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OF NONLINEAR MULTIPARAMETER SPECTRAL PROBLEMS
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Àíîòàöiÿ. Íåëiíiéíié áàãàòîïàðàìåòðè÷íié ñïåêòðàëüíié çàäà÷i ó äiéñíîìó
àáñòðàêòíîìó ãiëüáåðòîâîìó ïðîñòîði ñòàâèòüñÿ ó âiäïîâiäíiñòü âàðiàöiéíà çà-
äà÷à íà ìiíiìóì äåÿêîãî ôóíêöiîíàëó. Äîâåäåíà åêâiâàëåíòíiñòü ñïåêòðàëüíî¨
òà âàðiàöiéíî¨ çàäà÷. Íà áàçi ìîäèôiêîâàíîãî ìåòîäó Íüþòîíà çàïðîïîíîâàíî
÷èñåëüíèé àëãîðèòì çíàõîäæåííÿ ¨¨ âëàñíèõ çíà÷åíü òà âëàñíèõ âåêòîðiâ.

Abstract. In the real abstract Hilbert space the nonlinear multiparameter spectral
problem is assigned to the variation problem on a minimum of some functional. The
equivalence of spectral and variation problems is proved. On the base of modi�ed
Newton method a numerical algorithm of �nding its eigenvalues and eigenvectors is
sproposed.

MSC 2010: 47J10, 47J30, 65F15, 65H17

1. Introduction
When studying the solvability of operator equations of the form

T (λ)x = f

with the operator-valued function T (λ) : Em → X(H) (X(H) is a set of the linear
operators in the real Hilbert space), which linearly or nonlinearly depends on several
spectral parameters λ1, λ2, ... , λm, the problems of �nding such parameters λi, i =
1, 2, ... , m, for which exists a nontrivial solution of the corresponding homogeneous
equation T (λ)x = 0 exists, arise. Such problems arise in many areas of analysis and
mathematical physics and have a variety of formulations. These di�erences in formulation
are determined, in particular, by the following: the formulation of the matrix or operator
problem , the number of equations and the scalar parameters, which are considered as
spectral and also by dependence on them, for example, linear or nonlinear.

Various statements of such problems, the corresponding spectral theory, application
and some numerical methods for solving them is the subject of research, for example, in
[1] - [17].

This paper deals with nonlinear, with respect to spectral parameters, multiparameter
eigenvalue problem of the form

T (λ)x = 0, x ∈ H, x 6= 0. (1.1)

in the abstract Hilbert space H, all scalar parameters of which λ = (λ1, λ2, ..., λm−1, λm),
i = 1, 2, ... , m, are spectral.

Such problems are little investigated both from a theoretical point of view (unlike the
linear weakly coupled multparameter eigenvalue problems, for which the spectral theory
is developed see., eg, [3], [16], [17], and some numerical methods , see., eg, [1] - [5]), and
from the point of view of numerical methods for solving them.

Key words. Multiparameter eigenvalue problem, numerical algorithm, modi�ed Newton method.
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This explains to a considerable extentthe interest in such problems, in particular,
in developing numerical methods for solving them since they arise in many application
problems.

In this paper a variational approach to solving such problems, in which the mul-
tiparameter eigenvalue problem is replaced by the equivalent variational problem on a
minimum of some functional, is proposed. In the basis of the numerical algorithm of min-
imization of the functional, the modi�ed Newton method to the problem in an extended
space, which is a direct sum of the abstract Hilbert space H and the real space Em, is
proposed. As a result we obtain the numerical algorithm of �nding the eigenvector and a
set of eigenvalues.

2. Eigenvectors and eigenvalues as the points of minimum
Let H be the real Hilbert space with the scalar product (·, ·) and the norm || · ||.
The nonlinear multiparameter eigenvalue problems consist in �nding such set of spec-

tral parameters λ∗ = (λ∗1, ... , λ∗m), for which the nontrivial solution x 6= 0 of equation
(1.1) exists. The set of spectral parameters λ∗ = {λ∗1, ... , λ∗m} we will name the general-
ized eigenvalue or eigenvalue set, and the corresponding vector x∗ ∈ H we will name the
generalized eigenvector of the problem (1.1).

Along with the problem (1.1) we consider the problem of �nding such a set of param-
eters λ = {λ1, ... , λm } and such vectors x on which functional

F (u) =
1
2
‖T (λ)x ‖2, ∀u = {x, λ} ∈ H̃ = H ⊕Em, x 6= 0 (2.1)

reaches its minimum value, i.e.

F (u) → min
u

, u ∈ Ũ ⊂ H̃, (x 6= 0), (2.2)

where Ũ is a set containing points u∗ = {x∗, λ∗} satisfying equation (1.1), H̃ is the
Hilbert space in which the scalar product and norm are de�ned as follows:

(u, v)H̃ = (u1, u2) + (v1, v2)Em , ‖u‖H̃ =
√
‖u1‖2 + ‖v1‖2Em ,

u = {u1, v1}, v = {u2, v2}, u1, u2 ∈ H, v1, v2 ∈ Em.

Further, we consider that the operator-valued function T (λ) is di�erentiable by Frechet,
i.e. for any λk ∈ R, k = 1, 2, ... , m, partial derivatives ∂T (λ)

∂λk
, k = 1, 2, ... , m, exist and

we will prove, that the problems (1.1) and (3) are equivalent.

Theorem 2.1 Each eigenvector x∗ that corresponds to its eigenvalue set
λ∗ = (λ∗1, ..., λ

∗
m) of problem (1.1) is the stationary point u∗ = {x∗, λ∗} of functional (2.1)

and, conversely, every stationary point u∗ = {x∗, λ∗} of functional (2.1) corresponds to
eigenvector x∗ and its eigenvalue set λ∗ = (λ∗1, ... , λ∗m) of problem (1.1).

Proof. Consider the increment of functional F (u+∆u)−F (u) = F (x+h, λ+ q)−F (x, λ)
for arbitrary u, u + ∆u ∈ Ũ , where ∆u = {h, q} ∈ Ũ . After simple transformations we
obtain

F (u + ∆u)− F (u) = F (x + h, λ + q)− F (x, λ) =

= ( T (λ)x , T (λ)h ) + (T (λ)x,
m∑

i=1

∂T (λ)
∂λi

xqi) + o(‖∆u‖)
(2.3)
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Consequently, the �rst di�erential of F (x) will be written as

d{F (x, λ); (h, q)} = F ′(u)∆u =

= ( T (λ)x , T (λ)h ) +
m∑

i=1

(T (λ)x , Bi(λ)x )qi =

= ( T ∗(λ)T (λ)x , h ) + (f(λ, x) , q )Em = (ũ, ∆u)H̃ , (2.4)

where f (λ, x) = (f1(λ, x), f2(λ, x), ..., fm(λ, x), fi(λ, x) = (T (λ)x,Bi(λ)x), Bi =
∂T (λ)
∂λi

, i = 1, 2, ... ,m, ũ = {T ∗(λ)T (λ)x, f1{λ, x), f2(λ, x), ...fm(λ, x)} is an ordered
system.

Hence, for the �rst derivative of the functional (2.1) we have

F ′(u) (·) = (ũ, ·)H̃ . (2.5)

Let T (λ)x = 0, x 6= 0. Then from (2.4) immediately implies that ũ = 0. Let ũ = 0.
Then from (2.4) we also have

T ∗(λ)T (λ)x = 0 ⇒ (T ∗(λ)T (λ)x, x) = 0 ⇒ (T (λ)x, T (λ)x) = 0 ⇒ T (λ)x = 0,

that proves the theorem statement. 2

Thus, the problem (1.1) and the problem of �nding the stationary points of the func-
tional F (u) are equivalent.

Remark 2.2 Since F (u) ≥ 0, F (u∗) = 0, u, u∗ ∈ Ũ , then each stationary point u∗ of
functional F (u) is a point of it local (and global) minimum.

3. Numerical algorithm
We consider that the operator-valued function T (λ) is twice di�erentiable by Frechet,

i.e. for any λk ∈ R, k = 1, 2, ... , m, the partial derivatives ∂2T (λ)
∂λk∂λl

, k, l = 1, 2, ... , m,
exist.

To simplify the calculations we consider two-parameter problem, that is λ = {λ, µ}.
Consequently that u = {x, λ, µ} ∈ H ⊕R1 ⊕R1, i.e. for F ′(u) we obtain

F ′(u) ≡ Ψ(u) =

=




T ∗(λ)T (λ)x
f1(λ, x)
f2(λ, x)


 =




T ∗(λ, µ)T (λ, µ)x
(T (λ, µ)x, T ′λ(λ, µ)x)
(T (λ, µ)x, T ′µ(λ, µ)x)


 =




T ∗(λ, µ)T (λ, µ)x
(T (λ, µ)x, B1(λ, µ)x)
(T (λ, µ)x, B2(λ, µ)x)


.

Modi�ed Newton method (about the conditions of convergence of this method see, for exam-
ple, [18]), applied to the equation Φ(u) = 0 (see remark 3.1), where

Φ(u) =




T (λ)x
f1(λ, x)
f2(λ, x)


 =




T (λ, µ)x
(T (λ, µ)x, B1(λ, µ)x)
(T (λ, µ)x, B2(λ, µ)x)


, (3.1)

which is equivalent to the equation Ψ(u) = 0, yields

Φ′(u0)(uk+1 − uk) = −Φ(uk), k = 0, 1, 2, ..., (3.2)

where Φ′(u0) is calculated by the formula

Φ′(u0) =
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T B1x B2x
T ∗B1x + B∗

1Tx (B1x, B1x) + (Tx, B′
1λx) (B1x, B2x) + (Tx, B′

1µx)
T ∗B2x + B∗

2Tx (B2x, B1x) + (Tx, B′
2λx) (B2x, B2x) + (Tx, B′

2µx)




∣∣∣∣∣∣ λ = λ0

x = x0

(3.3)

To make one step by the method (3.2) it is necessary to solve a linear system



T B1x0 B2x0

T ∗B1x0 + B∗
1Tx0 (B1x0, B1x0) + (Tx0, B

′
1λx0) (B1x0, B2x0) + (Tx0, B

′
1µx0)

T ∗B2x0 + B∗
2Tx0 (B2x0, B1x0) + (Tx0, B

′
2λx0) (B2x0, B2x0) + (Tx0, B

′
2µx0)


×

×



∆xk

∆λk

∆µk


 = −




T (λk)xk

(T (λk)xk, B1(λk)xk)
(T (λk)xk, B2(λk)xk)


 (3.4)

and compute a new approximation

xk+1 = xk + ∆xk,
λk+1 = λk + ∆λk,
µk+1 = µk + ∆µk.

(3.5)

The following notations T = T (λ0), B1 = ∂T (λ0)
∂λ

, B2 = ∂T (λ0)
∂µ

, B′
1λ = ∂2T (λ0)

∂λ2 , B′
1µ =

∂2T (λ0)
∂λ∂µ

, B′
2λ = ∂2T (λ0)

∂µ∂λ
are introduced to reduce the above formulae.

From (3.4) formally we obtain

T∆xk + B1x0∆λk + B2x0∆µk = −T (λk)xk,

[T ∗B1x0 + B∗
1Tx0]∆xk + [(B1x0, B1x0) + (Tx0, B

′
1λx0)]∆λk+

+
[
(B1x0, B2x0) + (Tx0, B

′
1µx0)

]
∆µk = −(T (λk)xk, B1(λk)xk),

(3.6)

[T ∗B2x0 + B∗
2Tx0]∆xk + [(B2x0, B1x0) + (Tx0, B

′
2λx0)]∆λk+

+
[
(B2x0, B2x0) + (Tx0, B

′
2µx0)

]
∆µk = −(T (λk)xk, B2(λk)xk).

From the �rst equation (3.6) we have

∆xk = −T−1 (B1x0∆λk + B2x0∆µk)− T−1T (λk)xk. (3.7)

To calculate ∆λk and ∆µk we will use the second and third equation of (3.5) �substituting�
the expression (3.7) instead of ∆xk (actually it is the scalar product). Then we obtain a linear
system of equations

[
(Tx0, B

′
1λx0)− (B∗

1Tx0, T
−1B1x0) (Tx0, B

′
1λx0)− (B∗

1Tx0, T
−1B2x0)

(Tx0, B
′
2λx0)− (B∗

2Tx0, T
−1B1x0) (Tx0, B

′
2λx0)− (B∗

2Tx0, T
−1B2x0)

][
∆λk

∆µk

]
=

= −
[

(T (λk)xk, B1(λk)xk) + (B1x0, T (λk)xk) + (B∗
1Tx0, T

−1T (λk)xk)
(T (λk)xk, B2(λk)xk) + (B2x0, T (λk)xk) + (B∗

2Tx0, T
−1T (λk)xk)

]
(3.8)

Further, we consider that the determinant of a matrix system (3.8) is di�erent from zero.
Thus, the algorithm scheme is as follows. After solving a system (3.8) with respect to ∆λk

and ∆µk we compute ∆xk using the formula (3.7).
For m-parametric eigenvalue problem similar to (3.8) linear system of m equations to calculate

∆λi
k = λi

k+1 − λi
k, i = 1, ..., m is obtained. For calculation ∆xk we obtain equation of the form

∆xk = −T−1

(
m∑

i=1

Bix0∆λi
k

)
− T−1T (λk)xk

similar to (3.7).

Remark 3.1 For Newton method when λk −→
k→∞

λ∗, lim T−1

k→∞
(λk) does not exist, that's why for

equation Φ(u) = 0 was have chosen the modi�ed Newton method.
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Note that in [6], [10] and [11] for x ∈ En, as in [9] for x ∈ L2[−1, 1] another formulation
of variational problem, which, in particular, for matrix formulation of the problem leads, for
example, to a gradient procedure for calculating eigenvectors, and for calculating its eigenvalues
a system of linear equations obtained similar to (3.8) was proposed. In [15] a similar statement of
the problem of �nding eigenvalues and eigenvectors of linear homogeneous equations T (λ)x = x
for the case when T (λ) : L2(Ω) → L2(Ω) is a linear selfadjoint positive de�ne operator, which
depends nonlinearly on the spectral parameter λ = {λ1, ... , λm } ∈ Rm, and in the basis of
numerical algorithm to minimize the functional is a method of coordinate descent, was proposed.

4. Numerical example
Consider the application of the proposed algorithm for �nding eigenvalues and eigenfunctions

of two-parameter eigenvalue problem

u(ξ1, ξ2) = T (λ1, λ2)u(ξ1, ξ2) (4.1)

with integral operators form

T (λ1, λ2) u(ξ1, ξ2) =

∫∫

Ω

F (ξ′1, ξ
′
2)K(ξ1, ξ2, ξ

′
1, ξ

′
2, λ1, λ2)

u(ξ′1, ξ
′
2)

f0(ξ1, ξ2)
dξ′1dξ′2,

whose kernel nonlinearly depends on two spectral parameters λ1, λ2 ∈ R1. Here F (ξ1, ξ2) is
continuous in Ω = { | ξ1 | ≤ 1, | ξ2 | ≤ 1 } really and positive function, and

f0(ξ1, ξ2) =

∫∫

Ω

F (ξ′1, ξ
′
2)K(ξ1, ξ2, ξ

′
1, ξ

′
2, λ1, λ2)dξ′1dξ′2.

Equation (4.1) arises in the theory of antennas synthesis of �nding points of possible branching
of solutions of nonlinear integral equation [19]

f(ξ1, ξ2) =

∫∫

Ω

F (ξ′1, ξ
′
2)K(ξ1, ξ2, ξ

′
1, ξ

′
2, λ1, λ2)e

i arg f(ξ′1,ξ′2)dξ1dξ2, (4.2)

It is easy to verify that for arbitrary �nite values λ1, λ2, the function f0(ξ1, ξ2) is the eigenfunction
of equation (4.2). It follows that the operator T (λ1, λ2) has a spectrum, which coincides with the
�rst quadrant of the plane R2.

The problem consists in �nding such a range of real parameters λ1 and λ2 of the problem
(4.1), for which there are solutions di�erent from f0(ξ1, ξ2) that we call trivial.

We have brought the problem (4.1) to self-adjoint form and its spectrum we have excluded
from continual set of eigenvalues, which coincides with the �rst quadrant of the plane. We obtain
the self-adjoint eigenvalue problem

L(λ1, λ2)ϕ ≡ (T (λ1, λ2)− I) ϕ = 0, (4.3)

with continuously di�erentiable, with respect to parameters λ1 and λ2, operator

T (λ1, λ2)ϕ(ξ1, ξ2) ≡
1∫

−1

1∫

−1

E(ξ1, ξ2, ξ
′
1, ξ

′
2, λ1, λ2)ϕ(ξ′1, ξ

′
2)dξ′1dξ′2.

The existence of partial Fr�echet derivatives of operator follows from the continuity of the kernel
E(ξ1, ξ2, ξ

′
1, ξ

′
2, λ1, λ2) on the set of its variables in the Ω × Ω. Due to the awkwardness of the

formulas, expressions for the derivatives are not quoted here.
Numerous experiments on the use of the described algorithm for �nding the eigenvalues of

the problem (4.2) for di�erent functions F (ξ1, ξ2) were carried out.
The following table shows the eigenvalues obtained for two given functions F (ξ1, ξ2) ≡

F1(ξ1, ξ2) =
√

1− (ξ2
1 + ξ2

2)/2 and F (ξ1, ξ2) ≡ F2(ξ1, ξ2) = 1 − (ξ2
1 + ξ2

2)/2. When selecting
the initial approximations for the eigenvectors the properties of invariance of the integral op-
erator relative to the parity functions ϕ(ξ1, ξ2) (see [19]) were taken into account. Namely, in
both cases as the initial approximation of eigenvector we take ϕ(0)(ξ1, ξ2) = ξ1 · ξ2 and that of
eigenvalue we take λ1 = λ2 = π.
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Tabl. 4.1. Eigenvalues of the problem (4.3)

F (ξ1, ξ2) λ1 λ2
Number of
iteration

F (u)

√
1− (ξ2

1 + ξ2
2)/2 3.464427 3.464427) 23 0.161080E-13

1− (ξ2
1 + ξ2

2)/2 3.797144 3.797144 32 0.100711E-14

The �gure shows the eigenvalue curves of the problem (4.3) for two given functions F (ξ1, ξ2).
The curve 1 corresponds to the function F1(ξ1, ξ2), and the curve 2 corresponds to the function
F2(ξ1, ξ2). The same �gure indicate the eigenvalues which are obtained by the proposed algorithm.
Namely, the point A1 and the point A2, that correspond to the functions F1(ξ1, ξ2) and F2(ξ1, ξ2),
respectively.

Fig. 1. Eigenvalue curves of the problem (4.3)

The �gure shows that the obtained eigenvalues (point A1 and point A2) with given accuracy
belong to the eigenvalue curves of problem (4.3), which has been otherwise proposed in [12].

By providing di�erent initial approximations for the parameters λ and µ (λ 6= µ), we obtain
the curve of eigenvalues, for example, the curve 1, which was �rst obtained for the problem (4.3)
in [12].

So for the parameter values λ and µ belonging, for example, to the curve 1 (respectively, the
curve 2), from the trivial solution other solutions of equation (4.2) branch o�.
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