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Àíîòàöiÿ. Îáëàñòi, ÿêi ìiñòÿòü âíóòðiøíi ãðàíèöi, íàïðèêëàä, êîìïîçèòíi
ìàòåðiàëè, âèíèêàþòü ó áàãàòüîõ çàñòîñóâàííÿõ. Ìè ðîçãëÿäà¹ìî âèïàäîê øàðó-
âàòî¨ ÷àñòêîâî-íåîáìåæåíî¨ îáëàñòi â IR3 ç ñêií÷åííèì ÷èñëîì îáìåæåíèõ ïî-
ðîæíèí. Ìîäåëëþ ¹ ñòàöiîíàðíèé òåïëîïåðåíîñ, ùî îïèñó¹òüñÿ ðiâíÿííÿì Ëàï-
ëàñà ç êóñêîâî-ïîñòiéíèì êîåôiöi¹íòîì òåïëîïðîâiäíîñòi. Òåïëîâèé ïîòiê (óìîâà
Íåéìàíà) çàäà¹òüñÿ íà íèæíié ïîâåðõíi øàðóâàòî¨ îáëàñòi i ðiçíi ãðàíè÷íi óìîâè
íà ìåæàõ ïîðîæíèí. Íà ïîâåðõíi êîíòàêòó øàðó i ïiâïðîñòîðó ç ïîðîæíèíàìè
âèêîíóþòüñÿ çâè÷àéíi óìîâè ñïðÿæåííÿ (íåïåðåðâíiñòü ðîçâ'ÿçêó i íîðìàëüíî¨
ïîõiäíî¨). Äëÿ åôåêòèâíîãî îá÷èñëåííÿ ñòàöiîíàðíîãî òåìïåðàòóðíîãî ïîëÿ
â ÷àñòêîâî-íåîáìåæåíié îáëàñòi ìè âèêîðèñòîâó¹ìî òåõíiêó ìàòðèöi Ãðiíà i
çâîäèìî çàäà÷ó äî ãðàíè÷íèõ iíòåãðàëüíèõ ðiâíÿíü ç ñëàáêèìè îñîáëèâîñòÿìè
ïî ïîâåðõíÿõ ïîðîæíèí. ×èñåëüíå ðîçâ'ÿçóâàííÿ öèõ iíòåãðàëüíèõ ðiâíÿíü
çäiéñíþ¹òüñÿ ìåòîäîì Âiíåðòà [20]. Ïðèïóñêàþ÷è, ùî êîæíà ïîðîæíèíà ¹ ãîìåî-
ìîðôíà ñôåði, ïðîïîíó¹òüñÿ äèñêðåòíèé ïðîåêöiéíèé ìåòîä ç ñóïåð-àëãåáðà¨÷-
íèì ïîðÿäêîì çáiæíîñòi. Ïðèâåäåíî äîâåäåííÿ îöiíêè ïîõèáêè ìåòîäó. Çäiéñíåíi
÷èñåëüíi åêñïåðèìåíòè ïiäòâåðäæóþòü åôåêòèâíiñòü i âèñîêó òî÷íiñòü çàïðîïî-
íîâàíîãî ìåòîäó.

Abstract. Regions containing internal boundaries such as composite materials arise
in many applications. We consider a situation of a layered domain in IR3 containing a
�nite number of bounded cavities. The model is stationary heat transfer given by the
Laplace equation with piecewise constant conductivity. The heat �ux (a Neumann
condition) is imposed on the bottom of the layered region and various boundary
conditions are imposed on the cavities. The usual transmission (interface) condi-
tions are satis�ed at the interface layer, that is continuity of the solution and its
normal derivative. To e�ciently calculate the stationary temperature �eld in the
semi-in�nite region, we employ a Green's matrix technique and reduce the problem
to boundary integral equations (weakly singular) over the bounded surfaces of the
cavities. For the numerical solution of these integral equations, we use Wienert's
approach [20]. Assuming that each cavity is homeomorphic with the unit sphere, a
fully discrete projection method with super-algebraic convergence order is proposed.
A proof of an error estimate for the approximation is given as well. Numerical exam-
ples are presented that further highlights the e�ciency and accuracy of the proposed
method.

1. Introduction
Regions having internal boundaries, that is boundaries where no boundary data is

given, arise in many applications. For example, composite materials such as multilayer
(sandwich) beams, pipes and rocks, see for example [14]. Other applications are Li-ion
battery technologies using nanoarchitectured carbon networks [19], applied potential to-
mography [2], and the distribution of stress in a medium containing holes or inclusions [4].

Key words. Semi-in�nite multilayer domain; Green's matrix; Boundary integral equations; Weak
singularities; Galerkin method; Spherical functions, Gauss-Legandre quadratures, Sinc-quadratures.
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The governing equations in these examples is the Laplace equation with piecewise constant
physical parameters. Moreover, the conditions at the interfaces are usually continuity of
the solution and its normal derivative.

Only in special cases and for certain domains there are explicit analytical solutions
to these problems. Thus, in general, numerical methods are needed to generate an ap-
proximation to the physical quantities of interest. As is well-known, standard domain
discretisation methods such as the �nite element method (FEM) is not easily adjustable
to problems with internal boundaries. Instead, boundary integral methods are more suit-
able for this class of problems since they provide a natural treatment of the interface.

An additional complication from a numerical point of view is models posed on un-
bounded domains. Such models include the irrotational �ow of an incompressible �uid
exterior to a body [9], heat �ow in the oceans [16] and the distribution of stresses in an
in�nite medium with holes or inclusions [4]. In all these cases, the surrounding media can
be treated as in�nite, thus leading to unbounded domain problems. Employing for exam-
ple the FEM, truncation of the solution domain is usually needed. Also, from a theoretical
point of view, partial di�erential equations in unbounded domains are challenging and
non-standard function spaces are needed to prove properties of solutions, for an overview,
see the introduction in [15].

We shall consider a model having both these di�culties, that is we have a layered
unbounded region. We consider a semi-in�nite bi-material represented by the upper half-
space in IR3 and having an internal boundary described by a plane parallel with the xy-
plane. Moreover, above this interface, the medium contains a �nite number of bounded
smooth cavities, see further Fig. 1. The heat �ux is prescribed at the bottom of the region
and various boundary conditions such as the temperature or heat �ux or a combination of
them are imposed on the surfaces of the cavities. The interface conditions are continuity
of the solution and its normal derivative. We assume stationary heat transfer modelled
by the Laplace equation with piecewise constant conductivity. The aim is to construct
the temperature �eld throughout the region.

As mentioned above, integral equations are suitable to use for interface problems.
Thus, using a Green's matrix technique, we reduce the problem to boundary integral
equations on the (bounded) surfaces of the cavities. In general, we obtain equations of
the second kind with kernels having a weak singularity. An explicit expression for this
Green's matrix was recently derived in [18].

To numerically solve the obtained boundary integral equations, we shall employ the
Wienert's approach [20]. This approach has attracted much attention recently, see for
example, [5, 6, 8, 11], and advantages being that smaller linear systems are obtained as
well as high accuracy. The higher accuracy is partly due to, as opposed to the boundary
element method (BEM) [10], there is no need to discretize the surfaces in the boundary
integral equations. To use [20], we assume that each of the cavities can be mapped one-
to-one to the unit sphere. Clearly, this is a restriction of our approach, however, one can
generalize and use di�erential geometry and assume that the cavities are parametrized by
surface patches of the unit sphere or one can numerically construct an approximation to
such a map. This is though deferred to future work.

Using the assumption that the cavities can be parametrized via the unit sphere, a fully
discrete projection method with super-algebraic convergence order is proposed to solve the
obtained boundary integral equations. The densities in the boundary integral equations
are approximated in the �nite-dimensional space of spherical harmonics. A proof of an
error estimate for the approximation is given as well. Numerical examples are presented
that further highlights the e�ciency and accuracy of the proposed method.

The main novelty of this paper is the reduction of the problem using the Green's ma-
trix and the combination and extension of [20] to obtain a numerical method with high
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accuracy for semi-in�nite layered materials, as well as proving error estimates. Clearly,
our work is timely due to the recent interest into the method [20] and the recent derivation
of the Green's matrix [18]. Moreover, it is of importance due to the many practical engi-
neering applications mentioned above that can be formulated in terms of our equations,
and the problem of solving these using standard numerical techniques. Also, having an
e�cient solver for these direct problems opens the possibility to consider inverse problems,
and, for example, generalize the work [3] to IR3.

For the outline of this paper, in Section 2, we formulate our problem mathematically. In
Section 3, we show how to reduce our problem using a Green's matrix technique, to weakly
singular boundary integral equations over the surfaces of the cavities, see Theorem 3.3.
Solvability of these equations are also mentioned, see Theorem 3.4. The discrete projection
method to solve these singular integral equations is given in Section 4. Moreover, we prove
an error estimate for our approach, see Theorem 4.2. Numerical examples are given in
Section 5, both for regions with one and several cavities. These examples illustrate the
e�ciency and accuracy of our proposed approach.

2. Formulation of the problem
Let D1 := {x = (x1, x2, x3) : 0 < x3 < h, (x1, x2) ∈ IR2} be a (strip) layer in IR3 having

thickness h and contained within the two parallel planes Γ1 and Γ2 (which constitutes the
boundary parts of ∂D1). Moreover, let D2 := {x = (x1, x2, x3) : x3 > h, (x1, x2) ∈ IR2}
be the half-space in R3 bounded by the plane Γ2, and let C :=

⋃m
k=1 Ck, m ∈ IN, be a

set of cavities (smooth bounded non-overlapping domains in IR3) contained in the half-
space D2, i.e. Ck ⊂ D2, having boundary Sk = ∂Ck (see Fig. 1). Physical properties, such
as conductivity or �uid viscosity, in D1 := D1 and D2 := D2 \ C̄ are characterized by
constants λ(1) and λ(2), respectively.

Fig. 1. A semi-in�nite layer domain and cavities with surfaces Sk, k = 1, 2, 3

The function

t(x) =





t1(x), x ∈ D1,

t2(x), x ∈ D2,

de�ned in the piecewise-homogeneous solution domain D := D1∪D2 is assumed to satisfy
the Laplace equation

∆t = 0 in D, (2.1)
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together with the Neumann boundary condition

λ(1) ∂t1
∂x3

= −β on Γ1, (2.2)

the usual transmission conditions

t1 = t2, λ(1) ∂t1
∂x3

= λ(2) ∂t2
∂x3

on Γ2, (2.3)

the boundary conditions

`t2 = fk on Sk, k = 1, . . . , m (2.4)

and the regularity condition

t(x) = O( |x|−1), x ∈ D, |x| → ∞. (2.5)

Here, the boundary operator ` corresponds to the Dirichlet (`u := u), Neumann (`u :=
∂u/∂ν) or Robin (`u := λ(2)∂u/∂ν + αku) boundary condition, and β, αk and fk, k =
1, . . . , m, are given boundary functions with αk being non-negative.

Clearly, the standard Green's formula for the Laplace equation holds in D. Thus,
following the usual steps for potential problems, one obtains the following result.

Theorem 2.1 Every boundary value problem of the form (2.1) � (2.5) has at most one
classical solution.

We assume that data are given and compatible such that (2.1) � (2.5) has a classical
solution (which in particular is assumed to be twice continuously di�erentiable in D).

3. Indirect boundary integral equation method
To reduce the boundary value problem (2.1) � (2.5) to boundary integral equations over

the surfaces of the cavities Ck, we introduce the Green's matrix [13] for the equation (2.1)
with homogeneous Neumann boundary condition (2.2) and the transmission conditions
(2.3).

De�nition 3.1 The 2× 2 function matrix {Gij}2i,j=1 with elements that satisfy the con-
ditions

∆Gii(x, y) = − 1
λ(i)

δ(x− y), x ∈ Di, y ∈ Di, (3.1)

∆G3−i,i(x, y) = 0, x ∈ D3−i, y ∈ Di, (3.2)

λ(1) ∂G1i

∂x3
(x, y) = 0, x ∈ Γ1, y ∈ Di, (3.3)

G1i(x, y) = G2i(x, y), λ(1) ∂G1i

∂x3
(x, y) = λ(2) ∂G2i

∂x3
(x, y), x ∈ Γ2, y ∈ Di, (3.4)

where i = 1, 2, and δ denotes the Dirac's function, is called the Green's matrix or in�uence
matrix for the boundary value problem (2.1) � (2.3).

We use the following notation x̃n = (x1, x2, 2nh + x3) for n ∈ N, y∗ = (y1, y2,−y3),
v = (λ(1) − λ(2))/(λ(1) + λ(2)) and Gn(x, y) = |x̃n − y|−1 + |x̃n − y∗|−1.
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The Green's matrix for the boundary value problem (2.1) � (2.3) has the form [18]

G11(x, y) =
1

4πλ(1)

[
G0(x, y) +

∞∑
n=1

vn(G−n(x, y) + Gn(x, y))

]
,

G12(x, y) =
1

2π(λ(1) + λ(2))

[
G0(x, y) +

∞∑
n=1

vn(|x̃−n − y|−1 + |x̃n − y∗|−1)

]
,

G21(x, y) = G12(y, x),

G22(x, y) =
1

4πλ(2)

[
G0(x, y) +

∞∑
n=1

vn(|x̃n − y∗|−1 − |x̃n−2 − y∗|−1)

]
.

With the Green's matrix we can construct an integral representation for the solution of
the Neumann boundary value problem in the semi-in�nite layered region consisting of D1

and D2.

Theorem 3.2 For the solution of the boundary value problem

∆τi = 0 in Di,

λ(1) ∂τ1

∂x3
= −β on Γ1,

τ1 = τ2, λ(1) ∂τ1

∂x3
= λ(2) ∂τ2

∂x3
on Γ2,

τi(x) = O( |x|−1), x ∈ Di, |x| → ∞,

the following boundary integral representation formula holds

τi(x) =
∫

Γ1

Gi1(x, y)β(y) ds(y), x ∈ Di, for i = 1, 2, (3.5)

where {Gij}2i,j=1 is the Green's matrix given above.

Proof. Taking into account the de�ning properties of the functions in the Green's matrix,
i.e. the functions Gik, and the conditions for the solutions τi, i = 1, 2, we have the
representations

τi(x) := λ(1)

∫

D1

[Gi1(x, y)∆ti(y)− ti(y)∆Gi1(x, y)] dy

+λ(2)

∫

D2

[Gi2(x, y)∆ti(y)− ti(y)∆Gi2(x, y)] dy, x ∈ Di, i = 1, 2.

The �rst Green's theorem and the given interface conditions for Gik (see De�nition 3.1)
and τi (see (2.3)), lead to the representation (3.5). 2

We shall then construct the solution to (2.1) � (2.5) in the form of the following
modi�ed single-layer potential

ti(x) =
m∑

k=1

∫

Sk

µk(y)Gi2(x, y) ds(y) + τi(x), x ∈ Di, i = 1, 2, (3.6)

with densities µk ∈ C(Sk) and τi given by (3.5). The next result gives conditions for the
densities µk to guarantee that ti, i = 1, 2, is a solution to (2.1) � (2.5).
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Theorem 3.3
a) Dirichlet condition on Sk: The solution of the mixed Neumann-Dirichlet boundary
value problem (2.1)�(2.5) can be represented in the form (3.6), where the densities µk

satisfy the system of integral equations of the �rst kind

m∑

k=1

∫

Sk

µk(y)G22(x, y)ds(y) = fi(x)− τ2(x), x ∈ Si, i = 1, . . . , m. (3.7)

b) Neumann condition on Sk: The solution of the Neumann boundary value problem
(2.1)�(2.5) can be represented in the form (3.6), where the densities µk satisfy the system
of integral equations of the second kind

− 1
2λ(2)

µi(x) +
m∑

k=1

∫

Sk

µk(y)
∂G22(x, y)

∂ν(x)
ds(y) =

= fi(x)− ∂τ2

∂ν
(x), x ∈ Si, i = 1, . . . , m.

(3.8)

c) Robin condition on Sk: The solution of the mixed Neumann - Robin boundary value
problem (2.1)�(2.5) can be represented in the form (3.6), where the densities µk satisfy
the system of integral equations of the second kind

−1
2
µi(x) +

m∑

k=1

∫

Sk

µk(y)
[
λ(2) ∂G22(x, y)

∂ν(x)
+ αi(x)G22(x, y)

]
ds(y) =

= fi(x)− λ(2) ∂τ2

∂ν
(x)− α(x)iτ2(x), x ∈ Si, i = 1, . . . , m.

(3.9)

Proof. From the De�nition 3.1 of the Green's matrix and Theorem 3.2, it follows that the
representation (3.6) satis�es the equation (2.1), the Neumann boundary condition (2.2),
the transmission condition (2.3) and the regularity condition (2.5). Since the function G22

can be written in the form

G22(x, y) =
1

4πλ(2)

1
|x− y| + G̃22(x, y)

with a smooth part G̃22, the single-layer potentials in the representation of t2 in (3.6) have
the properties of the classical single-layer potential for the Laplace equation. Thus, the
standard jump relations hold, and this then imply the corresponding integral equations
for each type of boundary conditions imposed on the cavities. 2

The Riesz-Schauder theory [10,12] applied to the corresponding integral equations in
Theorem 3.3 together with Theorem 2.1 lead to the following result.

Theorem 3.4
(i) Dirichlet case: For β ∈ L2(Γ1) and fk ∈ C1,γ(Sk), k = 1, . . . , m, the system of integral
equations (3.7) has a unique solution µk ∈ C0,γ(Sk), k = 1, . . . , m.
(ii) Neumann case: For β ∈ L2(Γ1) and fk ∈ C(Sk), k = 1, . . . ,m, the system of integral
equations (3.8) has a unique solution µk ∈ C(Sk), k = 1, . . . ,m.
(iii) Robin case: For β ∈ L2(Γ1), αk ∈ L∞(Sk), αk ≥ 0 and fk ∈ C(Sk), k = 1, . . . , m,
the system of integral equations (3.9) has a unique solution µk ∈ C(Sk), k = 1, . . . , m.
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4. Numerical solution of the weakly singular integral
equations (3.9)

We consider here in detail the system of integral equations (3.9), since this corresponds
to the most general boundary condition in (2.4), and the results for the equations (3.7)
and (3.8) follows as special cases. Taking into account the representation for the Green's
matrix (given in the beginning of Section 3) we can rewrite the system (3.9) in the
following form

−1
2
µi(x) +

m∑

k=1

∫

Sk

µk(y)
[
Q1(x, y)
|x− y| + Q2(x, y)

]
ds(y) =

= gi(x), x ∈ Si, i = 1, . . . , m,

(4.1)

where
Q1(x, y) =

1
4π

[
αi(x)
λ(2)

+
(y − x) · ν(x)
|x− y|2

]
,

Q2(x, y) =
αi(x)
4πλ(2)

[
|x− y∗|−1 +

∞∑
n=1

vn(|x̃n − y∗|−1 − |x̃n−2 − y∗|−1)

]

+
1
4π

[
(y∗ − x) · ν(x)
|x− y∗|3 +

∞∑
n=1

vn

{
(y∗ − x̃n) · ν(x)
|x̃n − y∗|3 +

(x̃n−2 − y∗) · ν(x)
|x̃n−2 − y∗|3

}]

and
gi(x) = fi(x)−

∫

Γ1

β(y)(λ(2)G̃21(x, y) + αi(x)G21(x, y)) ds(y) (4.2)

with
G̃21(x, y) =

1
2π(λ(1) + λ(2))

{
(y − x) · ν(x)
|x− y|3 +

(y∗ − x) · ν(x)
|x− y∗|3 +

∞∑
n=1

vn

[
(y − x̃n) · ν(x)
|x̃n − y|3 +

(y∗ − x̃n) · ν(x)
|x̃n − y∗|3

]}
.

4.1. Rewriting the integral equations over the unit sphere
As mentioned in the introduction, we assume that the surfaces Sk, k = 1, . . . , m,

can be bijectively mapped onto the unit sphere Ω, i.e. there exist one-to-one mappings
qk : Ω → Sk with the corresponding smooth Jacobian Jqk

.
Taking into account the parametric representation of Sk, we reduce the system of

integral equations of the second kind (4.1) to the following equation over the unit sphere Ω

−1
2
ψ(x̂) + (Qψ)(x̂) = g(x̂), x̂ ∈ Ω. (4.3)

Here, we used the following notation x̂ = p(θ, ϕ) = (sin θ cosϕ, sin θ sin ϕ, cos θ), θ ∈ [0, π],
ϕ ∈ [0, 2π], ψ(x̂) = (µ1(q1(x̂)), . . . , µm(qm(x̂)))>, the operator matrix Q = {Qik}m

i,k=1

with elements

(Qikψ)(x̂) =
∫

Ω

ψ(ŷ)

[
Q

(1)
ik (x̂, ŷ)

|qi(x̂)− qk(ŷ)| + Q
(2)
ik (x̂, ŷ)

]
ds(ŷ), x̂ ∈ Ω,

where Q
(1)
ik (x̂, ŷ) = Q1(qi(x̂), qk(ŷ))Jqk

(ŷ) and Q
(2)
ik (x̂, ŷ) = Q2(qi(x̂), qk(ŷ))Jqk

(ŷ) and the
right-hand side

g = (g1, . . . , gm)> (4.4)
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with elements gi(x̂) = gi(qi(x̂)) and gi(x) is given by (4.2).
Clearly, the diagonal operators Qii have weak singularities and we can write them in

the form

(Qiiψ)(x̂) =
∫

Ω

ψ(ŷ)

[
Q

(1)
ii (x̂, ŷ)Fi(x̂, ŷ)

|x̂− ŷ| + Q
(2)
ii (x̂, ŷ)

]
ds(ŷ),

x̂ ∈ Ω, i = 1, . . . , m,

(4.5)

with
Fi(x̂, ŷ) =

|x̂− ŷ|
|qi(x̂)− qi(ŷ)| .

Let n̂ = (0, 0, 1) be the north pole of Ω. It is convenient to move the singularities
in the operators Qii to the north pole [5, 8, 20]. To do this, we introduce the orthogonal
transformations for ξ ∈R,

DF (ξ) =




cos ξ − sin ξ 0
sin ξ cos ξ 0

0 0 1


 and DT (ξ) =




cos ξ 0 − sin ξ
0 1 0

sin ξ 0 cos ψ


 .

The linear orthogonal transformation Tx̂ = DF (ϕ)DT (θ)DF (−ϕ) has the property that
Tx̂x̂ = n̂ for all x̂ ∈ Ω. We also introduce an induced transformation Tx̂ on C(Ω) as

Tx̂ψ(ŷ) = ψ(T−1
x̂ ŷ), y ∈ Ω, ψ ∈ C(Ω)

and its bivariate analogue

Tx̂ψ(ŷ1, ŷ2) = ψ(T−1
x̂ ŷ1, T

−1
x̂ ŷ2), ψ ∈ C(Ω× Ω).

Since |x̂− ŷ| = |T−1
x̂ (n̂− η̂)| = |n̂− η̂| with η̂ = Tx̂ŷ, the operators (4.5) can be transformed

into

(Qiiψ)(x̂) =
∫

Ω

Tx̂ψ(η̂)

[
Tx̂Q

(1)
ii (n̂, η̂)Tx̂Fi(n̂, η̂)

|n̂− η̂| + Tx̂Q
(2)
ii (n̂, η̂)

]
ds(η̂), x̂ ∈ Ω

for i = 1, . . . , m. The functions Fi are then continuous with respect to η̂ for �xed x̂ ∈ Ω.

4.2. A projection method on the unit sphere
For the numerical solution of the system of integral equations (4.3) we shall employ

Wienert's approach [5, 8, 20] based on spherical harmonics. Let

Y R
`,k =

{
Im Y`,|k|, 0 < k < `,
Re Y`,|k|, −` ≤ k ≤ 0,

with the spherical harmonics Y`,k [1]. Let Pn denote the space of spherical polynomials of
degree at most n on Ω. A basis for Pn is the set of orthonormal spherical harmonics Y R

`,k,
0 ≤ ` ≤ n, |k| ≤ `.

We introduce the orthogonal projector

Ln′ψ =
n′∑

`=0

∑

|j|≤`

(ψ, Y R
`,j)n′Y

R
`,j , ψ ∈ C(Ω)
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with the discrete inner product (·, ·)n′ given by

(v, w)n′ =
2n′+1∑

ρ′=0

n′+1∑

s′=1

µ̃ρ′ ãs′v(p(θs′ , ϕρ′))w(p(θs′ , ϕρ′)),

where ϕρ′ = ρ′π/(n′ + 1), θs′ = arccos zs′ with zs′ being the zeros of the Legendre
polynomials Pn′+1, ãs′ = 2(1−z2

s′)/((n′+1)Pn′(zs′))2 and µ̃ρ′ = π/(n′+1). This discrete
inner product is the result of applying the rectangular Gauss quadrature rule (Gauss-
Legendre rule) to the corresponding integral over the unit sphere Ω.

The following quadrature is used for the continuous integrands in (4.3):
∫

Ω

f(ŷ) ds(ŷ) ≈
∫

Ω

(Ln′f)(ŷ) ds(ŷ) =
2n′+1∑

ρ′=0

n′+1∑

s′=1

µ̃ρ′ ãs′f(p(θs′ , ϕρ′)). (4.6)

The numerical quadrature employed to obtain high accuracy for integrands having a
weak singularity has the form

∫

Ω

f(ŷ)
|n̂− ŷ|ds(ŷ) ≈

∫

Ω

(Ln′f)(ŷ)
|n̂− ŷ| ds(ŷ) =

2n′+1∑

ρ′=0

n′+1∑

s′=1

µ̃ρ′ b̃s′f(p(θs′ , ϕρ′)) (4.7)

with weights

b̃s′ =
πãs′

n′ + 1

n′∑

i=0

Pi(zs′).

In [5,8] it is shown that the quadratures (4.6) and (4.7) have super-algebraic convergence
order.

Thus, for the case of continuous kernels Q̃ik(x̂, ŷ) = Q
(1)
ik (x̂, ŷ)/|qi(x̂) − qk(ŷ)| +

Q
(2)
ik (x̂, ŷ) in (4.3) we have the approximation operators

(Qn′
ikψ)(x̂) =

∫

Ω

(Ln′{Q̃ik(x̂, ·)ψ(·)})(ŷ) ds(ŷ), i 6= k

and for the kernels with a weak singularity,

(Qn′
ii ψ)(x̂) =

∫

Ω

[
(Ln′{Tx̂Q

(1)
ii (n̂, ·)Tx̂ψ(·)})(η̂)
|n̂− η̂| + (Ln′{Tx̂Q

(2)
ii (n̂, ·)Tx̂ψ(·)})(η̂)

]
ds(η̂).

We seek the numerical solution ψ(n) ∈ Pn×. . .×Pn = Πm
k=1Pn of (4.3) via a projection

method, which leads to the (projected) operator equation

−1
2
ψ(n) + LnQn′ψ(n) = LngM , (4.8)

where Qn′ = {Qn′
ik}m

i,k=1 and gM = (g1,M , . . . , gm,M )> with

gi,M (x̂) = fi(qi(x̂))−
∫

Γ1

SM{β(·)G̃21(qi(x̂), ·) + αi(qi(x̂))G21(qi(x̂), ·)}(y) ds(y). (4.9)

Here, SM is the operator corresponding to sinc-approximation [17]

(SMψ)(y) =
M∑

j,k=−M

ψ(jh∞, kh∞)
sin

[
π

h∞
(y1 − jh∞)

]

π
h∞

(y1 − jh∞)

sin
[

π
h∞

(y2 − kh∞)
]

π
h∞

(y2 − kh∞)
. (4.10)
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Throughout the rest of the paper, we assume that n′ and M depend on n and satisfy
n′ > n and M > n2.

Let

ψ
(n)
i =

n∑

`=0

∑̀

j=−`

ai
`jY

R
`,j , i = 1, . . . , m, (4.11)

with unknown coe�cients ai
`j ∈ IR. Then, using (4.8), we obtain the linear system

(
−1

2
I + Q̃

)
a = g̃ (4.12)

with a = (a1
`j , . . . , a

m
`j)

>, Q̃ik
`′j′,`j = (Qn′

ikY R
`,j , Y

R
`′,j′)n and g̃i

`′j′ = (gi,M , Y R
`′,j′)n for `, `′ =

0, . . . , n, |j| ≤ `, |j′| ≤ `′, i, k = 1, . . . , m.
We can write (4.12) in a more detailed form

−1
2
ai

`′j′ +
m∑

k=1

n∑

`=0

∑̀

j=−`

ak
`jQ̃

ik
`′j′,`j = g̃i

`′j′

with matrix coe�cients

Q̃ik
`′j′,`j =

∑
ρ,s

∑

ρ′,s′
µρµ̃ρ′asãs′Q̃ik(x̂sρ, ŷs′ρ′)Y R

`′,j′(x̂sρ)Y R
`,j(ŷs′ρ′), i 6= k,

Q̃ii
`′j′,`j =

∑
ρ,s

∑

ρ′,s′
µρµ̃ρ′as[b̃s′Q

(1)
ik (x̂sρ, ŷ

s′ρ′
sρ )Fi(x̂sρ, ŷ

s′ρ′
sρ )+

+ãs′Q
(2)
ik (x̂sρ, ŷ

s′ρ′
sρ )]Y R

`′,j′(x̂sρ)Y R
`,j(ŷ

s′ρ′
s,ρ )

and the coe�cients in the right-hand side are given as

g̃i
`′j′ =

∑
ρ,s

µρas[fi(qi(x̂sρ))− h2
∞

M∑

k̃,k̄=−M

{β(yk̃k̄)(G̃21(qi(x̂sρ), yk̃k̄)

+αi(qi(x̂sρ))G21(qi(x̂sρ), yk̃k̄))}]Y R
`′,j′(x̂sρ),

(4.13)

where x̂sρ = p(θs, ϕρ), ŷs′ρ′
sρ = T−1

p(θs,ϕρ)p(θs′ , ϕρ′), yk̃k̄ = (h∞k̃, h∞k̄, 0), `, `′ = 0, . . . , n,
|j| ≤ `, |j′| ≤ `′, i, k = 1, . . . ,m.

Note here that the direct calculation of the matrix coe�cients (4.13) needs O(n8)
operations. This number can be reduced to O(n5) by using the approach described in [5].

4.3. Error estimates for the numerical approximation of (4.3)
Let H1(SD) be the Hardy space consisting of all complex-valued functions w, which

are analytic in the strip SD = {z ∈ C : |Imz| < d} and which satisfy
∫

∂SD

|w(z)||dz| =
∫

IR

(|w(x + id)|+ |w(x− id)|) dx < ∞.

For a function v : IR → IR, we say that v ∈ H1(SD) provided that v is the restriction to
IR of an analytic function in H1(SD).
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Lemma 4.1 Let v : IR2 → IR be such that v ∈ H1(SD) with respect to each variable.
Assume that

|v(x1, x2)| ≤ Ĉe−σ1|x1|e−σ2|x2|

with Ĉ > 0, σ1 > 0 and σ2 > 0. Then the following estimate
∣∣∣
∫

IR2
v(x)dx−

∫

IR2
(SMv)(x)dx

∣∣∣ ≤ Ce−σ
√

M (4.14)

holds, where SM is the operator corresponding to sinc-approximation in (4.10), C > 0
and σ > 0.

Proof. The one-dimensional case of sinc-quadrature rules and corresponding estimates
were considered in [17]. The more general case of the sinc-quadrature rule over a plane
for operator-valued functions was analysed in [7], and the estimate (4.14) follows from
Theorem 3.3 in [7]. 2

By ‖ · ‖∞ we mean the standard sup-norm for continuous functions (for both scalar
and vector-valued functions). We sometimes indicate over which region this norm is taken,
for example, ‖ · ‖∞,Sk

means the norm over the surface Sk.

Theorem 4.2 For fk ∈ Cr+2(Sk), r > 0, β ∈ H1(SD) with β(x) = O(e−σ|x|) and σ > 0,
the following estimate

‖ψ(n) −ψ‖∞ ≤ C1

nr

holds with C1 > 0, where ψ and ψ(n) are given by (4.3) and (4.8), respectively.

Proof. Let ψ̂(n) be the solution to (4.8) with the right-hand side changed from gM to g,
that is ψ̂(n) satis�es

−1
2
ψ̂(n) + LnQn′ψ̂(n) = Lng,

where g have elements given by (4.4). Then we have the estimate

‖ψ −ψ(n)‖∞ ≤ ‖ψ − ψ̂(n)‖∞ + ‖ψ(n) − ψ̂(n)‖∞. (4.15)

Taking into account the properties of the orthogonal projector Ln, see [8], and in partic-
ular the estimates

‖Ln‖∞,Ω ≤ Cn1/2, ‖Lnψ − ψ‖∞,Ω ≤ Cr

nr−1/2
‖ψ‖r,Ω, ψ ∈ Cr(Ω), (4.16)

it is straightforward to show, see [5, 8], that for su�ciently large n, the inverse operators
(− 1

2I + LnQn′)−1 exist and are bounded,
∥∥∥(−1

2
I + LnQn′)−1

∥∥∥ ≤ Cn1/2. (4.17)

Moreover, the following estimate holds,

‖ψ − ψ̂(n)‖∞ ≤ C1

nr
, (4.18)

due to the assumed smoothness of fk and β and the implied smoothness of the right-hand
side g.

For the second term in (4.15) using the �rst estimate in (4.16) together with (4.17),
we have

‖ψ(n) − ψ̂(n)‖∞ =
∥∥∥(−1

2
I + LnQn′)−1Ln(g − gM )

∥∥∥
∞
≤ Cn‖g − gM‖∞.
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For the elements of g, due to the assumed smoothness of β, the element

v(y) = β(y)G̃21(qi(x̂), y) + αi(qi(x̂))G21(qi(x̂), y)

in the integrand in (4.2) is such that Lemma 4.1 can be applied. Combining this with
the expression (4.9) for the elements of gM , it follows that the integrals in the di�erence
g−gM can be estimated using Lemma 4.1 and the remaining terms can be estimated using
the second estimate in (4.16). This and since, by assumption from Section 4.2, M > n2,
it follows that ‖g − gM‖∞ can be bounded by a term involving 1/nr. Thus, using this
bound and (4.18) in (4.15) imply the statement of the theorem. 2

According to (3.6) we have the following representation for the numerical solution of
the problem (2.1)�(2.5)

t
(n)
i (x) =

m∑

k=1

n∑

`=0

∑̀

j=−`

ak
`j

∑

ρ′,s′
µ̃ρ′ ãs′Gi2(x, qk(ŷρ′s′))Jqk

(ŷρ′s′)Y R
`,j(ŷs′ρ′)

+h2
∞

M∑

k̃,k̄=−M

β(yk̃k̄)G̃i1(x, yk̃k̄), x ∈ Di, i = 1, 2.

5. Numerical examples
Example 5.1 We consider the case of a layer with thickness h = 1 and an ellipsoidal
cavity (i.e. m = 1, see further Fig. 2a) with boundary surface:

S1 = (sin θ cos ϕ, 0.5 sin θ sin ϕ, 0.75 cos θ + 3)>,

where θ ∈ [0, π], and ϕ ∈ [0, 2π]. The boundary data functions are given as

β(x) = e−|x|
2
, x ∈ Γ1, α1(x) = 1, f1(x) = 0, x ∈ S1.

The numerical solution of the problem (2.1)�(2.5), obtained using the indirect integral

Tabl. 5.1. Numerical results for Example 5.1

x = (0, 0, 0.5) x = (0, 0, 1.5)
n Direct BIE Indirect BIE Direct BIE Indirect BIE
4 0.1671504153 0.1671511644 0.0847707848 0.0848520554
8 0.1671514503 0.1671514513 0.0848589574 0.0848596942
16 0.1671514518 0.1671514518 0.0848597327 0.0848597327
32 0.1671514518 0.1671514518 0.0848597327 0.0848597327

equation approach outlined above, with λ(1) = 3 and λ(2) = 4, at two observation points
(one inside the layer and one above) is presented in Table 1. This shows the exponential
convergence of our method, and included in Table 1 is a comparison with the direct integral
equation approach described in [18]. Here, we used M = 100 in the corresponding sinc
quadratures and ε = 10−8 is the �xed precision for the series in the Green's matrix.

Example 5.2 Assume that the semi-in�nite domain contains two cavities (i. e. m = 2)
with surfaces (see Fig. 2b)

S1 = (r(θ, ϕ)p(θ, ϕ)) + (1,−1, 3)>,



16 R. S.CHAPKO, B.T. JOHANSSON AND O.B.PROTSYUK

a) One ellipsoidal cavity b) Two cavities

Fig. 2. Semi-in�nite layered domains with cavities

where r(θ, ϕ) = 0.8
√

0.8 + 0.5(cos 2ϕ− 1)(cos 4θ − 1), θ ∈ [0, π], ϕ ∈ [0, 2π] and

S2 =




0.8
√

1− 0.1 cos(π cos θ) sin θ cosϕ− 1
0.8

√
1− 0.1 cos(π cos θ) sin θ sin ϕ + 0.3 cos(π cos θ)

cos θ + 3


 .

The boundary functions are given as

β(x) =
1

(x2
1 + x2

2 + 1)2
, x ∈ Γ1,

α1(x) = 1, f1(x) = 0, x ∈ S1, α2(x) = 1, f2(x) = 1, x ∈ S2.

The numerical solution with λ(1) = 3 and λ(2) = 4 in the two planes x3 = 0.5 and x3 = 4.5,
respectively, are presented in Fig. 3 and in Fig. 4. Here, we used following values for the
parameters needed in the method: n = 8, ε = 10−5 and M = 50. Also, note that in this
case, the sinh substitution in the integral over the plane in (4.2) was employed to obtain
the necessary asymptotic behaviour (see Lemma 3.1) according to the recommendation
in [17].

Fig. 3. The numerical solution on the plane x3 = 0.5

The algorithm was implemented in MATLAB 7.1. All calculations were made on an
Intel Xeon E5506 @ 2.14 Gz (4 core) processor. In Example 5.2, the CPU time for the
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Fig. 4. The numerical solution on the plane x3 = 4.5

calculation of the coe�cients ak
l,j in (4.11) via (4.12) was 257.28 s and for the temperature

�eld calculation at 900 spatial points on each of the two planes x3 = 0.5 and x3 = 4.5,
the total time needed was 2027.04 s and 1296.75 s, respectively.

6. Conclusion
Using a Green's matrix technique, boundary value problems for the Laplace equation

with piecewise constant conductivity in a semi-in�nite layered 3-dimensional domain con-
taining a �nite number of bounded cavities, was reduced to weakly singular boundary
integral equations over the surfaces of the cavities. For the surfaces, which are assumed
to be homeomorphic to the unit sphere, a fully discrete projection method with super-
algebraic convergence order was proposed based on Wienert's approach [20]. Our next
investigations of this approach are connected with numerical construction of the bijective
map qk to the unit sphere for a given surface and with the use of the obtained direct
solver for the numerical solution of some inverse problems.
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