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ASYMPTOTIC STABILITY OF NONLOCAL DIFFERENCE SCHEMES
UDC 519.6

A.V.GULIN

AHOTAIIA. Posrigmaerbes ciMeficTBO OBOIIAPOBUX PISHUIEBUX CXEM /IS PIBHAHHS
rertonposizrocti Ju/0t = 9*u/dxz®, 0 < z < 1, u(z,0) = wuo(z), u(0,t) = 0,
v Ou(0,t)/dx = Ou(l,t)/0x 3 HeNOKAIBHUME KPAHOBUME yMOBAaMH Ta HAapaMeTPoOM
~v > 1. Ha neaxomy inrepsani v € (1, 74+) CrieKTp 0OCHOBHOI'O PI3HHIIEBOTO OIIEPATOPA
MICTUTh €IUHE BJIACHE 3HAUEHHS Ao B JIBil KOMIIJIEKCHIM THBILIOMIMHI, TOI K 1HTII
BJIACHI 3HAYEHHS A1, A2, ..., AN—1 3HAXOJSTHCS B MpaBiil miBrromuHi. Bimxmosigamit
mpocTip citkoBux dyukiit Hy mogaerses y Burysami apsamol cymu Hy = Ho® Hy 1
onHOBHMIipHOTrO manpoctopy Ho Ta migmpocropy Hy_1, sikuii € TiHIAHOIO 000I0HKOIO
BJIACHHUX BEKTODIB um, u(z), ey ,u(N ~1 . BBesieHo 03HaMeHHsT ACHMITOTUIHOT CTHAKOC-
i B Hv—1 Ta chopmysnboBaHi yMOBM acMMOTOTUIHOI cTidikocTi. Jlocsimkena acum-
ITOTHYHA MOBEeiHKa HyH0B0i rapMonika p(*) mpu Benmkux ¢.

ABsTRACT. The family of two-layer difference schemes is considered for the heat
conduction equation du/dt = 9*u/9z”, 0 < z < 1, u(z,0) = uo(x), u(0,t) = 0,
v Ou(0,t)/dx = du(1,t)/Ox with nonlocal boundary conditions and parameter vy >
1. The spectrum of the main difference operator contains in some interval v € (1, v4)
a single eigenvalue A\ in the left complex half-plane, while the rest eigenvalues A1,
A2, ..., AN—1 are situated in the right half-plane. The corresponding grid-function
space Hy is represented as a direct sum Hy = Ho & Hny—1 of one-dimensional
subspace Ho and subspace Hy_1, which is the linear span of eigenvectors u“), /L(2>,
s u(N_1>. The definition of asymptotic stability in Hxy_1 is introduced, as well as
the conditions of asymptotic stability are formulated. The asymptotic behavior of
null harmonic p(® is investigated for large ¢.

MSC 2010: 65F50, 65F30, 46B28, 47A80

1. Introduction
Let us consider the heat conduction equation with nonlocal boundary conditions

0 0?
—uz—u, O<z<l1, wu(z0)=u(x),
ou ou ’
= = = —(1,1).
u(0,t) =0, 92 (0,1t) 8:17( ,t)
Here vy is a prescribed real parameter. The eigenvalue problem
X"(x)+ XX () =0, 0<z<1l, X(0)=0, ~X'(0)=X'(1). (1.2)

arises when we solve the problem (1.1) by means of the method of variables separation.
The spectrum of the problem (1.2) depends on parameter v and is defined by formulae

Xo =%, 1) = arccos?,
A2k—1 = (27Tk - 1/’)2, Aok = (27Tk + 1/))23 k= 1,2, ...

Key words. Difference scheme, heat conduction equation, stability criteria, nonlocal boundary condi-
tions.
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If || < 1 then all the eigenvalues are real and positive. The eigenvalues are complex with
¥ =1ln (fy + /2 - 1) when v > 1. Moreover for v > 1 exist eigenvalues with negative

real part. As a consequence the original problem (1.1) became unstable one in view of
exponential time increasing of corresponding harmonics. The number of eigenvalues sit-
uated in the left half-plane increases with growth of +. It can be demonstrated that if
1 < v < 74 = ch(2m) =~ 267.7, then the single eigenvalue exists in the left half-plane,
namely \g = 2. In what follows we restrict ourselves to rang v € (1, 7).

Essential time increasing of unstable harmonics as well as boundedness of a rang
representation of real numbers in computers constrained us to carrying out calculations
only for bounded time segment. Thereby the primitive evaluation of maximal admissible
calculating time 7" leads us to the condition exp (|A\o|t) < 10M | where 10 is a maximal
number which is representable in the computer. From here we obtain T = T(M,~) =
M In 10 |Ao(7)|~". For example, T(300, 10) = 77, T'(300, 100) = 25 and T'(300,300) = 17.

Let us denote

= y(@itn), y7 = oyt + (1 - o)yl
n o __ y;(b-i-l — y? n o __ y;n B y;'nfl n o _ y;'n+1 - y;n
yt,i - T yi,i - Tv yw,i - T

-
on the uniform mesh wy, » = wp, X Wy, where wy, = {z; = ih}Y ), w, = {t, =n7}E .
As usual, we approximate the problem (1.1) by the weighted difference scheme

yh -y =0, i=1,2...,N—-1 n=0,1,...,
(1.3)

@) _ (@ .

h
1+1
n+l _ 0, §ny + y‘nz-’N - ’Yyr,O

yi = uo(zi), yg
Difference schemes for the problem (1.1) were discussed primarily by N. L. Ionkin [1]—
[3], where the case v = 1 (so called the problem Samarskii — Tonkin) is investigated in
detail. The case v € (—1, 1) studied in the papers of A. V. Gulin, N. I. Tonkin and
V .A. Morozova (see [4]). The fundamental distinction from the case v = £1 consists here
in the fact that the eigenfunctions system of the difference analogue of (1.2) constitutes
the basis in the space of grid functions. As a consequence it is possible to represent
the desired solution of unsteady difference problem in the form of expansion in terms of
eigenfunctions basis. The certain significant results on the theory of difference schemes for
differential equations with nonlocal boundary condition, including quasilinear equations,
obtained by V. L. Makarov with co-authors [5] — [8].

2. The spectrum of difference operator
The main operator of the difference scheme (1.3) is defined as

(Ay)J:_y?Tja j:1727"'7N_17 y0:O7
2 (2.1)
(Ay)N = h (ya':,N - ’sz,o) .

The eigenvalue problem for operator (2.1)

. 2
/’L.ZL,j+ANJ 207 J = 1a27"'aN_ 17 Ho 207 E(WMJ,,O_#JTN)_F)‘HN =0 (22)

for v > 1 has the solution

Aok—1 = % sin?((mk — 0,5¢)h), u® =V (x;) = sin((2nk — )z;),
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Aok = % sin®((wk +0,5¢)h),  u®(z;) = sin((2k + ¥)a;),

where 1 = i1n <7+ m)

The following expressions are valid for the real and imaginary parts of eigenvalues. If

we denote a = ch (hln (7 + \/727—1», then

2 2 .
ReAop_1 = 72 (1 —acos(27kh)), ImAgy_q = 0 a? — 1sin(27kh), 2.3

2 2
Re Ao = 2 (1 —acos(2rkh)), ImAgp_q1 = 72V a? — 1sin(27kh).

For N odd the index k go from 1 to (N — 1)/2 in formulae for Ag;—1 and go from 0 to
(N —1)/2 in formulae for Aog. For N even the subscript k go from 1 to N/2 in formulae
for Aax—1 and go from 0 to N/2 — 1 in formulae for Agx. For the sake of distinctness we
suppose hereinafter that N is even and denote m = N/2.

It follows from (2.3) the expressions for modules of eigenvalues:

2
Aaict] = [Aae| = 5 (a = cos(2nkh), a = ch (hln (7 F /o 1)) .

Hereinafter we shall use the following designations relating to the spectrum of a difference
operator. As a rule instead of parameter v > 1 we introduce the parameter a = a(y) =

ch (h In (7 + V2 - 1)) , from which v = ch (' In (a + V/a? — 1)). At the present paper

is supposed that
() 1 1+ Sin(ﬂ'h)
1 =ch In{ ——=
<7v<7;r d (h n( cos(h) ,

then 1 < a < ay = cos™!(27wh). Note that under condition 1 < v < 7_@ it exists only
one eigenvalue of the difference problem (2.2), situated in the left complex half-plane.

Inequalities 1 < a. < a4 are valid, where the number

cu05(1+w1+8m9mm)>1 (2.4)

is the root of quadratic equation a® — a — 2sin?(wh) = 0. Here

p2(a) = a® —a —2sin’(7h) <0, if 1 < a < a., pa(a) >0, if a, <a < ay.

3. Asymptotic stability

3.1. Main notions
Let us denote by

1—(1—-0)TX
= ———7—, k=0,1,---, N—-1
ok 14+ o7 T ’
the eigenvalues of transition operator of the difference scheme (1.3). The nonlocal differ-
ence operator (2.1) contains along with stable harmonics pp(z) c k=1,2,--- , N — 1,
for which Re A > 0, also the unstable harmonic pg(x) infinitely increasing with time. Let
Hpy 1 is a linear span of eigenvectors ug(x), where k=1,2, -+, N — 1.

We say that the difference scheme is stable in the subspace Hy 1, if inequalities |sg| < 1
are valid for all eigenvalues of the transition operator except eigenvalue sg. Let us denote

14 1/1+ 8sin?(7h)

a = ch (hln ('y—i—\/’yQ—l)), ay =1/cos(2mh), a. = 5
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Theorem 3.1 Suppose that 1 < a < ay. If 0 > 0.5, then the scheme (1.3) is stable in
Hy_y forall k > 0. If 0 < 0.5 and 1 < a < a., then the scheme (1.3) is stable in Hy_4

under condition 1

(1-20)(a+1)

If 0 < 0.5 and a. < a < a4, then the scheme (1.3) is stable in Hy_1 under condition

0< k<

1 —acos(27h)

Vsms (1 —20)(a — cos(2mh))?

We omit the proof, because it carrying out similarly to [4, p. 223].

Asymptotic stability requirement imposes more strong restriction on difference sche-
me’s parameters. The conception of asymptotic stability for difference schemes was in-
troduced by A. A. Samarskii [9, p. 201], [10, p. 327] in connection with the differ-
ence schemes for heat conduction equation with first kind boundary conditions. Let
0< A1 < A2 < --- < Ay are all eigenvalues of the main difference operator of such a
scheme, and py(z) are corresponding eigenvectors, k = 1, 2, --- , N — 1. The difference
scheme is referred as asymptotically stable, if it stable with respect to initial data and,
furthermore, its solution tends for ¢ — co to the asymptotic solution, which is defined by
the first eigenvalue A;.

Presence of an unstable harmonic force us to slightly vary the definition of asymptotic
stability. The difference scheme (1.3) is said to be asymptotically stable in the subspace
Hpy_1, if inequalities

|Sk|<‘51|<1, k=23 --,N—-1

are hold for all eigenvalues of the transition operator except the eigenvalue sg.

Lemma 3.2 If 1 <~ < 7_(&), then fulfilment of inequalities

fo(k) = (20 — 1)(a — cos(27h))?k + (1 — acos(27h)) > 0, (3.1)
fow) =ro+ e+ k>0 k=1,2,...,m, (3.2)

where k = 7/h%, a = ch (hln (’y—l— \/727—1)> and

ro = a, rgk) = (20 — 1)(2a — cos(27kh) — cos(2mh)),

i) = 46(1 — 0)[a(a® — cos(2rkh) cos(2mh)) — (2a — cos(2rh) — cos(2mkh))] (35)
is necessary and suflicient for asymptotic stability of the scheme (1.3) in Hy_1.
Proof. It follow from (2.3) that
|s2k—1]” = [sa|* = . +a§:;m+a(é:))%2, k=1,2,....m,
140"k + by K2
where
agk) = —4(1 — 0)(1 — acos(2wkh)), aék) = 4(1 — 0)*(a — cos(27kh))?, (3.4)

bgk) = 40 (1 — acos(2nkh)), bék) = 40*(a — cos(27kh))?,
Let us find from here the asymptotic stability conditions

Isael® <lso> =|s1° <1, k=2,3,...,m. (3.5)
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We get from (3.4) that

Rk

|saf” — |soi|” = D

D= (14 00n b0 k2) (14 + 0782 >0,
where D = (1 + oMk + b(;)n?) (1 + oMk 4 bgk)nz) > 0 and

R = 4(cos(2mh) — cos(2mkh)) (ro + ¥k + r{F K2).

Here ro and r§k2) are specified in accordance with (3.3). As far as the multiplier cos(27h) —
cos(2mkh) is positive, inequalities (3.5) and (3.2) are true or false simultaneously. So, it

remains to find the condition guaranteeing the inequality \31|2 < 1. We get

(b = af) + (05" — af")s
1+ bgl)m + bél)li2

1—|s1)° =&

where bgl) - agl) = 4(1 —acos(2mh)), bgl) - aél) = 4(20 —1)(1 —acos(2rh))?. Tt follows
from here that the inequality |s,|” < 1 is equivalent to (3.1). O
Let us consider cases 0 =0, 0 = 1 and o = 0, 5 separately.

3.2. Asymptotic stability of explicit scheme

Theorem 3.3 If 1 < a < a,, then the explicit scheme (o0 = 0 )is asymptotically stable

in Hy_1 under condition
a

<.
2(a + sin®(7h))
If a. < a < a4, then the explicit scheme asymptotically stable in Hy_1 under condition

1 — acos(27h)

" (o= cos(2nh)?

Proof. For 0 = 0 we get rg = a, rgk) = —(2a — cos(2mh) — cos(27wkh)), rék) =0,
therefore the asymptotic stability conditions (3.1), (3.2) assume the form

—(a — cos(27h))*k + (1 — acos(27h)) > 0,
a — (2a — cos(2wh) — cos(2mkh))k >0, k=1,2,...,m.
Let us find
,oin {a — (2a — cos(27h))k + cos(2wkh)k} =

= {a — (2a — cos(27h))k + cos(2rmh)k} = a — 2(a + sin®(7h))x.

It is seen from here that the asymptotic stability condition reduces to inequality

, { 1 — acos(27h) a }
K < min .

(a — cos(2mh))?’ 2(a + sin®(wh))
In order to find the minimum mentioned we rearrange

a a
Q(a 4 sin? (7'rh)) T 2a+1-— COS(Q?Th)
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and solve relative to a the inequality

1 —acos(2mh) < a
(a —cos(2mh))?2 ~ 2a+ 1 — cos(2wh)’

which can reduced to inequality a® —2a—1+(1-+a) cos(27h) > 0 or a® —a—2sin*(7h) > 0.
The maximal root of quadratic equation a® — a — 2sin®(7h) = 0 is

1+ 4/1+ 8sin®(rh)
Ay = .
2

O
Note that according to Theorem 3.1 the explicit scheme is stable (but not asymptoti-
cally stable) in Hy_1 under condition

1 —acos(2mh)

fl * d g—a
1 < a<ax and K (a—cos(27rh))2

Iﬁ?gm, ifa*<a<a+.

Thus, the asymptotic stability condition of explicit scheme coincides with condition of
usual stability if a. < @ < a4, and is a more strong requirement in the case 1 < a < a,.

3.3. The pure implicit scheme

Theorem 3.4 If 1 < a < a4, then the pure implicit scheme (o0 = 1) is asymptotically
stable in Hy_1 for arbitrary xk > 0.

Proof. In the case 0 =1 we get

ro=a>1, r{’“) = 2a — cos(2mh) — cos(2mkh) > 0, rék) =0,

consequently the condition ro + ri’“)n > 0 is valid for all k. The condition |s;|> < 1, which

reduces to inequality
(a — cos(2mh))*k + 1 — acos(27h) > 0,

also is valid for all k > 0, if a < 1/ cos(27h). O
In is seen from here and Theorem 3.1 that the pure implicit scheme, being absolutely
stable in Hy_1, is also absolutely asymptotically stable in Hy_1.

3.4. Asymptotic stability of the symmetric scheme
Theorem 3.5 If 1 < a < a., then the symmetric scheme (o = 0.5) is asymptotically
stable in Hy_1 under condition
9 a
< — .
(a+1)(—a? + a+ 2sin“(7h))

(3.6)

Ifa, < a < ay, then the symmetric scheme is asymptotically stable in Hy_1 for arbitrary
k> 0.

Proof. Setting o = 0.5, we get from (3.4) that

To = a, rgk) =0, rék) = a(a® — cos(27h) cos(27mkh)) — (2a — cos(2wh) — cos(27kh)).
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The asymptotic stability conditions (3.1), (3.2) take a form 1 — acos(2rh) > 0 and
(k)

a+ry k% > 0. The first inequality is valid by assumption. Further,
a+ rék)l-€2 =a+ [a® — 2a + cos(27h)|k* + (1 — acos(27h)) cos(2rmkh)K? >
> a+ [a® — 2a + cos(27h)]x% + (1 — acos(27h)) cos(mNh)k? =
= a+ [a® — 2a + cos(27h)|k? — (1 — acos(27h))K>.

It follows from here that the asymptotic stability condition can be written as inequality

a+ (a+1)(a® — a — 2sin?(wh)) > 0. Consequently the coefficient rék) is positive if and

only if a > a.. For a < a, we get rék) < 0 and the inequality a + rék) > 0 reduces to the
condition (3.6).

O

Note that the symmetric scheme is stable in Hx_1 in usual sense for all x > 0. So, in

the case 1 < a < a, requirement, of asymptotic stability leads to more essential restriction.

4. Increasing of null harmonic

The eigenvalue sg of the transition operator of difference scheme (1.3) corresponding
to null harmonic is defined as

_1-(1- U)T)\(()h)

2(a—1)
1+ orAg” '

, where )\((Jh) i

50

Let us represent sg in the form

S0 = elnSO — e—T)\QeT)\Q—‘rlnSO — e_T)\Op,

where p = €%, p = TAo +Insg and g = — In® (’y +/72 - 1) is an eigenvalue of differ-

ential problem (1.2, corresponding to null harmonic. With the notation x = 7/h?, let us
rewrite the exponent ¢ in the form

2k(a—1)
=kh®Xg+In 14+ —F
L O—i_n(+1—2m~@(a—1)>7

from where we get
2 -1
p=pk)=¢e¥ = (1 + K(a))) ef”th)\o. (4.1)

The factor p(x) characterizes the deviation of solution u(t) = e~*o! of the differential
problem from corresponding difference solution y(t, k) = sg/T = sé/(k"hz).

If p(ko) = 1 for some kg > 0, then solutions u(t) and y(t, ko) are coincides. In this case
the value kK = kg can be called as optimal one. If for some x > 0 the inequality p(k) > 1
is valid, then y(t,x) > u(t) (approximation from above). If p(k) < 1, then y(¢, k) < u(t)
(approximation from below).

Let us consider certain values of o.

4.1. Explicit scheme
For the explicit scheme (o = 0) from (4.1) we get

p(k) = (1 + 2k(a — 1)) e,
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The derivative J
L = [2(a = 1)1+ rh*X0) + KX

vanishes in the point
Z(a - 1) + hQ)\o

T ()@ - 1)
As far as

h4
2(a—1) +h*ho = 15 In’ (7 +V2 - 1) +O(h%) >0

we get k1 > 0. The derivative p/(k) is positive right up to the point x; and is negative
for kK > k1. Consequently, k1 is a maximum point of p(x), and p(x1) > 1.

The graph of function p(k) is represented on the Figure 1 (left picture). Here N = 20
and v = 100, that corresponds a = 1.035, a, = 1.047 and a4 = 1.051. The scheme is
stable in Hpn_1 under condition

1
a+1

= 0.491,

K <

and it asymptotically stable in Hy_1 under condition

a
k< ———————— = 0.488.
2(a + sin®(7h))

For the example concerned the derivative p’(k) vanishes in the point x; = 0.083, and
p(k1) = 1.000017. The equality p(k) = 1 is valid in the point k = kg = 0.171.

pli. 0y

0.2000
1]

Fig. 1. The multiplier p(x) of explicit scheme (left) and pure implicit scheme (right)

The small deviation of the factor p from 1 result nevertheless in considerable distinction
between difference solution y(¢,x) and differential solution u(t) for large time. So, for
t =10 we get u(t) = 8.217 - 10?1, whereas

y(t, 0.171) = 7.855 - 10'21,  y(t, 0.083) = 1.868 - 10'22, (¢, 0.488) = 3.653 - 10'2°,

4.2. Pure implicit scheme
In the case ¢ = 1 we obtain
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The derivative
dp  2(a—1)+h?[1—2k(a—1)]Xo .2y,
— = e

dx (1-2k(a—1))2

vanishes in the point k1 = (h2/\0)_1 < 0 and is positive for k > 0. As far as p(0) = 1
and the function p(x) is monotone increasing for x > 0, the inequality p(k) > 1 is valid
for k > 0. As opposed to explicit scheme, the solution y(t, k) of the difference problem
exceeds the solution u(t) of the differential problem for all x > 0.

The graph of function p(k) is represented on the Figure 1 (right picture). Here, alike
previous example, N = 20 and v = 100, what corresponds a = 1.035, a, = 1.047 and
a4+ = 1.051. The scheme is stable and asymptotically stable in 8 Hy_; for any £ > 0. The
distinction between difference solution and differential solution for t = 10 is characterized
by following data: u(10) = 8.217 - 10121,

y(10,0.171) = 2.374 - 1023, 4(10,0.083) = 9.773 - 1022, 4(10,0.488) = 6.186 - 10124
y(10,0.5) = 7.012- 10*%*|  y(10,1) = 1.489 - 10'*7, y(10,2) = 1.578 - 10'32.

T T T T T
1.8F 1
T ] 1.6F -
plK) plK)
— | — 14 .
12f 1
= 1 1 |
- 1
’ 10 20 30 10 20
K K

Fig. 2. Factor p(x) in the case o = 0.5

4.3. Symmetric scheme
For 0 = 0.5 from (4.1) we get

k(a — 2 —(a —1)2h%*\gK? a— 2 2
o) = (1 i_ nEa — 3) A= e }(LIA—O /@(:—2(1))2 e )\Oe"‘h .

The graph of the multiplier
14+ k(a—1)
1-k(a—1)

v(k)

is the hyperbola with vertical asymptote k£ = k2 = (a — 1)~! = O(h™?) and horizontal
asymptote v = —1.

For k > ko the function p(k) is negative, so that it is sufficient not go beyond k = ka.
It was demonstrated in Theorem 3.5 that for 1 < a < a, the symmetric scheme is
asymptotically stable in Hx_; under condition

rEmE <(a F1)(—a? +C; + QSinQ(Wh)))1/2 '
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The graph of function p(k) is represented on the Figure 2. For input data N = 20,
v = 100, a = 1.035, a, = 1.047 and ay = 1.051 the scheme is stable in Hy_; for any
%k > 0 and asymptotically stable in Hy_1 for k < k1 = 6.404. The vertical asymptote is
K = Ko = 28.332.

Distinctions between difference and differential solutions for ¢ = 10 are

u(10) = 8.217 - 10", ¢(10,1) = 4.79 - 10*%2,
y(10, K1) = 6.088 - 10", 4(10,40) = 5.801-10"°,  4(10,80) = 1.194 - 10*°.
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