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ON MATRIX FUNCTION INTERPOLATION
UDC 519.6

L.A.YANOVICH AND I.V.ROMANOVSKI

ABsSTRACT. We consider the problem of interpolation of matrix functions in case of
ordinary, Jordan, Hadamard and Frobenius multiplication rule. We give interpolation
formulas of Lagrange and Hermite type, obtain sufficient conditions for convergence
of interpolation processes and estimate interpolation errors in the class of analytic
functions.

Interpolating matrix functions is in concept similar to interpolating functions of a
scalar variable. For sure, the theory of matrix function interpolation is more compli-
cated than its subcase, the classical theory of interpolation, which is widely used in the
mathematics itself as well as in adjacent areas of science. The theory of matrix function
interpolation finds its application when dealing with such problems that are usually solved
using matrix apparatus.

1. Lagrange interpolation formulas

Let X be a set of square matrices of fixed size. We introduce an operator F': X — Y,
where Y is some given set. Elements of Y can be numbers, matrices, functions etc.

Let Ag, A1, - - ., A be different eigenvalues of a square matrix A of size m. Suppose the
multiplicities of the eigenvalues are ag, aq, . . ., @, (ap+a1+. ..+« = m) correspondingly.
Then for a function F(z), which is analytic in a domain containing the spectrum of the
matrix A, the following Lagrange—Silvester interpolation formula [1] is true:

r oap—1

F(A) = Z Z Huk(A)F(V)()‘k)v (1'1)

k=0 v=0

where H,j(z) are knows algebraic polynomials of degree m. This formula lets one restore
the function F(z) in the point A when the values F(*)()\;) are known, where {)\} is
the spectrum of A. The formula (1.1) may be considered as an interpolation formula
of Hermite type for the nodes Ay being the scalar matrices AxI, where I stands for an
identity matrix.

Further in this section we’ll consider formulas of Lagrange type for particular kinds of
nodes such as scalar matrices and others. An algebraic interpolation polynomial of degree
n will be denoted by L, (F;A) = L,(A) (sometimes instead of n we’ll use On or n0 as
a subscript). The denotation for trigonometric interpolation polynomial is T, (F; A) =
T.(4).

Let A, Ay € X, k =0,1,...,n. Suppose that the matrices (A; — A4,), k # v, are
invertible. Then

La(Fi A) = 3" (Al (A F(Ay), (1.2)
k=0

T Key words. Interpolation, matrix functions, interpolation matrix polynomials, interpolation error
estimate.
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where [,,(A) = (A—Ap)(A— A1) (A— Ag—1)(A— Ap41) - (A— A,). The formula of
trigonometric interpolation for the nodes A, € X, k=0,1,...,2n, under the assumption
that the matrices sin = (Ak — A,), k # v, are invertible, looks the following way:

2n
A) = > (A (AR)F(Ap), (13)
k=0
where (A )—smA2A sin 2= ’3’“ L gin 4= A’““~~~s,1 A A

2
More general formulas of Lagrange 1nterpola‘r10n can be given (in the algebraic case)
in such a form as

Zznk ML (AR)F(Ay), (1.4)

where l,,,(A) = Bro(A—Ao)By1 - - - nk—l(A_Ak—l) Bpni(A—Ak41)Bpit1 -+ Ban—1(A—
Ap)Bnn, Bny are some fixed matrices. For the trigonometric case one obtains

2n
A) = (A (AR) F(A), (1.5)
k=0
where 9, (A) = By sin A_2A° Bi1 -+ Brr—1 sin A_j;"“l By sin A_gk+l Brgy1 -+
By, sin A_QAZ" Bion+1; here, as in the algebraic case, By, are given matrices and Ag,
k,v=0,1,...,2n, are the nodes of interpolation.

It is easy to check that the interpolation conditions for the formulas (1.2)—(1.5) and
for further formulas are met: one should substitute Ay in place of A, each time taking
into account the structure of fundamental interpolation polynomials.

Formulas for sets of matrices with other multiplication rules Let’s give
interpolation formulas, that contain Jordan, Hadamard and Frobenius matrix multipli-
cations, denoted by the symbols o, e and ¢ correspondingly.

The operation of Jordan multiplication of the square matrices A and B is defined by
the equity Ao B = 1(AB + BA). This operation is nonassociative in general: there exist
such matrices A, B and C that their associator (Ao B) o C — Ao (B o (C) is nonzero.

Let I, (A) = (A—Ag)o(A—Aj)o...0(A—Ag_1)o(A— Agt1)o...0(A—A,) and

the order of taking products in this expression be fixed. Then for the formulas

Lon(A) = i:F(Ak) o {4 (Ak) o Luk(A)}, (1.6)
k=0
k=0

the following equities take place:
LOn(Ak) = LnO(Ak) = F(Ak)a k= 07 15 sy

Remark 1.1 In the formulas (1.6) and (1.7) one should take matrix products in curly
brackets at first. Also in the formula (1.7) we suppose that the associator of the matrices
F(Ag), 11 (Ay) and Ly, (Ay) equals zero.

In particular, the formula of linear interpolation can be written as

LOl(A) = F(Ao) + [F(Al) - F(Ao)] ] {(Al — A0)71 o (A — Ao)} .
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This formula is invariant under the polynomials
POl(A):DO{(Al AO OA}+C

where D and C are arbitrary matrices. One may write Pp1(A) using ordinary matrix
multiplication:

Poi(A) = <D [(Ar — Ag) ' A + A(Ar — Ag)™]

1
1
1 —1 —1

1 (A= 40) A+ A4 - 4) Y D+ C

Let’s give one more interpolatlon formula

where
Lo (A) = {(A — Ag) o (A, — Ag) ™} oo {(A— Ap_1) o (A — Ap_1) 1}
o {(A— Apy1)o (A — Ary1) 1}0...0{,4—,4) (A — An)"'},
in which one may replace circles with dots and get matrix interpolation formulas contai-
ning both Jordan and ordinary multiplication.
Further we’ll consider interpolation formulas for the case of Hadamard matrix multi-
plication. The Hadamard product of matrices A = [a;;] and B = [b;;] of same size is

A e B = [a;;b;;]. Hadamard matrix multiplication is also called Schur multiplication. It
is, obviously, commutative and associative. The role of identity matrix is played by J all

the elements of which are unitary: AeJ = J ¢ A = A. The denotation A~! stands for
the Hadamard inverse matrix of A: Ae A=! = A=' e A = I. Note that in general it is not

uniquely defined. If the diagonal elements a;;, i = 1,2, ..., m, of the matrix A of size m
are nonzero, then A~ = diag [ai] = dlag{au, a; T } Let also ACY = [ai}
7 ij

The matrix A1 exists if all the elements of A are nonzero.

Let g (A) = (A—Ap)e...0(A—Ap_1)e(A—Agi1)e...0(A—A,), k=0,1,...,n, where
A = [a;;]. Suppose the interpolation nodes Ay = [au} and the matrices F(Ak) [fE],

k=0,1,...,n, are square and of same size, and for g (Ay) there exists Hadamard inverse

matrix qlzl(Ak). Then for the formula
Lon () = 3 (a0 { (A s ()}

= i F(A)diag [ (aii — ad) -+ (asi — af ") (ai —af;™) -+ (ai; — al}) ]

(af —al) - (ak — a5 0) (b —ait 1) (af — a)

1

1 K22 K22 K22

where the product of F' (Ax) and any of the matrices {qk_l (Ag) e qk(A)} can be ordinary

or Jordan, the following conditions are met: Lo, (4,) = F(A,), v=0,1,...
For the formula

n.

Luo(A) = > F(Ag) @ ¢l (Ar) @ gi(A)
k=0
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where only Hadamard matrix multiplication is used, interpolation conditions also hold,
because qk (Ak) e qi(Ay) = 0k J, where dy,, is Kronecker’s delta. Here we assume that
the matrices (Ax — A,), k # v, don’t contain zero elements.

For the nodes Ay = ayJ (g # «,, if k # v) the following interpolation formula holds:

Z": (A—agJ)e (A—ak—lJ)°(A_ak+1J).' coA=and) | o).
Ozk —ao

= (o — ag—1) (o — agegr) - (g — an)
Let’s give an interpolation formula containing Frobenius matrix multiplication. Let
the matrices A = [a,;] and B = [b;;] be of same size. Their Frobenius product is A¢ B =

> a;jb;;. This operation is, obviously, commutative and its result is a scalar. Then for
,J
the formula

" (A
_Zln:((A) Al
k=0

where

Lik(A) = [(A— A0)" o (A — Ao)] -+ [(A — Ap—1)" o (A — Ap—1)]
X [(A — Ak+1)T <& (Ak — Ak+1)] s [(A — An)T <& (Ak — An)]

and the interpolation nodes Ay are different, the following conditions hold:

L.,(A)=F(A)), v=0,1,...,n

Interpolation formulas for specific kinds of nodes In the above interpolati-
on formulas the biggest computational difficulties are caused by matrix inversion. Let’s
consider such interpolation nodes for which inverse matrices entering (1.2), (1.3) and other
formulas, can be found easily enough, and give an explicit form of these formulas.

If the nodes Ay are the different scalar matrices axl, Lagrange matrix interpolation
formula (1.2) looks as

n

Z (A—apl) - (A—ag_1I)(A—ags1I) - (A—anl)
ar —ao) -+ (ar—ag—1)(ax—ap41) - - (ar—an)

F(ay). (1.8)
=0

This formula is invariant under the matrix polynomial of kind P, (A) = Y b, A*, where
k=0
by, are arbitrary numbers.
If Ay, = arl, 0 <ap <2m, k=0,1,...,2n (ax # a, if k # v), then the formula of

trigonometric interpolation (1.3) also has the simple form

o . A_ . A—ap_1I . A—apiil . A
" sin 4 2‘“’1 -+ sin S5 sin =9+ - sin %

T"(F’A) = Z s Gk —ao iy Gk —Ak—1 3. Ok —0k41 1 Ok —Q2n F(ak)' (19)
=7 sin G590 .. gin BPEoL gipn P ZhEL L g Geoon

This formula is exact for trigonometric matrix polynomials of degree n:
n
F(A) = col + Y (ck cos kA + dj,sinkA),
k=1

where ¢, d) are certain numbers. In the formulas (1.8) and (1.9) the function F(z) is
considered analytic in neighborhoods of the points ay.
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When the diagonal matrices Ay = diag{aok, a1k, -- -, @mk} (@i # ap it k £ v, i =
0,1,...,m),k=0,1,...,n, are taken as nodes of interpolation, the following equity holds:

where [,(A) = (A — Ag) - (A — Ag1) (A — Apr) - (A — A), TN Ay) =

: 1 1 1 —_ T —
dlag {W;o(aok)’ W;ll(alk) sty W;m(amk)} ) w'n,l/(t) - H]:O(t - a’Uj): V= Oa 17 cee,
In the trigonometric case for the diagonal nodes Ay = diag{aok, a1k, .-, @mk}, 0 <
air <2m,1=0,1,...,m, k=0,1,...,2n, interpolation polynomial (1.3) looks as

2n
(A) = r(A)y (AR F(Ay),
k=0

_ o A— A L A—A . _
A—do . ko1 gin A= Arer gy A= Aoy

where 93 (A) = sin sin — si 5 5

2n
-1 _ 173 1 1 1 _ a1
Y (Ag) = §d13g{9/2n o(aor) O, (a) " O (@me) }7 Qon,u(t) = HO sin §(t_auj)'
. j=

Let Ay, =mel +H (n, #ny if k #v), k=0,1,...,n, where H is a certain matrix
with zero diagonal elements. Then the Lagrange interpolation polynomial takes the form

F(A). (1.10)

z": (A= Ap 1)(A—Appa) - (A-Ay,)
(M —m0) -+ (ke = Me—1) (M — Mret1) === (M — )

Given np = cos 2-1x &k =1,2,...,n, this formula is transformed to the following form:

2n—1
2n

7 Lon(A — H)F (i I + H), (1.11)

where 1,(A) = (A—mI) - (A—np—1D)(A — g1 I) - (A —n,I).
In the trigonometric case, for the same nodes Ay, = I + H, 0 < g < 2w, k =
0,1,...,2n, we have

2 . A . A—An_, . A—A oA

T (A n 51nA2A°---s1n it sin QHI.”SIH%FA 12

n(4) = Z sin 2210 ... gip DRkl gipy DRZ kil | gy De—T2n (). (1.12)
k=0 2 2 2 2

Now let us consider formulas of linear and quadratic interpolation of some other
structure for arbitrary matrix nodes Ay and A;. Then under the assumption that
Pi(A) = ABy + C1, where By and C are certain matrices, this problem is solvable if
and only if [2] the function F(A) at nodes Ay and A; is representable as F(4;) = A,V
i =20,1, where V is a certain matrix. In this case for the matrix polynomials

Lio(A) = F(Ao) + (A — Ao) {(A1 — Ao)T[F (A1) — F(Ag)| + N},
Li(A) = F(Ag)+ (A— Ay)B
+ (A= Ao) {(A1 — Ao) T [F (A1) — F(Ao) — (A1 — Ao)B] + N},
where the matrix (A; — Agp)™T is the Moore—Penrose pseudoinverse of (4; — Ag), B is a

certain matrix, N € ker(4; — Ap), interpolation conditions L1g(4;)=L1(A;) = F(4;),
1 =0,1, are met.
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Let’s give one more formula of linear interpolation

Li(A) = F(A0)+/5F[A0+T(A1 — Ag); A — Agldr (1.13)
0

and also a formula of quadratic interpolation
Ly(A) = L1(A)

17
+/[52F[A0+T(A1—Ao)+S(A2—A1);(A—Al)(A_AO)]deT, (1.14)
00

where 6F[A; h] and 62F|[A; h1, ha] are Gateaux differentials of first and second order, at
the point A, in the directions h and (hy, he) respectively.

To make sure that interpolation conditions hold for L1(A) and Ly(A), one may use the
relations 6F[Ag 4+ Th1; hi] = L F[Ag + 7hi] and 62F[Ag + Thy + sha; ha, h] = Z0F[Ag +
Thy + sho; h).

Note that the formula (1.13) is exact for the matrix polynomials Py(A) = Koo +
my
> K1, AKy; of first degree, whereas (1.14) is exact for the matrix polynomials Py(A)=
i=1
Pi(A)+ > B;;AC;;AD;; of second degree, where K;;, B;;, Ci;, D;; are certain

0<,j<my
matrices, and A, Ay and A; are matrices of same size. One may verify this statement by
computing the integrals in (1.13) and (1.14) for F(A) = P1(A) and F(A) = P2(A).

Example 1.2 Let F(A) = e. Then the formula of linear interpolation (1.13) looks the
following way:

11
Li(A) = et + //6(1*5)[A0+T(A1*A0)] (A — Ag)es Aot (=40l gr s
0 0

If the matrices A, Ay and A; are interchangeable and the inverse (A; — Ag) ™!

Ll(A) = 4o + (A — Ao)(Al — Ao)il [EAI — GAO] .

exists, then

The Gateaux differential dF[A; h| of this function at the point A in the direction h

1
can be written as 6F[A4; h] = e? [ e~*AhesAds.
0

2. Integral representations of Lagrange interpolation formula and
of its error in class of analytic functions

While loop integrals of Cauchy type are widely used [3] when interpolating analytic
function of a scalar variable, the theory of interpolation of analytic matrix functions is in
considerable degree based on matrix integrals of Cauchy type. The problem of interpolati-
on of functions given at nodes, that are scalar matrices, is especially close to the classical
problem of function interpolation. We obtain integral representations of interpolation
polynomials and of their remainder terms, using the results [4] for the case of nodes being
scalar matrices.

Let nodes be the matrices Ay, = nl + H (ng # n if k # v), k =0,1,...,n, where
H is a certain matrix with zero diagonal elements, the function F(z) be analytic in the
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domain D with boundary T', and the spectra of the matrices (A — H) and Ay belong to
D. Then (1.2) is representable as

_ wn () —wp(A—H) B 1
L,(A) = 27”,/ NG (1 — A+ H) "F(&1 + H)dE,

where wy,(§) = (& —no)(€& —m) -+ (§ —nn), and for the error r,(A) = F(A) — L, (A) of
interpolation the equity

rn(A) = — /M(gf—A+H)—1F(gI+H)dg

 2mi wn (§)
holds.
IfOo0<m <2m k=0,1,...,2n, the trigonometric interpolation polynomial
2n . A—nol s A—mp Il o A—mpqal s A—nonl
o sin === - - . sin 5 sin 5 < -sin S
Tn(F’ A) - kZ:O sin nk;no ...sin ﬁk*gk—l sin 77k*;7k+1 ...sin 771@*277% F(nkl + H)
can be written as
1 [ Qu(€)cos =2 _ ) (A— H) - A+H
To(A) = — 2 in~!>—— " F(¢T + H)d
W= [ e sint L2 per 1 e

r

and the error takes the form

Qn A_ -
r(A) = ﬁ/%sm 1%(§I—A+H)F(§I+H)d§.
r

Moreover, in the last two formulas F(£) is a 2m-periodic function, the domain D of
analyticity of F is such as depicted in Fig. 1, and ' =T'; UT'5 (see Fig. 1).

ImgA

Fig. 1. The domain D.

Let’s consider a partial case of the two previous formulas. Let n, = 227{“—1717 i.e. the

interpolation nodes are Ay = 2211’:’_71[4— H,k=0,1,...,2n, then T,,(A) can be represented
as follows:

7oAy = b sin 2LEL¢ cos 4 (61 — A+ H) — sin 281 ¢(A — H)
=gz f ERpIEF:
7 (2.1)

x sin~! %(51 — A+ H)F(EI + H)dE,
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1 [sin2tl(A-H 1
/# in~' ~ (&1 — A+ H)F(EI + H)dé. (2.2)

W(A) = = !
() = T sinZ2le 02

3. Interpolation convergence theorems and error estimates

At first we’ll consider convergence of algebraic interpolation on the set Sy, of stochastic
m X m-matrices. Stochastic matrices turn out an important subclass of nonnegative matri-
ces that finds its application when solving applied problem [5]. The main feature that is
further used for investigating the convergence is that absolute values of all eigenvalues of
any stochastic matrix don’t exceed 1.

Let Ax = niI be the nodes of interpolation, where 7 are pairwise different numbers,
k=0,1,...,p, H,(A) be an algebraic matrix polynomial for which the following condi-
tions hold:

H")(A) = FU)(Ay), e =0,1,...,a0 — 1, k=0,1,...,p, (3.1)

where ay, is the multiplicity of the node Ay, ag+a1+...+ 0, = n+1. Then the following
theorem is true [6].

Theorem 3.1 If the function F(z) is analytic in the circle || < 3 and A € S,,, then the
sequence {H,(A)}, n =0,1,2,..., where H,, are defined by the equities (3.1), converges
to F(A) asn — oo for any nodes A, = ni. I, |ni| <1, k=0,1,...,p.

The proof of this theorem is based on the estimate of the error of interpolation r,(A4) =
F(A) — L,(A) which is representable, in this case, in the form

) = 5 [ 25 €1 - ) Plepa

where w,, (A4) = ﬁ (A—ni D), F(€) is a function which is analytic in a domain containing
k=0
the circle [£| < 3, T' is the boundary of the domain of regularity of this function.

Let interpolation nodes be the tridiagonal matrices Ay = A(ag,b), k =0,1,...,n,
having the elements ar (ar # a, if kK # v) in the main diagonal and the numbers b in
the first diagonals above and below the main one. In this case the Lagrange interpolation
formula has the form

(A4 (A A )(A— Ag) - (A—Ap)
La(4) =2 (ar — ao) -+~ (ar, — ap—1)(ar — axs1) - (ax — an)

F(Ay) (3.2)

and for the error r,(A) of interpolation the integral representation

ro(A) = %/%(gl—A—H)‘lF(H—FH)d{“ (3.3)

holds, where w, (&) = (£ —ag)(§ —a1) -+ (§ — ayn), H = A, — oy, integration is over the
circumference |{| =1+ 2(b+ d) + ¢, € is a certain positive number.

Theorem 3.2 If the function F(z) is analytic in the circle |z| < 142(b+d) and A € Sy,
then the sequence L, (A), n = 0,1,2,..., where L,, are defined by (3.2), converges to
F(A) as n — oo for any matrix nodes Ay, = A(ax,b), lax] < d, k=0,1,...,n.

We prove this theorem using the integral representation of the interpolation remainder
in the form (3.3) and an estimate of this integral.
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4. Estimates of trigonometric interpolation error when nodes are
equidistant scalar matrices
Let nodes of interpolation be the matrices

2km
Ay =—-I, k=0,1,...,2
k 2n _"_ 1 3 ) 3 3 n7
and F(z) be a 2w-periodic function, which is analytic in the real axis.
In this case the trigonometric interpolation polynomial (1.3) takes the form

2n
1 . 2n+1 .11
_ (A — 4.1
T"(A)_Qn 1,§:OSIH 5 (A — Ag)sin 2(A AR)F(Ax) (4.1)

and for the error r,(A) of interpolation the formula

in 22t 4
ra(4) = / M2 At Ler — AR, (4.2)

= - sin” "+ =
A7 | sin %g 2

where the path of integration I' = I';y UT'y consists of two segments I'y 5 = {§ : Im¢ =
+e, 0 < Ref < 2w}, is true. Here the numeric parameter € depends on the function F(£).

Theorem 4.1 If the function F(x) is 2n-periodic and analytic in the real axis and all
the eigenvalues of the matrix A belong to the segment [0, 27|, then the sequence {T,(A)},
n=0,1,2,..., where T, are defined by (4.1), converges to F(A) as n — oo, for r,(A) the
estimate |7, (A)|| < Mn™! exp{—ne} holds (m is the size of A, M is independent of n).

To prove this theorem we use the inequality

2n+1

sin

AH S Monmil,

that follows from (1.1), and the inequality

o+ 1 -1

2

(Re€ =+ ie)

sin

2

2 1
ngexp{— nt 5},

where My and M; doesn’t depend on n.

For the same nodes Ay = 2%1’“_:1[ let’s consider the trigonometric polynomial
1 & L, 2n+1
Ton(A) = G IP > sin® (A - Ay
k=0 (4.3)
X [sin_2 A F(Ag)+2 sin_lA_Ak sin_lg sin%F'(Ak) ,

for which the conditions
Ton(Ao) = F(Ao),
TQ"(AIC) = F(Ak)7 TQ/n(Ak) = FI(Ak)7 k= Oa 17 . .,2TL

are met.
The following theorem is proved similarly to theorem 3.
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Theorem 4.2 If the function F(x) is 2m-periodic and analytic in the real axis and all the
eigenvalues of the matrix A belong to the segment [0, 27], then the sequence of interpolati-
on polynomials (4.3) converges to F(A) as n — oo, the following estimate of ro,(A) is
true: ||ran(A)|| < Mn?m~Lexp {—2ne}.

In this case the error rg,(A) of the interpolation formula (4.3) is representable in the
form

1 sin? 22 Asin~'14 1

(A) 2 2 : 1=

T2n sin? Zitle sin )
2

1
= I — A)sin =&d 4.4
» (€1 - A)sinsede,  (44)
r
where the integration path is the same as in the formula (4.2). As above, one has to

estimate the integral in the equity (4.4). To do it, we use the estimate

2 1 1
n ASiIl_l 5

sin

AH S Mgnm,

that follows from the identity

C2n+1 - 1
sin 5 A= <I+Zcos k:A) sin §A.

k=1

Note that in the given interpolation convergence theorems the required domains of
analyticity of interpolated functions are wider than necessary. It is done in order to
simplify the proofs.

A possible direction of further research is application of the obtained results to solving
numerical problems such as approximate integration of matrix functions.
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