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ON AN INDIRECT INTEGRAL EQUATION APPROACH
FOR STATIONARY HEAT TRANSFER IN SEMI-INFINITE
LAYERED DOMAINS IN R® WITH CAVITIES

UDC 517.9

R.S.CHAPKO!, B.T.JOHANSSON! AND O.B.PROTSYUK!

Anoramisa. O6aacti, sKi MIiCTSATH BHYTPIITHI TDAHWIN, HANPWUKIAT, KOMIIO3WTHI
MaTepiajiu, BUHUKAIOTH y 6araTb0X 3aCTOCYBAHHSAX. MU PO3IIIsiIa€MO BUIAI0K HIAPY-
BaTOl YacTKOBO-HEeOOMexkenoi obnacri B IR® 3 ckimyenHuM umcIoM 0OGMEXKEHHX 110-
poskHUH. MOIesIio € CTaIfioHapHuil TeJIONePeHoOC, [0 OMUCYEThC PIBHAHHAM Jlarm-
J1aca 3 KyCKOBO-TIOCTiitHIM KoedirmienTom rermnonposigaocTi. Termmosuii moTik (ymoBa
Heiimana) 3a1a€TbCa HAa HUZKHIN OBepxHI mapyBaToi obraci i pisai rpanmaHi ymMoBI
Ha Me¥KaX NOopOoKHIH. Ha moBepxHi KOHTAKTy MIapy i MBOPOCTOPY 3 HOPOXKHIHAME
BUKOHYIOTHCSA 3BUYANHI YMOBHU CIPsKEHH: (HEMEePEpBHICTh PO3B’sA3Ky 1 HOPpMAJIBHOL
noxigaoi). Jdng edexTuBHOr0 OGYUC/IEHHS CTAIIOHAPHOTO TEMIIEPATYPHOrO MOJIS
B YaCTKOBO-HEOOMeXkeHiil 06s1acTi MM BUKOPHCTOBYEMO TexHiKy Marpuii ['pina i
3BOAMMO 33Ja9y O FPAHUYHUX IHTErpAIbHUX DIBHAHD 3 CIA0KMMU OCOOIMBOCTSIMU
10 TMOBEPXHAX IOPOXKHUH. lnceabHE DPO3B’A3yBaHHS IUX IHTErPAIbHUX DPIBHAHD
3aiiicHoeThest MeTooM Binepra [20]. IIpumnyckaoun, 1m0 KoK HA TIOPOXKHUHA € TOMEO-
MopdHa cdepi, IPONOHYETHCS AUCKPETHUI IIPOEKINIHII MeTo 3 cymep-aaredpait-
HuM nopsaakom 36ikuocri. [Tpuseieno nosenenns oninku moxubku meromy. 3 ilicHeni
qUCesIbHI €KCIIEPUMEHTH MiATBEPIKYIOTh €(DeKTUBHICTH 1 BUCOKY TOUHICTH 3aIIPOIIO-
HOBAHOTO METOZY.

ABsTRACT. Regions containing internal boundaries such as composite materials arise
in many applications. We consider a situation of a layered domain in IR? containing a
finite number of bounded cavities. The model is stationary heat transfer given by the
Laplace equation with piecewise constant conductivity. The heat flux (a Neumann
condition) is imposed on the bottom of the layered region and various boundary
conditions are imposed on the cavities. The usual transmission (interface) condi-
tions are satisfied at the interface layer, that is continuity of the solution and its
normal derivative. To efficiently calculate the stationary temperature field in the
semi-infinite region, we employ a Green’s matrix technique and reduce the problem
to boundary integral equations (weakly singular) over the bounded surfaces of the
cavities. For the numerical solution of these integral equations, we use Wienert’s
approach [20]. Assuming that each cavity is homeomorphic with the unit sphere, a
fully discrete projection method with super-algebraic convergence order is proposed.
A proof of an error estimate for the approximation is given as well. Numerical exam-
ples are presented that further highlights the efficiency and accuracy of the proposed
method.

1. Introduction

Regions having internal boundaries, that is boundaries where no boundary data is
given, arise in many applications. For example, composite materials such as multilayer
(sandwich) beams, pipes and rocks, see for example [14]. Other applications are Li-ion
battery technologies using nanoarchitectured carbon networks [19], applied potential to-
mography [2], and the distribution of stress in a medium containing holes or inclusions [4].

Key words. Semi-infinite multilayer domain; Green’s matrix; Boundary integral equations; Weak
singularities; Galerkin method; Spherical functions, Gauss-Legandre quadratures, Sinc-quadratures.
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The governing equations in these examples is the Laplace equation with piecewise constant
physical parameters. Moreover, the conditions at the interfaces are usually continuity of
the solution and its normal derivative.

Only in special cases and for certain domains there are explicit analytical solutions
to these problems. Thus, in general, numerical methods are needed to generate an ap-
proximation to the physical quantities of interest. As is well-known, standard domain
discretisation methods such as the finite element method (FEM) is not easily adjustable
to problems with internal boundaries. Instead, boundary integral methods are more suit-
able for this class of problems since they provide a natural treatment of the interface.

An additional complication from a numerical point of view is models posed on un-
bounded domains. Such models include the irrotational flow of an incompressible fluid
exterior to a body [9], heat flow in the oceans [16] and the distribution of stresses in an
infinite medium with holes or inclusions [4]. In all these cases, the surrounding media can
be treated as infinite, thus leading to unbounded domain problems. Employing for exam-
ple the FEM, truncation of the solution domain is usually needed. Also, from a theoretical
point, of view, partial differential equations in unbounded domains are challenging and
non-standard function spaces are needed to prove properties of solutions, for an overview,
see the introduction in [15].

We shall consider a model having both these difficulties, that is we have a layered
unbounded region. We consider a semi-infinite bi-material represented by the upper half-
space in IR® and having an internal boundary described by a plane parallel with the zy-
plane. Moreover, above this interface, the medium contains a finite number of bounded
smooth cavities, see further Fig. 1. The heat flux is prescribed at the bottom of the region
and various boundary conditions such as the temperature or heat flux or a combination of
them are imposed on the surfaces of the cavities. The interface conditions are continuity
of the solution and its normal derivative. We assume stationary heat transfer modelled
by the Laplace equation with piecewise constant conductivity. The aim is to construct
the temperature field throughout the region.

As mentioned above, integral equations are suitable to use for interface problems.
Thus, using a Green’s matrix technique, we reduce the problem to boundary integral
equations on the (bounded) surfaces of the cavities. In general, we obtain equations of
the second kind with kernels having a weak singularity. An explicit expression for this
Green’s matrix was recently derived in [18].

To numerically solve the obtained boundary integral equations, we shall employ the
Wienert’s approach [20]. This approach has attracted much attention recently, see for
example, [5,6,8,11], and advantages being that smaller linear systems are obtained as
well as high accuracy. The higher accuracy is partly due to, as opposed to the boundary
element method (BEM) [10], there is no need to discretize the surfaces in the boundary
integral equations. To use [20], we assume that each of the cavities can be mapped one-
to-one to the unit sphere. Clearly, this is a restriction of our approach, however, one can
generalize and use differential geometry and assume that the cavities are parametrized by
surface patches of the unit sphere or one can numerically construct an approximation to
such a map. This is though deferred to future work.

Using the assumption that the cavities can be parametrized via the unit sphere, a fully
discrete projection method with super-algebraic convergence order is proposed to solve the
obtained boundary integral equations. The densities in the boundary integral equations
are approximated in the finite-dimensional space of spherical harmonics. A proof of an
error estimate for the approximation is given as well. Numerical examples are presented
that further highlights the efficiency and accuracy of the proposed method.

The main novelty of this paper is the reduction of the problem using the Green’s ma-
trix and the combination and extension of [20] to obtain a numerical method with high
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accuracy for semi-infinite layered materials, as well as proving error estimates. Clearly,
our work is timely due to the recent interest into the method [20] and the recent derivation
of the Green’s matrix [18]. Moreover, it is of importance due to the many practical engi-
neering applications mentioned above that can be formulated in terms of our equations,
and the problem of solving these using standard numerical techniques. Also, having an
efficient solver for these direct problems opens the possibility to consider inverse problems,
and, for example, generalize the work [3] to IR®.

For the outline of this paper, in Section 2, we formulate our problem mathematically. In
Section 3, we show how to reduce our problem using a Green’s matrix technique, to weakly
singular boundary integral equations over the surfaces of the cavities, see Theorem 3.3.
Solvability of these equations are also mentioned, see Theorem 3.4. The discrete projection
method to solve these singular integral equations is given in Section 4. Moreover, we prove
an error estimate for our approach, see Theorem 4.2. Numerical examples are given in
Section 5, both for regions with one and several cavities. These examples illustrate the
efficiency and accuracy of our proposed approach.

2. Formulation of the problem

Let Dy :={z = (x1,22,23) : 0 < x3 < h, (x1,22) € IRQ} be a (strip) layer in R3 having
thickness h and contained within the two parallel planes I'y and I's (which constitutes the
boundary parts of dD;). Moreover, let Dy := {x = (x1,x2,23) : 3 > h, (x1,22) € R?}
be the half-space in R® bounded by the plane I'y, and let C := Ui, Cx, m € IN, be a
set of cavities (smooth bounded non-overlapping domains in IR®) contained in the half-
space Do, i.e. Cy; C Da, having boundary S, = 0Cj, (see Fig. 1). Physical properties, such
as conductivity or fluid viscosity, in D; := Dy and Dy := Ds \ C are characterized by
constants A" and A®) | respectively.

X,

3h

=Y

Fig. 1. A semi-infinite layer domain and cavities with surfaces Sg, k =1,2,3

The function
tl(x), T € Dl,
t(z) =
ta(x), x € Dy,
defined in the piecewise-homogeneous solution domain D := D; UDs is assumed to satisfy

the Laplace equation
At =0 inD, (2.1)



ON AN INDIRECT INTEGRAL EQUATION APPROACH FOR STATIONARY HEAT 7

together with the Neumann boundary condition

)\(1)887; =—8 only, (2.2)
the usual transmission conditions
t1 = to, A(l)g—; = A(Z)g—z on I'y, (2.3)
the boundary conditions
lto = fr onSy, k=1,...,m (2.4)
and the regularity condition
t(x)=0(|z|™Y), ze€D, |z|— 0. (2.5)

Here, the boundary operator ¢ corresponds to the Dirichlet (¢u := u), Neumann (fu :=
du/dv) or Robin (fu := A?du/dv + ayu) boundary condition, and 3, ay and fi, k =
1,...,m, are given boundary functions with oy being non-negative.

Clearly, the standard Green’s formula for the Laplace equation holds in D. Thus,
following the usual steps for potential problems, one obtains the following result.

Theorem 2.1 Every boundary value problem of the form (2.1) — (2.5) has at most one
classical solution.

We assume that data are given and compatible such that (2.1) — (2.5) has a classical
solution (which in particular is assumed to be twice continuously differentiable in D).

3. Indirect boundary integral equation method
To reduce the boundary value problem (2.1) — (2.5) to boundary integral equations over
the surfaces of the cavities Ci, we introduce the Green’s matrix [13] for the equation (2.1)

with homogeneous Neumann boundary condition (2.2) and the transmission conditions
(2.3).

Definition 3.1 The 2 x 2 function matrix {Gy;}; ;_, with elements that satisfy the con-
ditions

AG;i(z,y) = —%5(@" —vy), z€D; yeD, (3.1)
AGs_;;(z,y) =0, z€ Ds_;, ye€D,, (3.2)
A(l)%(x,y) =0, z€l'y, yeDy, (3.3)
O3
Gri(z,y) = Ga(x,y), /\(1)% )%(x,y), xels, yeD,;,, (34)

= (2
6x3 (x,y) A 8x3

wherei = 1,2, and 0 denotes the Dirac’s function, is called the Green’s matrix or influence
matrix for the boundary value problem (2.1) — (2.3).

We use the following notation Z, = (x1,%2,2nh + x3) for n € N, v* = (y1,y2, —y3),
v =D = X))/ AV 4+ X\®) and G, (z,y) = |&n — y|7t + |Z — y* |71
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The Green’s matrix for the boundary value problem (2.1) - (2.3) has the form [18]

1 oo
G11($7y) = m Go(xay>+Zvn(G7n(may>+Gn($7y))
n=1
1 = n/l~ —1 ~ *|—1
G12($>y)=m G0($7y)+zlv (|Z—n =yl +Zn — ¥ )] )

G21(=’C, y) = G12(y, x),

Gaa(w,y) =

Go(a,y) + Y v"(|#n — y"| 7" = |En2 — y*l‘l)l :

n=1

1
47 \(2)

With the Green’s matrix we can construct an integral representation for the solution of
the Neumann boundary value problem in the semi-infinite layered region consisting of D
and D»s.

Theorem 3.2 For the solution of the boundary value problem

ATZ‘ =0 in Di,
0
)\(1)8—; =—3 onlI}y,
87’1 87’2
AL @222

7i(z) = O(|2[7"), @ €Dy, 2] — oo,

T = To, on I's,

the following boundary integral representation formula holds

T’i(x) = Gil(‘ra y)ﬁ(y) dS(y), HAS D’ia for i= 17 27 (35)
Iy

where {G;}7 ;_, is the Green’s matrix given above.

Proof. Taking into account the defining properties of the functions in the Green’s matrix,
i.e. the functions G,i, and the conditions for the solutions 7;, ¢ = 1,2, we have the
representations

ri(z) = A /D (Gar (2, 9) Ati(y) — t:(4) AGi ()] dy

+/\(2)/ [Gia(,y)Ati(y) — t:i(y)AGia(x,y)] dy, =€ D;, i=1,2.
Do

The first Green’s theorem and the given interface conditions for Gy, (see Definition 3.1)
and 7; (see (2.3)), lead to the representation (3.5). O

We shall then construct the solution to (2.1) — (2.5) in the form of the following
modified single-layer potential

m

ti(z) = Z/ pi(y)Gia(x,y) ds(y) + i(x), xe€D;, i=1,2, (3.6)
k=1" 5k

with densities p, € C(Sk) and 7; given by (3.5). The next result gives conditions for the
densities py to guarantee that ¢;, ¢ = 1,2, is a solution to (2.1) — (2.5).
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Theorem 3.3

a) Dirichlet condition on Sy: The solution of the mixed Neumann-Dirichlet boundary
value problem (2.1)—(2.5) can be represented in the form (3.6), where the densities pu
satisfy the system of integral equations of the first kind

Z/s y)Gaa(z,y)ds(y) = fi(z) —e(x), €S8, i=1,...,m. (3.7)

b) Neumann condition on Sy: The solution of the Neumann boundary value problem
(2.1)—(2.5) can be represented in the form (3.6), where the densities y, satisfy the system
of integral equations of the second kind

m 8G22 ) B

8’7'2
ay( x),

(3.8)
= fi(z) —

€S, i=1,...,m.

¢) Robin condition on Si: The solution of the mixed Neumann - Robin boundary value
problem (2.1)—(2.5) can be represented in the form (3.6), where the densities py, satisfy
the system of integral equations of the second kind

g+ 3 [ o) YO LD o)) | o) =
k=1 k

Proof. From the Definition 3.1 of the Green’s matrix and Theorem 3.2, it follows that the
representation (3.6) satisfies the equation (2.1), the Neumann boundary condition (2.2),
the transmission condition (2.3) and the regularity condition (2.5). Since the function G
can be written in the form

1 1

Gnle9) = @ o=y

+ Gaa(,y)

with a smooth part égg, the single-layer potentials in the representation of 5 in (3.6) have
the properties of the classical single-layer potential for the Laplace equation. Thus, the
standard jump relations hold, and this then imply the corresponding integral equations
for each type of boundary conditions imposed on the cavities. O

The Riesz-Schauder theory [10,12] applied to the corresponding integral equations in
Theorem 3.3 together with Theorem 2.1 lead to the following result.

Theorem 3.4
(i) Dirichlet case: For 3 € L*(I'y) and fi, € CY7(Sk), k =
equations (3.7) has a unique solution p, € C*7(Sy), k

(ii) Neumann case: For 3 € L*(T1) and fi € C(Sk), k = .,m, the system of integral
equations (3.8) has a unique solution puy, € C(Sk), k=1,...,m.

(iii) Robin case: For 8 € L*(I'y), ax € L=(Sk), ax > 0 and fr, € C(Sk), k = 1,...,m
the system of integral equations (3.9) has a unique solution u; € C(Sg), k=1,...,m

1,...,m, the system of integral
1,...,m.
1
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4. Numerical solution of the weakly singular integral
equations (3.9)
We consider here in detail the system of integral equations (3.9), since this corresponds
to the most general boundary condition in (2.4), and the results for the equations (3.7)
and (3.8) follows as special cases. Taking into account the representation for the Green’s
matrix (given in the beginning of Section 3) we can rewrite the system (3.9) in the
following form

Ql(xay)
lz =yl

=gi(x), €S8 i=1,...,m,

() | + Qale)| ) =

(4.1)

where
1 [eil®) | (y—2)- ()
Q2(1'7y) a(Q)) [|$—y| 1+Z'U ‘xn y| ! |xn 2_y| 1)‘|

1 =) @) | [ =) v@) | (s =) (@)

il e S { TP [y }]
and

0i() = flx) = [ BOAO G (2.9) + ()G (. 9) ds() (42)
vith | =) () . (" ) ()

~ _ y—x) vx Yy —x) vz

e !

4.1. Rewriting the integral equations over the unit sphere

As mentioned in the introduction, we assume that the surfaces Sk, k& = 1,...,m,
can be bijectively mapped onto the unit sphere 2, i.e. there exist one-to-one mappings
qr : 2 — Sj, with the corresponding smooth Jacobian Jg, .

Taking into account the parametric representation of Sy, we reduce the system of
integral equations of the second kind (4.1) to the following equation over the unit sphere

1 . N . .
—5%(@) +(QY)(@) =g(@), e (4.3)
Here, we used the following notation & = p(6, ¢) = (sin 6 cos ¢, sin fsin ¢, cos9), 6 € [0, 7],

€ [0727T]a ¢(§7) = (NI(QI(Q))a .. 7Mm(Qm(‘%)))T7 the operator matrix Q = {Qik}xlk:l
with elements

V(a,9) N I
Qui)(a) = [ w(a) qu L 4 QR @0 | ds(@). Feq

where Q) (#,9) = Q1(a:(2), qu(9)) I, (9) and Q) (2,9) = Q2(4i(2), (7)) Ty, (§) and the

right-hand side
g=(91,-9m)" (4.4)



ON AN INDIRECT INTEGRAL EQUATION APPROACH FOR STATIONARY HEAT 11

with elements ¢;(Z) = ¢;(¢:(2)) and g;(x) is given by (4.2).
Clearly, the diagonal operators @Q;; have weak singularities and we can write them in
the form

N V@ pFEGED | ey |
(szw)(x)—/gi/)(y)[ A| “!‘Q” (az,y) ds(y), (45)

ze, i=1,...,m,
with o
1z — 9
19: (%) — ¢:(9)]
Let 7 = (0,0,1) be the north pole of Q. It is convenient to move the singularities

in the operators Q;; to the north pole [5,8,20]. To do this, we introduce the orthogonal
transformations for ¢ €R,

FL(j:7y) =

cosé( —siné 0 cosé( 0 —siné
Dp(&§)=| sin& cos¢ 0 and Drp(¢§) = 0 1 0
0 0 1 siné 0 cosy

The linear orthogonal transformation T; = Dp(¢)Dr(0)Dr(—¢) has the property that
T:& =1 for all € Q. We also introduce an induced transformation 7; on C(f2) as

T(9) =9(T;'9), yeQ veC(Q)
and its bivariate analogue

Tob (Y1, 92) = O(T; "o, T; '), ¢ € C(Qx Q).

Since |z —g| = \T{l(ﬁ—ﬁﬂ = |n—7)| with 77 = T; 7, the operators (4.5) can be transformed
into

o | B (LT P L
(Quv) (@ / To(i) [ (m”_) - R0 7.0 0,0)| dsta), <0
for ¢ = 1,...,m. The functions F; are then continuous with respect to 7 for fixed & € €.

4.2. A projection method on the unit sphere

For the numerical solution of the system of integral equations (4.3) we shall employ
Wienert’s approach [5,8,20] based on spherical harmonics. Let

YR — ImYMM, 0< k<,
L Re}/@,\k\a _Z§k§07

with the spherical harmonics Yy i, [1]. Let IP,, denote the space of spherical polynomials of
degree at most n on 2. A basis for P, is the set of orthonormal spherical harmonics Y/jc,
0</l¢<n, |kl <

We introduce the orthogonal projector

,Cn/’l[) = Z Z (¢a }/}ﬁ)n/n%a 1/1 € C(Q)

£=0|j|<e
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with the discrete inner product (-, ), given by

on’+1n'+1

Z Z Np/as/v 0 1y Pp! )) ( (98/790/)’)),
p'=0 s'=1
where ¢, = p'n/(n' + 1), 0y = arccoszy with zy being the zeros of the Legendre

polynomials P41, Gy = 2(1— 22 )/((n’—I—l)Pn/(er))2 and fi,y = 7/(n’+1). This discrete
inner product is the result of applying the rectangular Gauss quadrature rule (Gauss-
Legendre rule) to the corresponding integral over the unit sphere .

The following quadrature is used for the continuous integrands in (4.3):

2n'+1n/+1

[ ) asti) ~ / Lo @ ds@) = S S i fp0sr00)).  (46)

p'=0 s'=1

The numerical quadrature employed to obtain high accuracy for integrands having a
weak singularity has the form

2n/+1n'+1

IG) 45 ~ /Q (ﬁfﬂif = 3 > b SO 0p)) (&)

o |n—1| =0 s'—=1

with weights

’

In [5,8] it is shown that the quadratures (4.6) and (4.7) have super-algebraic convergence
order.
Thus, for the case of continuous kernels Qix(#,4) = Ql(-,i) (Z,9)/16:(&) — qe(9)] +

Qgi)(i‘, ) in (4.3) we have the approximation operators

Q@) = [ (L (@l YN @ ds(i), i 7k
and for the kernels with a weak singularity,

= OW (A VT (VW (F

|7 — 1]
We seek the numerical solution () € P, x...xP, = I, P, of (4.3) via a projection
method, which leads to the (projected) operator equation

+ (LA TR (2, ) T (D)) () | ds(i).-

1 /
_§,¢(n) + £, Q" ,(/)(n) = Logu, (4.8)
where Qn, = {Q?k,}:tlkzl and gn = (gLJV[, L. ,gm7M)T with

9im(2) = filai(@)) — | Sa{B()G21(ai(@), ) + i(qi(2))Ga1(ai(@), ) Hy) ds(y). (4.9)

I
Here, Sy is the operator corresponding to sinc-approximation [17]
sin | ;7= (y1 — jhoo)} sin [i(yg — kheoo)

(Sm)(y Y (jhoo, khoo ) —= : 5
4 k;M s (Y1 = Jhoo) (Y2 — kheo)

(4.10)
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Throughout the rest of the paper, we assume that n’ and M depend on n and satisfy
n’ >nand M > n?.
Let

n 4
EEES 35 DR AC R R i)

£=0 j=—2

with unknown coefficients a}éj € IR. Then, using (4.8), we obtain the linear system
1 ~ -
(—21 + Q) a=g (4.12)

with a = (a};,...,af) ", Qi o = QWY YE 0w and Gy = (g5, Y, )n for £,0' =
0,....m, [jl <0 17| S0, i k=1,...,m
We can write (4.12) in a more detailed form

m n J4

E E E k Aik _ =~

az/ o+ aZer/j’,Zj = g[/j/
k=1£0=0 j=—¢

with matrix coefficients
Q%]’Cj’,ej - Z Z :upﬂp’as&s’Qik(jSpv gs’p/)yﬁj’(‘iSr))YéI}(QS’p/)v i # k,
0,8 Pl75/
~ .. -~ ~ 1 ~ ~ ! ~ /N4
Q%j’,lj - Z Z Npﬂp’as [bS,Qq(k) (xspvy::pp )F (msmygpp )+
ps p’,s’

~ 2 4
Fag QG (Fop G5 NYE () YE (9272

and the coefficients in the right-hand side are given as

M
Z’ i = Zﬂpas fi QI(xsp Z (Qi(i'sp)vy]}/})
(4.13)
+0i(qi(E5)) G2 (@i (E5p), i) Y 1 (5p),
where &5, = p(0s, ¢,), ysp = Tp(; Y P(0s,0p), Yip = (hoo k, hook, 0), £,¢ =0,...,n

<6< i k=1,
Note here that the direct calculation of the matrix coefficients (4.13) needs O(n®)
operations. This number can be reduced to O(n®) by using the approach described in [5].

4.3. Error estimates for the numerical approximation of (4.3)

Let H'(SD) be the Hardy space consisting of all complex-valued functions w, which
are analytic in the strip SD = {z € C : |Imz| < d} and which satisfy

/ |w(z)|\dz|:/ (Jw(z + id)| + [w(x — id)]) dz < .
0SD R

For a function v : IR — IR, we say that v € H*(SD) provided that v is the restriction to
IR of an analytic function in H(SD).
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Lemma 4.1 Let v : IR* — IR be such that v € H'(SD) with respect to each variable.
Assume that )
|U($1,J;2)| < Ceigllmllef‘m‘mﬂ

with C' > 0, o1 > 0 and o2 > 0. Then the following estimate
‘ / v(x)de — / (Spv)(z)dx| < Ce VM (4.14)
R? R2

holds, where Sy is the operator corresponding to sinc-approximation in (4.10), C' > 0
and o > 0.

Proof. The one-dimensional case of sinc-quadrature rules and corresponding estimates
were considered in [17]. The more general case of the sinc-quadrature rule over a plane
for operator-valued functions was analysed in [7], and the estimate (4.14) follows from
Theorem 3.3 in [7]. O

By || - |looc we mean the standard sup-norm for continuous functions (for both scalar
and vector-valued functions). We sometimes indicate over which region this norm is taken,
for example, || - ||oo,s, means the norm over the surface Si.

Theorem 4.2 For fi € C"t2(Sy),r >0, 8 € H'(SD) with 3(z) = O(e‘”"r') and o > 0,
the following estimate
C
1™ =l < =

nT
holds with Cy > 0, where 1 and ") are given by (4.3) and (4.8), respectively.

Proof. Let 9™ be the solution to (4.8) with the right-hand side changed from g to g,
that is 9™ satisfies

1. A
—5¥" + £,QM M = Lg,
where g have elements given by (4.4). Then we have the estimate
1 = ™ loe < 10 = D™ oo + ™ = ™. (4.15)

Taking into account the properties of the orthogonal projector £, see [8], and in partic-
ular the estimates

Cy
1£n]loc0 < C'/2, L0t — Ylloo,0 < WHW

oy ¥ ECT(Q), (4.16)

it is straightforward to show, see [5,8], that for sufficiently large n, the inverse operators
(=4I + £,Q")~! exist and are bounded,

1 ,
H(—§I+£nQ” )—1H < Conl/2. (4.17)
Moreover, the following estimate holds,
- C
R (4.18)
due to the assumed smoothness of fi and 5 and the implied smoothness of the right-hand
side g.

For the second term in (4.15) using the first estimate in (4.16) together with (4.17),
we have

1™ — h) |, = H(—%I +£,Q") " Lalg —gar)|| < Cnllg — gl
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For the elements of g, due to the assumed smoothness of 3, the element

v(y) = B(y)Ga1(a:(2),y) + i(qi(2))Gar (a:(2), )

in the integrand in (4.2) is such that Lemma 4.1 can be applied. Combining this with
the expression (4.9) for the elements of gy, it follows that the integrals in the difference
g—gn can be estimated using Lemma 4.1 and the remaining terms can be estimated using
the second estimate in (4.16). This and since, by assumption from Section 4.2, M > n?,
it follows that ||g — gar]lo can be bounded by a term involving 1/n". Thus, using this
bound and (4.18) in (4.15) imply the statement of the theorem. O

According to (3.6) we have the following representation for the numerical solution of
the problem (2.1)—(2.5)

m n 4
tz(‘n) (z) = Z Z Z aé?j Z ﬂp’ds’GiQ(xvQk@p’a"))']qk @p’s/)yzl,?j (Cgs/p’)

k=1¢=0 j=—¢ p’,s’
M )
—l—hgc Z B(yir)Gi(x,y55), x€D;, i=1,2
kk=—M

5. Numerical examples
Example 5.1 We consider the case of a layer with thickness h = 1 and an ellipsoidal
cavity (i.e. m = 1, see further Fig. 2a) with boundary surface:

S1 = (sinf cosp,0.5sinfsin , 0.75 cos § + 3)T,

where 6 € [0, 7], and ¢ € [0, 27]. The boundary data functions are given as

Bla) = el ar(xz) =1, fi(z) =0, xz € Sy.

The numerical solution of the problem (2.1)—(2.5), obtained using the indirect integral

,xel"l,

Tabl. 5.1. Numerical results for Example 5.1

z = (0,0,0.5) z = (0,0,1.5)
n Direct BIE Indirect BIE Direct BIE Indirect BIE
4 | 0.1671504153 | 0.1671511644 | 0.0847707848 | 0.0848520554
8 | 0.1671514503 | 0.1671514513 | 0.0848589574 | 0.0848596942
16 | 0.1671514518 | 0.1671514518 | 0.0848597327 | 0.0848597327
32 | 0.1671514518 | 0.1671514518 | 0.0848597327 | 0.0848597327

equation approach outlined above, with A" = 3 and A® = 4, at two observation points
(one inside the layer and one above) is presented in Table 1. This shows the exponential
convergence of our method, and included in Table 1 is a comparison with the direct integral
equation approach described in [18]. Here, we used M = 100 in the corresponding sinc
quadratures and € = 1078 is the fixed precision for the series in the Green’s matrix.

Example 5.2 Assume that the semi-infinite domain contains two cavities (i.e. m = 2)
with surfaces (see Fig. 2b)

S1=(r(0,9)p(0,9) +(1,-1,3)T,
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a) One ellipsoidal cavity b) Two cavities

Fig. 2. Semi-infinite layered domains with cavities

where (6, ¢) = 0.81/0.8 + 0.5(cos 2¢ — 1)(cos 46 — 1), 0 € [0, 7], ¢ € [0,27] and

0.84/1 — 0.1 cos(m cos f) sinf cos p — 1

Sy =1 0.84/1 —0.1cos(m cos8)sinf sin ¢ + 0.3 cos(m cos 0)
cosf + 3

The boundary functions are given as

1

ST

JIGFl,

ar(z) =1, fi(z) =0, x €51, as(x)=1, fa(z)=1, z € Ss.

The numerical solution with A" = 3 and A = 4 in the two planes x5 = 0.5 and x5 = 4.5,
respectively, are presented in Fig. 3 and in Fig. 4. Here, we used following values for the
parameters needed in the method: n = 8, e = 107° and M = 50. Also, note that in this
case, the sinh substitution in the integral over the plane in (4.2) was employed to obtain
the necessary asymptotic behaviour (see Lemma 3.1) according to the recommendation
in [17].

“‘ !
““‘:“
“:‘: S5

{

S
3
SeeSe/ =S
TS SesSSSSS S AR ARSSS
ARTRLT S S “ NS 777777
N 7 7
N PIXKS SN

Fig. 3. The numerical solution on the plane x3 = 0.5

The algorithm was implemented in MATLAB 7.1. All calculations were made on an
Intel Xeon E5506 @ 2.14 Gz (4 core) processor. In Example 5.2, the CPU time for the
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Fig. 4. The numerical solution on the plane x3 = 4.5

calculation of the coefficients a{“,j in (4.11) via (4.12) was 257.28 s and for the temperature
field calculation at 900 spatial points on each of the two planes 3 = 0.5 and z3 = 4.5,
the total time needed was 2027.04 s and 1296.75 s, respectively.

6. Conclusion

Using a Green’s matrix technique, boundary value problems for the Laplace equation
with piecewise constant conductivity in a semi-infinite layered 3-dimensional domain con-
taining a finite number of bounded cavities, was reduced to weakly singular boundary
integral equations over the surfaces of the cavities. For the surfaces, which are assumed
to be homeomorphic to the unit sphere, a fully discrete projection method with super-
algebraic convergence order was proposed based on Wienert’s approach [20]. Our next
investigations of this approach are connected with numerical construction of the bijective
map g to the unit sphere for a given surface and with the use of the obtained direct
solver for the numerical solution of some inverse problems.
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