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AN INTEGRAL EQUATION METHOD FOR A MIXED INITIAL
BOUNDARY VALUE PROBLEM FOR UNSTEADY STOKES SYSTEM
IN A DOUBLY-CONNECTED DOMAIN
UDC 517.9

R.S.CHAPKO, B.T.JOHANSSON AND I.S.KANTOR

AHOTAIIA. Posrisiiaerbes ducesibHe pO3B’g3yBaHHs II0YaTKOBO-KPAoBOl 3ajad4l
ns piBagHHEdS CTOKCA B TIOCKi# BO3B’sA3HiM 06sacTi. BuKopucToByoun meperso-
penns Jlareppa, HecTarioHapHa 33Ja49a PEIYKYETHCH 10 CUCTEMH TPAHUYHUX 33129
1 pe30abBeHTHOro piBHsaHEsa CTOKCa. 3a J0ImoMOron MoaudiKOBAHUX HMOTEHIIAJIIB
OTPUMAHO CHCTEMY IPAHUYHUX IHTErPATHLHUX PIBHSHB 3 PI3HUMU CUHTYJISPHOCTSIMUA
B gaapax. g ix 9ucesbHOro po3s’a3yBaHHS 32CTOCOBAHO METOJ] TPUTOHOMETPUIHUX
kBaaparyp. Ilpuseseno pe3ynbraTu 9nceIbHUX €KCIEPUMEHTIB, IK1 JeMOHCTPYIOTb,
[0 TOCTATHBO TOYHE HAOJIMKEHHS MOYKHA OTPUMATHU 33 HEBEJUKI 00YNC/IIOBAJIBHI
3aTparu.

ABSTRACT. We present a novel numerical method for a mixed initial boundary value
problem for the unsteady Stokes system in a planar doubly-connected domain. Using
a Laguerre transformation the unsteady problem is reduced to a system of boundary
value problems for the Stokes resolvent equations. Employing a modified potential
approach we obtain a system of boundary integral equations with various singulari-
ties and we use a trigonometric quadrature method for their numerical solution.
Numerical examples are presented showing that accurate approximations can be
obtained with low computational cost.

1. Introduction

The Navier-Stokes equations are a mathematical description (non-linear) of the time-
evolution of a viscous fluid, and are known to be a very accurate model; however, due to
the (mathematical) complexity of these equations, approximations to some special cases
are required. The unsteady Stokes system is obtained as a linearized approximation of the
full Navier—Stokes system when the Reynolds number is small, see for example [11,13].
We shall supply this approximation with mixed boundary conditions, i.e. the velocity of
the fluid is known on a part of the boundary and the traction on the other part. Mixed
boundary value problems occur in many fluid flow problems, see for example [12, 14].
Also, in so-called inverse problems where for example part of the boundary might be
overspecified with no data on the remaining part, iterative methods have been proposed
which in each iteration step solves direct mixed boundary value problems, see [8,9]. Thus,
it is of importance to have a method for unsteady Stokes system which can give accurate
approximations with low computational costs.

Let us formulate the fluid flow situation in a more mathematical way. For simplicity,
we only consider doubly-connected domains. Assume that D; ¢ IR? and Dy C IR? are
simply connected bounded domains with boundaries I'y, T's € C? such that Dy C D; and
let D := D;\D; (see Fig. 1). Define Q := D x (0,00) and ¥y = I'y x (0,00), £ = 1,2.
To further simplify the presentation, we assume that the fluid is incompressible, that no

Key words. Unsteady Stokes system, mixed initial boundary value problem, Laguerre transformation,
boundary integral equations, trigonometrical quadratures, Nystrom method.
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I'y

Fig. 1. Doubly-connected domain D

sources are present and that the fluid is initially at rest, i.e. we consider the following
initial boundary value problem

Au — % —Vp=0 in Q, (1.1)
divu=0 in Q, (1.2)
u=fr on X, (1.3)

T(u,p)va=fa on g, (1.4)
u(,0)=0 in D. (1.5)

Here ¢, is the Reynolds number, u = (u1,uz2) and p are the unknown functions describing
the velocity respectively the (kinematic) pressure, and fi and f2 are given functions that
satisfy the compatibility conditions f¢(x,0) = 0, for every x € D and ¢ = 1,2. As usual
A is the Laplace operator, T(u,p) = pI — (V + VT )u is the stress tensor and vy is the
outward unit normal to the boundary I'y, £ =1, 2.

The classical numerical approximations, i.e. finite differences, boundary element and
finite element methods tend to be rather costly for the time-dependent case since the
entire solution domain needs to be discretized. There are transformation methods such
as the method of Rothe to transform the unsteady system into a Stokes type (steady)
system. In this paper, we propose a novel method for bounded smooth planar domai-
ns which reduces the unsteady Stokes system to a boundary integral equation over the
boundary of the solution domain. This is achieved by employing the so-called Laguerre
transformation in the time-variable giving rise to a system involving the Stokes resolvent
equations. Note here that some aspects of applying integral equation methods for the
stationary case are reflected in [2,7]. In Section 2 the discretization in time is presented
and fundamental solutions are obtained, see Theorem 3. In Section 3 we describe how
the equations can be effectively solved using a Nystrém type method in combination with
the results and fundamental solutions from Section 2. Numerical experiments are given
in Section 4 showing that accurate approximations can be obtained with few boundary
collocation points.

2. Semi-discretization in time and an integral equation method

For the reduction of the unsteady problem (1.1)-(1.5) into a sequence of stationary
boundary value problems we employ the Laguerre transformation [1,4,6]. We search for
the solution of (1.1)-(1.5) in the form of a Fourier-Laguerre series
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u(z,t) = K Z Un (1) Ly (K%) (2.1)
n=0
and -
p(a,t) = K> pn(@)Ln(K%t), (2.2)
n=0
where k > 0is a fixed scaling parameter, L,, for n = 0,1, ..., are the Laguerre polynomials

and u, and p, are the Fourier-Laguerre coefficients. It is straightforward to prove that
the coefficients u,, and p,, satisfy the following sequence of boundary value problems:

n—1

Au, — k*u, — Vp, = k2 Z Uy In D, (2.3)
m=0

divu, =0 in D, (2.4)

Up = f1,, on Ty, (2.5)

T(unapn)VZ - f2,n on FQ; (26)

where f1, and fs, are the Fourier-Laguerre coefficients of f; and f3, respectively, for
n=20,1,.... When n = 0 the sum should be removed from the right-hand side in (2.3).

Theorem 2.1 The sequence of boundary value problems (2.3)-(2.6) has at most one
solution.

Proof. Firstly we show uniqueness of a classical solution of (2.3)-(2.6) when n = 0.
From the first Green’s formula (see [15]) in the case of homogeneous boundary conditions
we have

/ [2|Dug(z)[* + £*uf(z)] dz = 0,
D

where Du := $(Vu+ (Vu)"). Thus ug = 0 in D. Then from the equation (2.3) we obtain
that po is a constant in D, and by using the boundary value condition (2.6) it follows
that pg = 0 on I'y, which then implies that po = 0 in D. The statement of the theorem
follows by mathematical induction. O

Now we wish to reduce the sequence of boundary value problems (2.3)-(2.6) into
boundary integral equations. The use of the classical potential approach for these problems
leads to integral equations with volume integrals over the domain D. Thus, the usual
important advantage of the integral equation method, i.e. the reduction of the problem
dimension, cannot be obtained for this system with the standard approach. To overcome
this difficulty we first define the fundamental solution for the sequence of boundary value
problems (2.3)-(2.6) in the following way:

Definition 2.2 The sequence of pairs (E,,e) consisting of a 2 X 2 matrix E,(z,y) =
(Eni(z,y), Ena(z,y)) with columns E,1,E,2,n = 0,1,..., and a vector e(z,y) =
(e1(z,y),ea(x,y)) is called a fundamental solution for the sequence of systems (2.3)-(2.4)
if:
n
AzEn,l — /€2 Z Ekyg — Vme = 5(1’ — y).[l,
Z, (2.7
divoEpe =0, €(=1,2.

Here I = (I1,15) is the 2 x 2 identity matrix, 0 denotes the Dirac function and the
differentiation in (2.7) is taken with respect to the x-variable.
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To shorten the presentation we introduce the following polynomials, which we will use
to represent E,:

[n/2] [(n—1)/2]
v(r) =Y anomr™™, wa(r)= D angmpr’™H
m=0 m=0
for n =0,1,..., where the coefficients a,, », satisfy the recurrence relations

ano=1, n=0,1,...,

K
Up,.n = ?anfl,nfla n=12...,
n
1 m+177
an,m:m{él[ 5 :| an’m+1+m2an1,m1}, m=n-—1,...,1.

Here [r] defines the integer part of a real number r > 0. In addition, we introduce the
following sequences of functions

D, (k,1) = Ko(kr)vn(r) + K1 (kr)wn(r),

Uo(k,r) = % (lni - Ko(lﬂ")> ;

n

1
(k1) === > (~1)"Cl'®pm(k,1), n=1,2,...

m=0

and
n

Qn(k,r) = Z (=nmer [‘I)m(ﬁ, r) — <I>m,1(/<¢7r)],

m=0

where Ky and K, are modified Hankel functions and C’fj are binomial coefficients.

Theorem 2.3 The pair (E,,e) with

Ey(2,y) = —cx[Qn(k, [& — y|)I + grad,grad; U, (, |z — y|)] (2.8)
and ( )
cx(x —
e(r,y) = —ﬁ (2.9)

is a fundamental solution of (2.3)-(2.4) in the sense of Defintion 2. Here we have set
cr = (2m)7 L.

Proof. We follow the ideas of the proof for the analogous case when the sequence is
received by Rothe’s method [3]. Using the Fourier transform in two variables in (2.7), we
receive

~ n—1
_(|£|2 + kz)Enyj — zf/e\j = k2 k,Z,:O EkJ' + Cﬂ—Ij,
<§7 EO,j> = Oa

where En and € are the Fourier transform of F, and e, respectively. From (2.10) we
deduce that

(2.10)

i€ = " oy
e(§) = |C£|2 and En(f) = _Cﬂ'[[ - J(E)] Z W

(2.11)

m=0
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with the matrix J(w) = % for w € IR?\ {0}. The inverse Fourier transform applied to

(2.11) together with some additional recurrence relations give the representations (2.8)
and (2.9) (for the details see [1]). O
Now, we define pairs of single- and double-layer potentials for the sequence (2.3)-(2.4):

Z /En m(T, )om(y)ds(y), =€ D, (2.12)
m= 01—‘2

ne)0) = - [(ew0)m)ist), @D, (2.13)
rrL:Ol—‘2

-y [8Er @0 onw)dstw). o€ D (2.14)

m=0,
and .
(wnp)(@) = Y /<[Ty(670)(%y)m(y)]T,wm(y)MS(y% zeD, (2.15)
m=0p
respectively. Here ¢ = (o, - . ., ¢n) are unknown densities.

Theorem 2.4 The following combination of single- and double-layer potentials
un(z) = (WapW)(@) + (Vap®)(2), we€ D, (2.16)

pn(z) = (wngo(l))(x) + (’Un(p(Q))(l‘), r €D, (2.17)

is the solution of (2.3)-(2.6) if the densities p(!) and ¢ satisfy the sequence of systems
of integral equations

o0 (x +Z/E (y)ds(y) = Fi(z), zely £=1,2 (2.18)

k=17,
with the righ-hand sides

Fp(z) = fon(@ = o0 +ZZ/Enmxy<pm>()ds(),xeu

m=0 m=0 k= 1F

1
2
for { = 1,2. Here, the following matrices were introduced

Erlnl(x7y) = [Ty(Enve)(xay)Vl(y)]Tv Erltz(xvy) = En(xvy)

and
E2 (2,y) = To[Ty(Ens ) (z,y)v1(y)] T va(2), E2(2,y) = Tu(En, €)(z,y)vi(2).

Proof. From the Definition 2.2 of a fundamental solution we deduce that the represen-
tations (2.16) and (2.17) with o) € C(T'y), £ = 1,2, satisfy the equations (2.3) and (2.4).
It follows from Theorem 2.3 that the potentials have jump relations on the corresponding
boundaries analogously to the potentials for the resolvent Stokes equation (see [15]). Then
from the boundary value conditions (2.5) and (2.6) we conclude that the densities solve
the integral equations (2.18). O
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Theorem 2.5 For any two sequences { fo.n}5° with fo., in L*(Ty), E = 1,2, the sequence
of systems of integral equations (2.18) possesses a unique solution <p ) e L%(Ty), £ =1,2.

Proof. Tt is straightforward to check that the kernels E%(x,y), £ = 1,2, have a logari-
thmic singularity for * = y, and that the kernels E*‘(x,y) are continuous for k # /.
Therefore, the corresponding integral operators in (2.18) are compact as mappings from
L?(Ty) to L?(T'). Then the statement of the theorem follows from the uniqueness Theorem
2.1 and the Riesz theory (see for example [10]). O

3. A Nystrom method

Assume that the boundary I'y have the following parametric representation
Ly =A{ze(s) = (we1(s), me2(s)) - s€[0,2n]}, £=1.2,

where the functions x, € C? are 2m-periodic with |z)(s)| > 0 for all s, such that the
orientation of I'y is counter-clockwise.

Then, after some additional transformations, we can rewrite the system (2.18) in the
parametric form

0O (s Z/E“ 5,0)p®) (0)do = Fi(s), se[0,2n], £=1,2 (3.1)
k=17

with the corresponding parametric right-hand sides

1 1
F’rl;() fen(e(s *Z (/) ?

for s € [0, 27], where cpgf)(s) := @n(xe(s)) and the kernels have the form

B (5,0) = "By ((s), o (0) | (0)]

for n = 0,1,... . As mentioned above, the diagonal kernels in the system (3.1) have a
logarithmic singularity, which we represent in the form:

Eff(s, c)=1In (4 sin25 G) Efﬁ(s,a) + Eﬁﬁ(s,a),

where the smoothness of the new kernels Ef depends on the smoothness of the boundaries
Ly.

For the numerical solution of the obtained systems of integral equations we use a
Nystrém method based on trigonometrical quadratures [10]. We choose M € IN and an
equidistant mesh by setting sy := kﬁ” , k=0,...,2M —1, and use the following quadrature
rules

1 e | 2M
32 ), 1= gy 3 ) (3.2
and
1 2 2M—1
% /. f(o)In (48111 >d0'~ Z Rii—j f(sk), (3.3)
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with known weights Ry, (see [10]). Using these quadratures in (3.1) and after collocating
at the points s; we receive the following sequence of linear equations with the same matrix
and recurrent right-hand sides

1s 1
5“057?)(51')* > {(Rli—klE%(ShSk) QMEm(Sz,Sk))wff)( k) +
- (3.4)
1 N
+ oy Bo” (s sl (sk) | = Falsi), i=0,...,2M —1

for { =1,2 and n=0,1,...,N. Of course, the approximate values l:_’f;(sl) for the right-
hand sides are also obtained with the help of (3.2) and (3.3). The general convergence
analysis and error estimate for the Nystrém method in [10] in Sobolev space settings leads
to the following result.

Theorem 3.1 For every n = 0,1, ... and sufficient large M € IN there exists a unique
solution of the linear system (3.4) and the following error estimates hold

185 = e1lg < CaM PPy, £=1,2,
With0<Cn,1§q§pand%<p.

Now the solutions of the stationary problems (2.3)-(2.6) for n = 0,1,..., N, can be
approximated in the following way:

1 2M—1 n 2
(@) = 337 D D Y Bl (@ we(s)) (sw)lel(sn)l, @ e D
k=0 m=0/¢=1
and
1 2M—-1 n .
Bal®) = 537 ([T (e, 0) (z, 1 (s1)) (1 ()] To B (s0)) |2 (1) | +
k=0 m=0

+ (e(x,za(s8)), B (si))eh(si)l), @€ D

and, according to (2.1) and (2.2), the numerical solution of the time-dependent problem

(1.1)-(1.5) has the form
N

uly(z,t) = K Z Ty (2) L (k%)

n=0

and

N
N, t) = K2 Zﬁn(a:)L
n=0

4. Numerical results

For the numerical investigations of (1.1)-(1.5) and (2.3) — (2.6) we choose boundaries
I'y and I's with parametric representations (see Fig. 2)

Iy = {z1(s) = (cos(s),sin(s)), 0<s < 2w},

Iy = {wa(s) = (0.4cos(s) + 0.3cos(s)?,0.2sin(s)), 0<s <27}
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0.57

-1 -0.5

0 0.5

Fig. 2. The domain D with boundaries I'1 and I'2

Tabl. 4.1. Numerical results for the stationary problems (2.3)-(2.6)

N | M 6711 (0.6,0.2) 531(0.67 0.2) el (0.6,0.2)
0 | 16 0.000001180867 0.000000423457 0.000002997811
32 0.000000000016 0.000000000004 0.000000000040
5 | 16 0.000001814180 0.000001205075 0.000005748461
32 0.000000000018 0.000000000028 0.000000000087
10 | 16 0.000010341692 0.000009842761 0.000038041917
32 0.000000002483 0.000000002491 0.000000009571
15| 16 0.000040324993 0.000008203909 0.000092391487
32 0.000000000302 0.000000002014 0.000000002439
Tabl. 4.2. Numerical results for uﬁ,’l(x,t)
4 M N =10 N =15 N =20
0.0 | 16 | —0.000018743224 0.000165411802 0.000067816413
32 | —0.000018743726 0.000165412338 0.000067816508
0.4 | 16 0.005678369917 0.005593378763 0.005598669639
32 0.005678366292 0.005593374726 0.005598665603
0.8 | 16 0.017678245104 0.017723786862 0.017688866743
32 0.017678243559 0.017723785651 0.017688865394
1.2 | 16 0.029717050644 0.029818467058 0.029845344526
32 0.029717051073 0.029818467909 0.029845345531
1.6 | 16 0.038784159571 0.038800719652 0.038842962646
32 0.038784159947 0.038800719901 0.038842963051
2.0 16 0.043924904863 0.043814627782 0.043803161052
32 0.043924903127 0.043814625421 0.043803158567
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Tabl. 4.3. Numerical results for uﬁﬁ(w,t)

t M N =10 N =15 N =20
0.0 | 16 0.000054526038 0.000157807726 0.000054253741
32 0.000054526617 0.000157807141 0.000054251694
04 1] 16 0.005297759199 0.005243517133 0.005249668651
32 0.005297755441 0.005243513789 0.005249665335
0.8 | 16 0.016785482373 0.016803762350 0.016766268306
32 0.016785471841 0.016803751399 0.016766256879
1.2 ] 16 0.028500415549 0.028571805673 0.028599560434
32 0.028500399911 0.028571789665 0.028599544897
1.6 | 16 0.037490483969 0.037520729243 0.037566301312
32 0.037490466302 0.037520711851 0.037566284473
2.0 16 0.042759670018 0.042697491723 0.042686969330
32 0.042759653276 0.042697475657 0.042686952940
Tabl. 4.4. Numerical results for pY (z,t)
t M N =10 N =15 N =20
0.0 | 16 | —0.005602252652 | —0.002945981631 | —0.001649195637
32 | —0.005602254212 | —0.002945990717 | —0.001649210375
04| 16 0.102448026181 0.101521606539 0.101444012597
32 0.102448062583 0.101521645649 0.101444051891
0.8 | 16 0.141287330419 0.142271049047 0.142740529876
32 0.141287355059 0.142271071006 0.142740549924
1.2 | 16 0.139242997263 0.140044304467 0.139698260091
32 0.139242996885 0.140044301634 0.139698258978
1.6 | 16 0.116126075732 0.115418162382 0.114847970084
32 0.116126054301 0.115418142662 0.114847952618
201 16 0.085094775513 0.083530115448 0.083659465225
32 0.085094742647 0.083530086983 0.083659435730

We investigate the stationary and non-stationary problem separately.
1. We shall investigate the numerical solution of the stationary problems (2.3) — (2.6)
with ¢, = 1. Choosing boundary functions

and

fin() = Epa(z,2%),

xz eIy,

z* = (0.9,0.9)

fan () = To(Ena(, 27), ex(, 27)) (z)v2(2),

where F,, 1 is the first column of the fundamental matrix F,, and e; the first component
of fundamental vector e, then the solution of (2.3) — (2.6) are u,(z) = E, 1(z,2*) and

37
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pn(:) = ep(z,2*) for z € D and n =0,1,..., N. Table 4.1 contains the error estimates
en() = [ty (@) = uy ()],
en (@) = [y s (2) — up (2)]

and

Eﬁ(x) = |57L,M(x) — pn(x)],

where M is the mesh variable and u,, and p, are the exact solutions of (2.3) — (2.6) with
k? =1.

2. We then consider the time-dependent case and choose the time interval as [0; 2] and
observation point z = (0.6,0.2). The functions f; and f, are chosen as:

22 N\
fi(z,t) = (8e_t, 8e_t) , zely

and
fo(z,t) =0, =zeTls.

Note that the function f; has an analytical expansion in terms of Fourier-Laguerre series,
thus the correctness of the numerical presentation of the Laguerre’s transformation can
be checked.

In the Tables 4.2, 4.3 and 4.4, the numerical solution (uAle,ujjtg’Q), pd; of the non-
stationary problem (1.1)-(1.5) are presented for different time points at the above
observation point x.

The obtained results show that we have exponential convergence of the proposed
method with respect to the spatial coordinates.
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