x),

so, such assertion is satisfied.

Lemma 2.1 Let A(z) = {Ai(z), ..., Am(z)} be the solution of the system of nonlinear
equations (2.6). Then every eigenvector of problem (1.1) is the stationary point of functi-
onal (2.1) and conversely, every stationary point of functional (2.1) is the eigenvector of
problem (1.1).

Lemma 2.2 The functional (2.1) is a convex on a stationary set.

Proof. In accordance with definition (see, for example, [13, p.88]) from the formula
(2.3) for the second differential of functional (2.1) we have

d*F(z,h) = (F"(@)h, h) = | TAh + dT (x, h)z|*+
H(T (N, dT (A h)h) + (T (N, d*T(\, h)z), (2.7)

where F"'(x) is a matrix of second derivatives. Since on the set of the stationary points
T(MN)z = 0 then from (2.7) it follows

d2F(z,h) = (F"(zx)h, h) = | T(\h + dT(z, h)z||*> > 0, (2.8)

i.e. the functional F(z) is a convex one |13, p.173]. Lemma is proved.O
Now on the basis of the lemma 2.1 and lemma 2.2 such assertion is confirmed.
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Theorem 2.3 Every eigenvector of problem (1.1) is the point of minimum of functional
(2.1) and conversely, every point of minimum of functional (2.1) is the eigenvector of
problem (1.1).

Proof. From lemma 2.1 follows, that every eigenvector of the problem (1.1) is the
stationary point of functional (2.1) and conversely. We will show now, that the stationary
point is the minimum of functional (2.1). Indeed, let A* = {Af,..., A%} and a* are the
eigen set and eigenvector of the problem (1.1). Then T(A*)z* = 0 and from the formula
of the finite increments for F'(x)

1
F(z* 4+ h) — F(z*) = (VF(z"), h) + §(F”(:E*)h, h) + a(h, z),
where a(h,z)/||h||> — 0 for ||h|| — 0, taking into account the equality VF(z*) = 0
(lemma 2.1) and inequality (2.8) (lemma 2.2) we get that F(z* + h) — F(z*) > 0, i.e.
F(z* +h) > F(x").

It means that «* is the point of minimum of F(x). Theorem is proved.O
Thus, solving of problem (1.1) is equivalent to finding the stationary points of functi-
onal (2.1) which are its points of minimum.

3. Numerical algorithm

This result allows to construct the gradient procedure as a method of the numerical
solution of the problem (1.1), when for the given value of vector z; the corresponding
value A\ = Mzy) = col{\;(xr)}, is finding as the solution of the system of nonlinear
algebraic equations (2.6), and a next approximation to the eigenvector is searched as

Tr+1 = Tk _’Y(Ik)VF(Ik) ) k= 07 17 27 (3]‘)

Here a constant v, = y(xx) at every step is determined from the condition of minimum
of functional (2.1) in direction of its gradient VF(z). As long as

1 2 1
F(rp) = §||T(>‘(k))33k+1” = 5T Ow)zr, TAw)zr)—

— (T (M) 2k, T( Ay )VF (1)) + %V%(T()\(k))VF(xk)aT()\(k))VF(CCk))

from the necessary condition of minimum of functional % = 0 we find that
o) (VE(e1), VE (1)) __IVE@E

Consequently, the iterative process will be realized by means the formulas

Yet1 = 2k — Y(zk)VF(xg), k=0,1, 2, ... (3.2)
Tr1 = Ykt 1 /|| Yt || (3.3)
| VF () ||? ifVE 0
"y(.Ik) = || T(Aw))VF(zy) ||2 ’ Zf (xk) 75 ’ (34)
0, otherwise ,

i.e. the solution is seached in the class of the normalized vectors, and the system of
nonlinear equation (2.6) is solved by one of the known methods. In particular, the iterative
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process regarding to the eigenvalue can be realized by means of Newton’s method, i.e. for
each k =0,1, ...

AD (1) = D () — [J(W*l)(xk),xk)}_lf(xl*l)(xk),xk), 1=1,2,..., (3.5)

where the superscript (I) is the number of iteration of Newton’s method,

8fi()\7 JJ) }m
JA\x) = matr{i , (3.6)
8/\j i,j=1
fFOz) = col{ fi(A 2) 12y
Since f;(A,z) = (T(N)z, Bi(MN)z),i=1, 2, ..., m, for the elements of matrix (3.6) we
get such expressions
ofi(\z) 9?T(N\) oT(A)  O0T(N)

VGl w v R vty

or
afi(\ ) 9?T(\) .
—— 2 = (T(\ BNz, B;(Mz), i,j=1, ..., m.
Consequently, the algorithm of finding the eigenvector x and eigen set A(xz) =
{M(z), ..., Am(x)} of problem (1.1) can be construct in a form
Algorithm.
1. Start with the initial approximations \(9) = (/\go), - /\52)) and x( to the eigenvalue

and eigenvector of the problem (1.1)
2. for k=1,2 ... until convergence do
3. for [=1,2 ... until convergence do
4. Calculate the elements of matrix (3.6)

82T()\(l*1)) 8T()\(l’1)) 8T()\(l*1))
Jii = (T(/\(lil))ftk,l, — 7 Tk-1) t+ Tk—1, xk*l)’
! oA DoY) oAV oA
ii=1, .., m
and the elements of vector f(A\Y 23 1) = (f1, .., fn):
_ T, (A= .
fi = (Tn(>\(l 1))5171671; %Ikl); ,] = 15 we sy, M,

3

5. By elements J;; and f; we build a matrix (3.6) J()\(l_l),xk_l) and the vector
FOD 2 1) and then calculate the next approximation for A (z;_;) by the formula
(3.5)

6. end for [

7. Calculate the gradient VF(A(zr—1), xp—1) = T*(AM@g-1))T (A (@k-1)) k-1

8. if VF(A(zx—1),2k—1) =0 go to 10

9. Calculate the next approximation zj by the formulas (3.2)-(3.4)

10. end for k.

When we choice of the initial approximation in definite sense of nearness to the ei-
genvector, iterative process (3.2)-(3.4) converges to the stationary points of functional
(2.1), in which its minimum is achieved that is to the eigenvector x* of the problem (1.1).

Thus, for the proposed above iterative process such theorem of local convergence is
satisfied.
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Theorem 3.1 Let U be some closed neighborhood of eigenspace Ny of the problem (1.1)
(U D N, ) and for some initial approximation xq € U the Lebesgue set
M(zo)={x: z €U, F(x)<F(z)} (3.8)
is a bounded set, moreover, let the gradient of functional F(x) satisfy the condition
IF' () = F'(y)ll < Lllz —yl, Vae,yeU, L>0 (3.9)

and the matrix (3.6), with the elements calculated by the formula (3.7), is nonsingular one.
Then for the sequence {x} obtained by the iterative process (3.2)-(3.4) the correlations

lim F(zr) =0, lim p(ag,Us) = lim p(xk, Ny) = lim p(zg,2") =0
are satisfied. It means that iterative process (3.2)-(3.4) converges to the point of minimum
of functional (2.1), i.e. it converges to the eigenvector x* of the problem (1.1).

Proof. Assume that VF(xi) # 0, for Kk = 0, 1, ... . In other case, if for some k > 0
will appear that VF(xy) = 0 then from correlations (3.2)-(3.4) we get nominally that

Th = Tht1 = -
and assertion of theorem is satisfied. Consequently, as
F(xpy1) = Flay —wF'(x3)) < 'iyr;%(F(Ik —F'(xy))) < Flay —vF' (1))
for any v > 0 then
Flak) = Far) = F(ag) = Fog — vF (2r).
Now, on the basis of inequality
|F(2) = F(y) = (F'(y),x = y)| < Lz —y|*/2

which follows from condition (3.9) for the gradient of functional F(z), for y = a, =
g1 = xk — yF'(x) we obtain that

Flag) = F(arg) 2 y(1— Ly/2)|[F' ()|

for any v, k=0, 1, .... Thus,

F(zx) — F(zpg1) > max (v(1 — Ly/2)) - | F'(z)||* = inmmn“‘,
from where
F(zii1) < Fay) — | F'(21)|* /2L,

that is
F(zpy1) < F(ag). (3.10)

Summing the inequality (3.10) over k from 0 to n — 1, we obtain
F(z,) < F(z), n=1,2, ...,
i.e. the sequence {xx} belongs to the Lebesgue set
M(zo)={z €U : F(x) < F(xg)},

which under the condition of theorem is the bounded set, and consequently, the points set
of minimum of functional F'(x) is not empty and consists of only one point z*, to which
the sequence obtained by (3.2)-(3.4) with the initial approximation zo € U converges (see
theorem 1 from [13, p.186]). The theorem is proved.Od
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4. Some remarks and conclusions

1. If the matrix T'(\) linearly depends on the parameters A1, ..., Ay, i.e. T(\) =
A+ > \B;, where A,B; : H— H, i =1, ..., m, are some matrices then giTa(;)x =0,
i=1 i0X;

matrix (3.6), and the elements of vector f(\,z) = col{fi(\,z)}~, will take the form

J\z) = matr{(Bjx,Bix)}szl, (4.1)
fil\ z) = (Az, B;x) + Z)\j(Bj:E,Bix), i=1,2, ..., m. (4.2)
j=1

In this case the iterative process (3.5) will be reduced to the solution of the linear equations
system. Indeed, substituting the matrix (4.1) and vector (4.2) in (3.5), we obtain

)\(l)(iﬂk) _ )\(l—l)(xk) — [matr{(Bjxk,Biwk)}lezl} 71a(;vk)_

-1
A0 () {matr{(Bjxk, Bixk)}zljzl} matr{(B;xg, Bﬂ?k)}?j:l,

i.e.

Mxy) = —{matr{(Bjxk,Bixk)}ZLj:l} a(zy), k=0,1, ..,

where a(z) = col{(Axy, Bizi)},~,. It means that A(z) = col{\;(z))};~, is the solution
of the linear system
matr{(Bjxy, Biry)};;_ Max) = —a(zk), (4.3)
for each zx, k=0, 1, ... [11].
If matrix T'(A) linearly depends of one parameter A (m = 1), i.e. T(\) = A+ AB, then
from (4.3), and also directly from (2.6) follows, that for calculation of A(z) we get the

classic Rayleight ratio
Mz) = —(Az,z)/(Bx, x).

From this follows that the nonlinear system of equations (2.6) can be considered as
generalization of classic Rayleight functional over multiparameter spectral problems.

2. It is possible the other statement of the variation problem, when the set of spectral
parameters A = { A1, ..., Ay } and vector z are considered as independent variables on
which functional

1
F(u) = S| T(V)x 1?, VYu={z,\} € H=R"\{0} ®R™, (4.4)
acquires the minimum value, i.e.
F(u) »min, weUCH

where U is a convex set from H in which scalar product and norm are determined by a
standard way.

If one consider the increment of the functional F(u+ Au) — F(u) = F(x + h, A+ q) —
F(z,\), for any u, u+ Au € U, then simple transformations we obtain that

Flu+Au)—F(u) = F(x + h,A+q) — F(z,\) =

" OT(N) 1

= (T, TOWh) + (TN Y G ag) + 54 TR T +

=1
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+2(T(A)h,

Ms

1

8§§j) hai) + (T, T, q)e) } + of|[Aul),

.
Il

+2(T(\)z,

IR

=1

Thus, the first differential of functional (4.4) will acquire a form

m

dF{(z,A); (h,q)} = (T(Nz, T(A)h) + Z (TNz, Bi(Nz)g =
=(TNz, TWh) +(f(\2), q),
where f(A,x) is the vector with components {(T(A\)z, B1(A\)x) , ..., (T(AN)z, Bn(N2)},

from this for the gradient of functional (4.4) we get the form
grad F(z,\) = VF(z,\) ={T*"NTN)z, f(\ z)}. (4.5)

Consequently, these two approaches are differed by construction of algorithm of finding
of the eigen set and the eigenvector. For the first approach considered in this paper,
it is needed the solution of nonlinear with regard to A system of equations (2.6), i.e
in the algorithm it is needed to apply the iterative Newton’s procedure (3.5) with the
initial approximation x( for the eigenvector. For the second approach, the solution of the
system (2.6) is not needed. Therefore, the iterative process (3.5) is not needed, but, from
other side, it is needed to have not only the initial approximation xy for the eigenvector,
but also the initial approximation Ag for the corresponding eigenvalue. Construction and
justification of the algorithm, using the gradient in a form (4.5) are the objects of the
separate consideration and research.

3. In the offered algorithm the constant ~; at every step is determined from the
condition of minimum of functional in direction of gradient. There are possible other
methods of choice of the value, as by correlations of type (10)

Tk+1 = Tk — YkPk k= 0, 1, (46)

the whole class of methods differing by the choice of direction of descent py and the value
of step i, is set. It is marked in work [14, p. 253], that in the case when the some functional
g(z) : R™ — R! satisfies the condition g(x) > 0, for all z € R™ the value of v, can be
calculated by one step of Newton’s iteration for the scalar equation g(xy —yxpr) = 0, i.e.

= g(zx) /9 (xr)p

For pj, = Vg(xx)T the iterative process (4.6) will take a form

i1 = @ — [9(@) /| Vg(en) P Vg(zn)", k=0, 1, ...
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