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Àíîòàöiÿ. Ðîçãëÿäà¹òüñÿ ñiìåéñòâî äâîøàðîâèõ ðiçíèöåâèõ ñõåì äëÿ ðiâíÿííÿ
òåïëîïðîâiäíîñòi ∂u

/
∂t = ∂2u

/
∂x2, 0 < x < 1, u(x, 0) = u0(x), u(0, t) = 0,

γ ∂u(0, t)
/
∂x = ∂u(1, t)

/
∂x ç íåëîêàëüíèìè êðàéîâèìè óìîâàìè òà ïàðàìåòðîì

γ > 1. Íà äåÿêîìó iíòåðâàëi γ ∈ (1, γ+) ñïåêòð îñíîâíîãî ðiçíèöåâîãî îïåðàòîðà
ìiñòèòü ¹äèíå âëàñíå çíà÷åííÿ λ0 â ëiâié êîìïëåêñíié ïiâïëîùèíi, òîäi ÿê iíøi
âëàñíi çíà÷åííÿ λ1, λ2, ..., λN−1 çíàõîäÿòüñÿ â ïðàâié ïiâïëîùèíi. Âiäïîâiäíèé
ïðîñòið ñiòêîâèõ ôóíêöié HN ïîäà¹òüñÿ ó âèãëÿäi ïðÿìî¨ ñóìè HN = H0⊕HN−1

îäíîâèìiðíîãî ïiäïðîñòîðó H0 òà ïiäïðîñòîðó HN−1, ÿêèé ¹ ëiíiéíîþ îáîëîíêîþ
âëàñíèõ âåêòîðiâ µ(1), µ(2), ..., µ(N−1). Ââåäåíî îçíà÷åííÿ àñèìïòîòè÷íî¨ ñòiéêîñ-
òi â HN−1 òà ñôîðìóëüîâàíi óìîâè àñèìïòîòè÷íî¨ ñòiéêîñòi. Äîñëiäæåíà àñèì-
ïòîòè÷íà ïîâåäiíêà íóëüîâî¨ ãàðìîíiêè µ(0) ïðè âåëèêèõ t.

Abstract. The family of two-layer di�erence schemes is considered for the heat
conduction equation ∂u

/
∂t = ∂2u

/
∂x2, 0 < x < 1, u(x, 0) = u0(x), u(0, t) = 0,

γ ∂u(0, t)
/
∂x = ∂u(1, t)

/
∂x with nonlocal boundary conditions and parameter γ >

1. The spectrum of the main di�erence operator contains in some interval γ ∈ (1, γ+)
a single eigenvalue λ0 in the left complex half-plane, while the rest eigenvalues λ1,
λ2, ..., λN−1 are situated in the right half-plane. The corresponding grid-function
space HN is represented as a direct sum HN = H0 ⊕ HN−1 of one-dimensional
subspace H0 and subspace HN−1, which is the linear span of eigenvectors µ(1), µ(2),
..., µ(N−1). The de�nition of asymptotic stability in HN−1 is introduced, as well as
the conditions of asymptotic stability are formulated. The asymptotic behavior of
null harmonic µ(0) is investigated for large t.

MSC 2010: 65F50, 65F30, 46B28, 47A80

1. Introduction
Let us consider the heat conduction equation with nonlocal boundary conditions

∂u

∂t
=

∂2u

∂x2
, 0 < x < 1, u(x, 0) = u0(x),

u(0, t) = 0, γ
∂u

∂x
(0, t) =

∂u

∂x
(1, t).

(1.1)

Here γ is a prescribed real parameter. The eigenvalue problem

X ′′(x) + λX(x) = 0, 0 < x < 1, X(0) = 0, γX ′(0) = X ′(1). (1.2)

arises when we solve the problem (1.1) by means of the method of variables separation.
The spectrum of the problem (1.2) depends on parameter γ and is de�ned by formulae

λ0 = ψ2, ψ = arccos γ,

λ2k−1 = (2πk − ψ)2, λ2k = (2πk + ψ)2, k = 1, 2, . . .

Key words. Di�erence scheme, heat conduction equation, stability criteria, nonlocal boundary condi-
tions.

34



ASYMPTOTIC STABILITY OF NONLOCAL DIFFERENCE SCHEMES 35

If |γ| 6 1 then all the eigenvalues are real and positive. The eigenvalues are complex with
ψ = i ln

(
γ +

√
γ2 − 1

)
when γ > 1. Moreover for γ > 1 exist eigenvalues with negative

real part. As a consequence the original problem (1.1) became unstable one in view of
exponential time increasing of corresponding harmonics. The number of eigenvalues sit-
uated in the left half-plane increases with growth of γ. It can be demonstrated that if
1 < γ < γ+ = ch(2π) ≈ 267.7, then the single eigenvalue exists in the left half-plane,
namely λ0 = ψ2. In what follows we restrict ourselves to rang γ ∈ (1, γ+).

Essential time increasing of unstable harmonics as well as boundedness of a rang
representation of real numbers in computers constrained us to carrying out calculations
only for bounded time segment. Thereby the primitive evaluation of maximal admissible
calculating time T leads us to the condition exp (|λ0| t) 6 10M , where 10M is a maximal
number which is representable in the computer. From here we obtain T = T (M, γ) =
M ln 10 |λ0(γ)|−1. For example, T (300, 10) = 77, T (300, 100) = 25 and T (300, 300) = 17.

Let us denote

yn
i = y(xi, tn), y

(σ)
i = σyn+1

i + (1− σ)yn
i ,

yn
t,i =

yn+1
i − yn

i

τ
, yn

x̄,i =
yn

i − yn
i−1

h
, yn

x,i =
yn

i+1 − yn
i

h

on the uniform mesh ωh,τ = ωh × ωτ , where ωh = {xi = ih}N
i=0, ωτ = {tn = nτ}K

n=0.
As usual, we approximate the problem (1.1) by the weighted di�erence scheme

yn
t,i − y

(σ)
x̄x,i = 0, i = 1, 2, . . . , N − 1, n = 0, 1, . . . ,

y0
i = u0(xi), yn+1

0 = 0,
h

2
yn

t,N + y
(σ)
x̄,N − γy

(σ)
x,0 = 0.

(1.3)

Di�erence schemes for the problem (1.1) were discussed primarily by N. I. Ionkin [1]�
[3], where the case γ = 1 (so called the problem Samarskii � Ionkin) is investigated in
detail. The case γ ∈ (−1, 1) studied in the papers of A. V. Gulin, N. I. Ionkin and
V .A. Morozova (see [4]). The fundamental distinction from the case γ = ±1 consists here
in the fact that the eigenfunctions system of the di�erence analogue of (1.2) constitutes
the basis in the space of grid functions. As a consequence it is possible to represent
the desired solution of unsteady di�erence problem in the form of expansion in terms of
eigenfunctions basis. The certain signi�cant results on the theory of di�erence schemes for
di�erential equations with nonlocal boundary condition, including quasilinear equations,
obtained by V. L. Makarov with co-authors [5] � [8].

2. The spectrum of di�erence operator
The main operator of the di�erence scheme (1.3) is de�ned as

(Ay)j = −yx̄x,j , j = 1, 2, . . . , N − 1, y0 = 0,

(Ay)N =
2
h

(
yx̄,N − γyx,0

)
.

(2.1)

The eigenvalue problem for operator (2.1)

µx̄x,j + λµj = 0, j = 1, 2, . . . , N − 1, µ0 = 0,
2
h

(γµx,0 − µx̄,N ) + λµN = 0 (2.2)

for γ > 1 has the solution

λ2k−1 =
4
h2

sin2((πk − 0, 5ψ)h), µ(2k−1)(xj) = sin((2πk − ψ)xj),
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λ2k =
4
h2

sin2((πk + 0, 5ψ)h), µ(2k)(xj) = sin((2πk + ψ)xj),

where ψ = i ln
(
γ +

√
γ2 − 1

)
.

The following expressions are valid for the real and imaginary parts of eigenvalues. If
we denote a = ch

(
h ln

(
γ +

√
γ2 − 1

))
, then

Re λ2k−1 =
2
h2

(1− a cos(2πkh)) , Imλ2k−1 = − 2
h2

√
a2 − 1 sin(2πkh),

Re λ2k =
2
h2

(1− a cos(2πkh)) , Im λ2k−1 =
2
h2

√
a2 − 1 sin(2πkh).

(2.3)

For N odd the index k go from 1 to (N − 1)/2 in formulae for λ2k−1 and go from 0 to
(N − 1)/2 in formulae for λ2k. For N even the subscript k go from 1 to N/2 in formulae
for λ2k−1 and go from 0 to N/2 − 1 in formulae for λ2k. For the sake of distinctness we
suppose hereinafter that N is even and denote m = N/2.

It follows from (2.3) the expressions for modules of eigenvalues:

|λ2k−1| = |λ2k| = 2
h2

(a− cos(2πkh)), a = ch
(
h ln

(
γ +

√
γ2 − 1

))
.

Hereinafter we shall use the following designations relating to the spectrum of a di�erence
operator. As a rule instead of parameter γ > 1 we introduce the parameter a = a(γ) =
ch

(
h ln

(
γ +

√
γ2 − 1

))
, from which γ = ch

(
h−1 ln

(
a +

√
a2 − 1

))
. At the present paper

is supposed that

1 < γ < γ
(h)
+ = ch

(
h−1 ln

(
1 + sin(πh)

cos(πh)

))
,

then 1 < a < a+ = cos−1(2πh). Note that under condition 1 < γ < γ
(h)
+ it exists only

one eigenvalue of the di�erence problem (2.2), situated in the left complex half-plane.
Inequalities 1 < a∗ < a+ are valid, where the number

a∗ = 0.5
(

1 +
√

1 + 8 sin2(πh)
)

> 1 (2.4)

is the root of quadratic equation a2 − a− 2 sin2(πh) = 0. Here
p2(a) = a2 − a− 2 sin2(πh) < 0, if 1 < a < a∗, p2(a) > 0, if a∗ < a < a+.

3. Asymptotic stability
3.1. Main notions

Let us denote by

sk =
1− (1− σ)τλk

1 + στλk
, k = 0, 1, · · · , N − 1

the eigenvalues of transition operator of the di�erence scheme (1.3). The nonlocal di�er-
ence operator (2.1) contains along with stable harmonics µk(x) ñ k = 1, 2, · · · , N − 1,
for which Re λk > 0, also the unstable harmonic µ0(x) in�nitely increasing with time. Let
HN−1 is a linear span of eigenvectors µk(x), where k = 1, 2, · · · , N − 1.

We say that the di�erence scheme is stable in the subspace HN−1, if inequalities |sk| 6 1
are valid for all eigenvalues of the transition operator except eigenvalue s0. Let us denote

a = ch
(
h ln

(
γ +

√
γ2 − 1

))
, a+ = 1/ cos(2πh), a∗ =

1 +
√

1 + 8 sin2(πh)

2
.
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Theorem 3.1 Suppose that 1 < a < a+. If σ > 0.5, then the scheme (1.3) is stable in
HN−1 for all κ > 0. If σ < 0.5 and 1 < a 6 a∗, then the scheme (1.3) is stable in HN−1

under condition
0 < κ 6 1

(1− 2σ)(a + 1)
.

If σ < 0.5 and a∗ 6 a < a+, then the scheme (1.3) is stable in HN−1 under condition

0 < κ 6 1− a cos(2πh)
(1− 2σ)(a− cos(2πh))2

.

We omit the proof, because it carrying out similarly to [4, p. 223].
Asymptotic stability requirement imposes more strong restriction on di�erence sche-

me's parameters. The conception of asymptotic stability for di�erence schemes was in-
troduced by A. A. Samarskii [9, p. 201], [10, p. 327] in connection with the di�er-
ence schemes for heat conduction equation with �rst kind boundary conditions. Let
0 < λ1 < λ2 < · · · < λN−1 are all eigenvalues of the main di�erence operator of such a
scheme, and µk(x) are corresponding eigenvectors, k = 1, 2, · · · , N − 1. The di�erence
scheme is referred as asymptotically stable, if it stable with respect to initial data and,
furthermore, its solution tends for t →∞ to the asymptotic solution, which is de�ned by
the �rst eigenvalue λ1.

Presence of an unstable harmonic force us to slightly vary the de�nition of asymptotic
stability. The di�erence scheme (1.3) is said to be asymptotically stable in the subspace
HN−1, if inequalities

|sk| < |s1| < 1, k = 2, 3, · · · , N − 1

are hold for all eigenvalues of the transition operator except the eigenvalue s0.

Lemma 3.2 If 1 < γ < γ
(h)
+ , then ful�lment of inequalities

f0(κ) = (2σ − 1)(a− cos(2πh))2κ + (1− a cos(2πh)) > 0, (3.1)

fk(κ) = r0 + r
(k)
1 κ + r

(k)
2 κ2 > 0, k = 1, 2, . . . ,m, (3.2)

where κ = τ/h2, a = ch
(
h ln

(
γ +

√
γ2 − 1

))
and

r0 = a, r
(k)
1 = (2σ − 1)(2a− cos(2πkh)− cos(2πh)),

r
(k)
2 = 4σ(1− σ)[a(a2 − cos(2πkh) cos(2πh))− (2a− cos(2πh)− cos(2πkh))]

(3.3)

is necessary and su�cient for asymptotic stability of the scheme (1.3) in HN−1.

Proof. It follow from (2.3) that

|s2k−1|2 = |s2k|2 =
1 + a

(k)
1 κ + a

(k)
2 κ2

1 + b
(k)
1 κ + b

(k)
2 κ2

, k = 1, 2, . . . , m,

where

a
(k)
1 = −4(1− σ)(1− a cos(2πkh)), a

(k)
2 = 4(1− σ)2(a− cos(2πkh))2,

b
(k)
1 = 4σ(1− a cos(2πkh)), b

(k)
2 = 4σ2(a− cos(2πkh))2,

(3.4)

Let us �nd from here the asymptotic stability conditions

|s2k|2 < |s2|2 = |s1|2 < 1, k = 2, 3, . . . , m. (3.5)
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We get from (3.4) that

|s2|2 − |s2k|2 =
κR

D
, D =

(
1 + b

(1)
1 κ + b

(1)
2 κ2

)(
1 + b

(k)
1 κ + b

(k)
2 κ2

)
> 0,

where D =
(
1 + b

(1)
1 κ + b

(1)
2 κ2

)(
1 + b

(k)
1 κ + b

(k)
2 κ2

)
> 0 and

R = 4(cos(2πh)− cos(2πkh))(r0 + r
(k)
1 κ + r

(k)
2 κ2).

Here r0 and r
(k)
1,2 are speci�ed in accordance with (3.3). As far as the multiplier cos(2πh)−

cos(2πkh) is positive, inequalities (3.5) and (3.2) are true or false simultaneously. So, it
remains to �nd the condition guaranteeing the inequality |s1|2 < 1. We get

1− |s1|2 = κ
(b(1)

1 − a
(1)
1 ) + (b(1)

2 − a
(1)
2 )κ

1 + b
(1)
1 κ + b

(1)
2 κ2

,

where b
(1)
1 − a

(1)
1 = 4(1− a cos(2πh)), b

(1)
2 − a

(1)
2 = 4(2σ− 1)(1− a cos(2πh))2. It follows

from here that the inequality |s1|2 < 1 is equivalent to (3.1). 2

Let us consider cases σ = 0, σ = 1 and σ = 0, 5 separately.

3.2. Asymptotic stability of explicit scheme
Theorem 3.3 If 1 < a < a∗, then the explicit scheme (σ = 0 )is asymptotically stable
in HN−1 under condition

κ <
a

2(a + sin2(πh))
.

If a∗ < a < a+, then the explicit scheme asymptotically stable in HN−1 under condition

κ <
1− a cos(2πh)
(a− cos(2πh))2

.

Proof. For σ = 0 we get r0 = a, r
(k)
1 = −(2a − cos(2πh) − cos(2πkh)), r

(k)
2 = 0,

therefore the asymptotic stability conditions (3.1), (3.2) assume the form

−(a− cos(2πh))2κ + (1− a cos(2πh)) > 0,

a− (2a− cos(2πh)− cos(2πkh))κ > 0, k = 1, 2, . . . ,m.

Let us �nd

min
26k6m

{a− (2a− cos(2πh))κ + cos(2πkh)κ} =

= {a− (2a− cos(2πh))κ + cos(2πmh)κ} = a− 2(a + sin2(πh))κ.

It is seen from here that the asymptotic stability condition reduces to inequality

κ < min
{

1− a cos(2πh)
(a− cos(2πh))2

,
a

2(a + sin2(πh))

}
.

In order to �nd the minimum mentioned we rearrange
a

2(a + sin2(πh))
=

a

2a + 1− cos(2πh)
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and solve relative to a the inequality

1− a cos(2πh)
(a− cos(2πh))2

<
a

2a + 1− cos(2πh)
,

which can reduced to inequality a3−2a−1+(1+a) cos(2πh) > 0 or a2−a−2 sin2(πh) > 0.
The maximal root of quadratic equation a2 − a− 2 sin2(πh) = 0 is

a∗ =
1 +

√
1 + 8 sin2(πh)

2
.

2

Note that according to Theorem 3.1 the explicit scheme is stable (but not asymptoti-
cally stable) in HN−1 under condition

κ 6 1
a + 1

, if 1 < a < a∗ and κ 6 1− a cos(2πh)
(a− cos(2πh))2

, if a∗ < a < a+.

Thus, the asymptotic stability condition of explicit scheme coincides with condition of
usual stability if a∗ < a < a+, and is a more strong requirement in the case 1 < a < a∗.

3.3. The pure implicit scheme
Theorem 3.4 If 1 < a < a+, then the pure implicit scheme (σ = 1) is asymptotically
stable in HN−1 for arbitrary κ > 0.

Proof. In the case σ = 1 we get

r0 = a > 1, r
(k)
1 = 2a− cos(2πh)− cos(2πkh) > 0, r

(k)
2 = 0,

consequently the condition r0 + r
(k)
1 κ > 0 is valid for all κ. The condition |s1|2 < 1, which

reduces to inequality

(a− cos(2πh))2κ + 1− a cos(2πh) > 0,

also is valid for all κ > 0, if a < 1/ cos(2πh). 2

In is seen from here and Theorem 3.1 that the pure implicit scheme, being absolutely
stable in HN−1, is also absolutely asymptotically stable in HN−1.

3.4. Asymptotic stability of the symmetric scheme
Theorem 3.5 If 1 < a < a∗, then the symmetric scheme (σ = 0.5) is asymptotically
stable in HN−1 under condition

κ2 <
a

(a + 1)(−a2 + a + 2 sin2(πh))
. (3.6)

If a∗ < a < a+, then the symmetric scheme is asymptotically stable in HN−1 for arbitrary
κ > 0.

Proof. Setting σ = 0.5, we get from (3.4) that

r0 = a, r
(k)
1 = 0, r

(k)
2 = a(a2 − cos(2πh) cos(2πkh))− (2a− cos(2πh)− cos(2πkh)).
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The asymptotic stability conditions (3.1), (3.2) take a form 1 − a cos(2πh) > 0 and
a + r

(k)
2 κ2 > 0. The �rst inequality is valid by assumption. Further,

a + r
(k)
2 κ2 = a + [a3 − 2a + cos(2πh)]κ2 + (1− a cos(2πh)) cos(2πkh)κ2 >

> a + [a3 − 2a + cos(2πh)]κ2 + (1− a cos(2πh)) cos(πNh)κ2 =

= a + [a3 − 2a + cos(2πh)]κ2 − (1− a cos(2πh))κ2.

It follows from here that the asymptotic stability condition can be written as inequality
a + (a + 1)(a2 − a − 2 sin2(πh)) > 0. Consequently the coe�cient r

(k)
2 is positive if and

only if a > a∗. For a < a∗ we get r
(k)
2 < 0 and the inequality a + r

(k)
2 > 0 reduces to the

condition (3.6).
2

Note that the symmetric scheme is stable in HN−1 in usual sense for all κ > 0. So, in
the case 1 < a < a∗ requirement of asymptotic stability leads to more essential restriction.

4. Increasing of null harmonic
The eigenvalue s0 of the transition operator of di�erence scheme (1.3) corresponding

to null harmonic is de�ned as

s0 =
1− (1− σ)τλ

(h)
0

1 + στλ
(h)
0

, where λ
(h)
0 = −2(a− 1)

h2
.

Let us represent s0 in the form

s0 = eln s0 = e−τλ0eτλ0+ln s0 = e−τλ0ρ,

where ρ = eϕ, ϕ = τλ0 + ln s0 and λ0 = − ln2
(
γ +

√
γ2 − 1

)
is an eigenvalue of di�er-

ential problem (1.2, corresponding to null harmonic. With the notation κ = τ/h2, let us
rewrite the exponent ϕ in the form

ϕ = κh2λ0 + ln
(

1 +
2κ(a− 1)

1− 2σκ(a− 1)

)
,

from where we get

ρ = ρ(κ) = eϕ =
(

1 +
2κ(a− 1)

1− 2σκ(a− 1)

)
eκh2λ0 . (4.1)

The factor ρ(κ) characterizes the deviation of solution u(t) = e−λ0t of the di�erential
problem from corresponding di�erence solution y(t, κ) = s

t/τ
0 = s

t/(κh2)
0 .

If ρ(κ0) = 1 for some κ0 > 0, then solutions u(t) and y(t, κ0) are coincides. In this case
the value κ = κ0 can be called as optimal one. If for some κ > 0 the inequality ρ(κ) > 1
is valid, then y(t, κ) > u(t) (approximation from above). If ρ(κ) < 1, then y(t, κ) < u(t)
(approximation from below).

Let us consider certain values of σ.

4.1. Explicit scheme
For the explicit scheme (σ = 0) from (4.1) we get

ρ(κ) = (1 + 2κ(a− 1)) eκh2λ0 .
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The derivative
dρ

dκ
= [2(a− 1)(1 + κh2λ0) + h2λ0]

vanishes in the point
κ = κ1 =

2(a− 1) + h2λ0

2h2(−λ0)(a− 1)
.

As far as
2(a− 1) + h2λ0 =

h4

12
ln4

(
γ +

√
γ2 − 1

)
+ O(h6) > 0

we get κ1 > 0. The derivative ρ′(κ) is positive right up to the point κ1 and is negative
for κ > κ1. Consequently, κ1 is a maximum point of ρ(κ), and ρ(κ1) > 1.

The graph of function ρ(κ) is represented on the Figure 1 (left picture). Here N = 20
and γ = 100, that corresponds a = 1.035, a∗ = 1.047 and a+ = 1.051. The scheme is
stable in HN−1 under condition

κ 6 1
a + 1

= 0.491,

and it asymptotically stable in HN−1 under condition

κ <
a

2(a + sin2(πh))
= 0.488.

For the example concerned the derivative ρ′(κ) vanishes in the point κ1 = 0.083, and
ρ(κ1) = 1.000017. The equality ρ(κ) = 1 is valid in the point κ = κ0 = 0.171.

Fig. 1. The multiplier ρ(κ) of explicit scheme (left) and pure implicit scheme (right)

The small deviation of the factor ρ from 1 result nevertheless in considerable distinction
between di�erence solution y(t, κ) and di�erential solution u(t) for large time. So, for
t = 10 we get u(t) = 8.217 · 10121, whereas

y(t, 0.171) = 7.855 · 10121, y(t, 0.083) = 1.868 · 10122, y(t, 0.488) = 3.653 · 10120.

4.2. Pure implicit scheme
In the case σ = 1 we obtain

ρ(κ) =
1

1− 2κ(a− 1)
eκh2λ0 .
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The derivative
dρ

dκ
=

2(a− 1) + h2[1− 2κ(a− 1)]λ0

(1− 2κ(a− 1))2
eκh2λ0

vanishes in the point κ1 =
(
h2λ0

)−1
< 0 and is positive for κ > 0. As far as ρ(0) = 1

and the function ρ(κ) is monotone increasing for κ > 0, the inequality ρ(κ) > 1 is valid
for κ > 0. As opposed to explicit scheme, the solution y(t, κ) of the di�erence problem
exceeds the solution u(t) of the di�erential problem for all κ > 0.

The graph of function ρ(κ) is represented on the Figure 1 (right picture). Here, alike
previous example, N = 20 and γ = 100, what corresponds a = 1.035, a∗ = 1.047 and
a+ = 1.051. The scheme is stable and asymptotically stable in â HN−1 for any κ > 0. The
distinction between di�erence solution and di�erential solution for t = 10 is characterized
by following data: u(10) = 8.217 · 10121,

y(10, 0.171) = 2.374 · 10123, y(10, 0.083) = 9.773 · 10122, y(10, 0.488) = 6.186 · 10124

y(10, 0.5) = 7.012 · 10124, y(10, 1) = 1.489 · 10127, y(10, 2) = 1.578 · 10132.

Fig. 2. Factor ρ(κ) in the case σ = 0.5

4.3. Symmetric scheme
For σ = 0.5 from (4.1) we get

ρ(κ) =
(

1 + κ(a− 1)
1− κ(a− 1)

)
eκh2λ0 , ρ′(κ) =

−(a− 1)2h2λ0κ
2 + 2(a− 1) + h2λ0

(1− κ(a− 1))2
eκh2λ0 .

The graph of the multiplier
v(κ) =

1 + κ(a− 1)
1− κ(a− 1)

is the hyperbola with vertical asymptote κ = κ2 = (a − 1)−1 = O(h−2) and horizontal
asymptote v = −1.

For κ > κ2 the function ρ(κ) is negative, so that it is su�cient not go beyond κ = κ2.
It was demonstrated in Theorem 3.5 that for 1 < a < a∗ the symmetric scheme is
asymptotically stable in HN−1 under condition

κ = κ1 =
(

a

(a + 1)(−a2 + a + 2 sin2(πh))

)1/2

.
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The graph of function ρ(κ) is represented on the Figure 2. For input data N = 20,
γ = 100, a = 1.035, a∗ = 1.047 and a+ = 1.051 the scheme is stable in HN−1 for any
κ > 0 and asymptotically stable in HN−1 for κ < κ1 = 6.404. The vertical asymptote is
κ = κ2 = 28.332.

Distinctions between di�erence and di�erential solutions for t = 10 are

u(10) = 8.217 · 10121, y(10, 1) = 4.79 · 10122,

y(10, κ1) = 6.088 · 10124, y(10, 40) = 5.801 · 1076, y(10, 80) = 1.194 · 1016.
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