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Àíîòàöiÿ. Â ðîáîòi ðîçãëÿäà¹òüñÿ ìàòåìàòè÷íà ìîäåëü çàäà÷i, ÿêà îïèñó¹
ïëîñêå åëåêòðîñòàòè÷íå ïîëå. Áóäó¹òüñÿ åêâiâàëåíòíå iíòåãðàëüíå ðiâíÿííÿ
ïåðøîãî ðîäó. Äîñëiäæó¹òüñÿ ïðîáëåìà àäèòèâíî¨ ñòàëî¨ ó âèïàäêó íàÿâíîñòi
ñèìåòði¨ â ãðàíè÷íèõ ïîâåðõíÿõ. Ïðèâîäÿòüñÿ ÷èñåëüíi ðîçðàõóíêè.
Abstract. Taking into account the speci�c characters of initial boundary value
problem a mathematical model, which describes so-called �at electrostatic �eld is
considered. In this connection the main attention is given to the equivalence of last
one to the integral equation of the �rst kind and the problem of additive constant
calculation. This constant appears in the integral representation of �at electrostatic
�eld. There is shown that the constant mentioned above is easily calculated in the
presence of symmetry disposition of boundary surface constituents. The proposed
concept is illustrated by numerical solving of some model tasks.

1. Introduction
The problem of investigation of the electrostatic �eld, created by the system of charged

electrodes, appears in the process of cathode-ray devices planning. If charged electrodes are
modeled by in�nitely long cylindrical surfaces, elements of which are in�nitely thin and evenly
charged on �lament length and parallel to one of co-ordinate axes, then in a cut with an arbitrary
plane, perpendicular to this axis, some number of the open circuit arcs appears. Under such
conditions, the potential value of the investigated �eld in the arbitrary point of space does not
depend on one co-ordinate. So necessary calculations are enough to conduct only in R2. Thus,
the examined spatial problem should be interpreted as �at [1]. It is also noticed [2] that solving
the problem in the substantially spatial setting at predominance of one geometrical constituent
of surfaces over the other one the value of potential in the corresponding transversal cuts of the
system, close to the central ones, slightly changes. Therefore, to show the high-quality picture of
the �eld in the central transversal cuts of such electron-optical systems it is possible to con�ne the
research only to the �at cuts of spatial constructions. Taking into account the concept mentioned
above, we will concentrate our attention on the certain aspects of a mathematical model, which
describes as so-called �at electrostatic �eld.

Let us suppose that L :=
ν∪

j=1
Lj is a combination of �nite number of smooth, open-circuit

and bounded arcs Lj on a plane R2, which do not have common points. We will designate x, y,
. . . as points in R2, |x− y| as a distance between x and y, and x∗m (m = 2j − 1, 2j; j = 1, 2, ..., ν)
as extreme points of the arc Lj . Let us also suppose that

L := L ∪ {x∗1, x∗2, ..., x∗2ν} .

Each of two sides of L we will consider as positive or negative, accordingly, depending on
direction of normal to L . If, for example, a function f (x) has �nite limit, when x∈L goes to
a point x0 on L from a positive(negative) side, then we will say that f (x) is continuous from a
positive(negative) side, and the limit we will designate as f+ (x0)

(
f− (x0)

)
.

Thus, at the mathematical modeling of the problem in the general setting it is necessary to
�nd a function U ∈ C2

(
R2\L)

, which together with the derivatives of the �rst order is continuous
from a positive(negative) side L and satis�es

Key words. Initial boundary value problem, integral equation of the �rst kind, additive constant,
symmetry disposition of boundary surface.
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• two-dimensional Laplace equation

∆U = 0 in R2\L; (1.1)

• boundary conditions
U± (x) = g(x), x ∈ L, (1.2)

where g(x) is a known function, set on L, which, in our case, is constant;
• condition of the boundedness on in�nity

U(∞) = C, (1.3)

and also
• "condition on an edge" [3]

lim
ρ→0

2ν∑
m=1

∫

C∗m(ρ)

∣∣∣∣
∂U(y)

∂ρ

∣∣∣∣dsy = 0, (1.4)

where C∗m(ρ) :=
{

x ∈ R2
∣∣ |x− x∗m| = ρ

} \L.

Taking into account that Ψ(x, y) :=
1

2π
ln

1

|x− y| is a fundamental solution of two-
dimensional Laplace equation (1.1), we will consider a point of the equivalence of the problem
(1.1)�(1.4) to a certain integral equation.

Among the boundary problems of potential theory in R2 it is possible to distinguish the classes
of problems, which have the Abelian group of symmetry of a certain �nite order. Assuming that
a boundary L owns the Abelian group of symmetry of �nite order, in the process of numeral
solving of the problem (1.1)�(1.4) on the basis of the integral equation method it is possible to
use the apparatus of the groups theory [4,5]. In this context, the results about so-called additive
constant are speci�ed, which appears in integral presentation of the basic problem solution. For
the calculation of the last one an e�ective formula is o�ered.

2. Equivalence of the problem to the integral equation
Let us formulate and prove a theorem on the equivalence of the initial problem (1.1)�(1.4)

to integral equation of the �rst kind.

Theorem 2.1 If the solution U (x) of the problem (1.1)�(1.4) exists, then it can be shown as

U (x) =

∫

L

Ψ(x, y) τ(y)dsy + C, x ∈ R2\L, (2.1)

where τ(y) satis�es such integral equation of the �rst kind as
∫

L

Ψ (x, y) τ(y)dsy = g(x)− C, x ∈ L. (2.2)

On the contrary, if the function U (x) is de�ned by (2.1), where τ(y) and constant C satisfy the
system 




∫
L

Ψ (x, y) τ(y)dsy = g(x)− C, x ∈ L,
∫
L

τ(y)dsy = 0,
(2.3)

then U (x) is a solution of the problem (1.1)�(1.4).
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Proof. Let us use the methodology, introduced in the work [3]. Let us suppose that zj :=

ĉ∗2j−1 (ρ)∪ĉ∗2j (ρ)∪L
(+)
j ∪L

(−)
j

(
j = 1, ν

)
is simple, closed contour which envelops Lj so that ĉ∗m (ρ)

(m = 2j − 1, 2j) is the arc of circle of radius ρ with a center in a point x∗m, and L
(+)
j

(
L

(−)
j

)
is

an open arc, placed in parallel to Lj in the distance ρ′ < ρ from a positive(negative) side Lj . Let
us designate Sρ as the union domains, bounded by the closed contours zj , which contain Lj .

Let us suppose that x is the arbitrary �xed point in R2\L, T :=
{
y ∈ R2

∣∣ |y − x| ≤ R},
where R is so large that Sρ is fully contained in T . We will apply the second Green formula [6]
for a function U (y), which is a solution of the problem (1.1)�(1.4), and the function Ψ (x, y)

in the domain, bounded by ν∪
j=1

zj and two circles Σε :=
{
y ∈ T\Sρ

∣∣ |y − x| = ε
}

and ΣR :=
{
y ∈ R2

∣∣ |y − x| = R
}
. We should notice that ε > 0, according to the logic of proving, is an

arbitrary small number.
Then, directing ρ′ to zero we will get

∫∫

T\(Kε∪Sρ)

[Ψ(x, y)∆U(y)−∆Ψy(x, y)U(y)]dσy =

∫

ΣR

[
Ψ(x, y)

∂U(y)

∂n
− U(y)×

×∂Ψ(x, y)

∂ny

]
dsy +

∫

Σε

[
Ψ(x, y)

∂U(y)

∂n
− U(y)

∂Ψ(x, y)

∂ny

]
dsy +

2υ∑
m=1

U∗m(x, ρ)+

+

υ∑
j=1

∫

L′j

Ψ(x, y)τ(y)dsy−
υ∑

j=1

∫

L′j

∂Ψ(x, y)

∂ny

[
U−(y)− U+(y)

]
dsy, (2.4)

where

Kε :=
{

y ∈ T\Sρ

∣∣ |y − x| ≤ ε
}

, L′j := Lj\
2j∑

m=2j−1

{y ∈ Lj | |y − x∗m| ≤ ρ},

U∗m(x, ρ) :=

∫

c∗m(ρ)

[
Ψ(x, y)

∂U(y)

∂n
− U(y)

∂Ψ(x, y)

∂ny

]
dsy,

and τ(y) :=

(
∂U(y)

∂n

)−
−

(
∂U(y)

∂n

)+

.
In the relation (2.4) we will consider integrals, which depend on ε. It obvious that

∫∫

T\(Kε∪Sρ)

U(y)∆Ψy(x, y)dσy = 0,

as ∆yΨ(x, y) = 0 under condition x 6= y. In accordance with a de�nition of improper integral

lim
ε→0

∫∫

T\(Kε∪Sρ)

Ψ(x, y)∆U(y)dσy =

∫∫

T\Sρ

Ψ(x, y)∆U(y)dσy = 0,

because ∆U(y) = 0 at any y ∈ R2\L.
Then,

−
∫

Σε

U(y)
∂Ψ(x, y)

∂ny
dsy = − 1

2π

∫

Σε

U(y)
∂

∂ny
ln

1

|y − x|dsy =

= − 1

2πε

∫

Σε

U(y)dsy = − 1

2πε
× 2πεU∗ = −U∗,

as ∂

∂ny
ln

1

|y − x| = − ∂

∂ny
ln |y − x| = ∂

∂r
ln r =

1

r
,

1

r

∣∣∣∣
r=ε

=
1

ε
, and U∗ � mean value of function

U (y) on the circle Σε. Taking into account the continuity of U (y), when ε → 0 U∗ → U(x).
Similarly,
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∫

Σε

Ψ(x, y)
∂U(y)

∂n
dsy =

1

2π

∫

Σε

ln
1

|y − x|
∂U(y)

∂n
dsy =

= − 1

2π
ln ε

∫

Σε

∂U(y)

∂n
dsy = − 1

2π
ln ε× 2πε

(
∂U

∂n

)∗
= −ε ln ε

(
∂U

∂n

)∗
,

where
(

∂U

∂n

)∗
is mean value of function U (y) normal derivative on the circle Σε. At that time

lim
ε→0

ε ln ε

(
∂U

∂n

)∗
= 0, as the �rst partial derivatives of function U (y) are continuous in R2\L

and , therefore, a value
(

∂U

∂n

)∗
is limited.

Let us estimate integrals in (2.4), which depend on R. It is obvious that

−
∫

ΣR

U(y)
∂Ψ(x, y)

∂ny
dsy = − 1

2π

∫

ΣR

U(y)
∂

∂ny
ln

1

|y − x|dsy =

= − 1

2π

∫

ΣR

U(y)
∂

∂R
ln

1

R
dsy =

1

2πR

∫

ΣR

U(y)dsy.

Under the condition of tending R to in�nity and taking into account (1.3), it easy to notice, that
1

2πR

∫

ΣR

U(y)dsy → C.

Then,
∫

ΣR

Ψ(x, y)
∂U(y)

∂n
dsy = − 1

2π

∫

ΣR

ln |y − x| ∂U(y)

∂n
dsy = − 1

2π
ln R

∫

ΣR

∂U(y)

∂n
dSR. As U (y)

is a harmonic function on in�nity, then in the vicinity of in�nitely distant point of plane the
estimation [6] is true

∣∣∣∣
∂U(y)

∂n

∣∣∣∣ ≤
A

R2
, R = |y − x| .

Then, under large enough R

∣∣∣∣∣∣

∫

ΣR

Ψ(x, y)
∂U(y)

∂n
dsy

∣∣∣∣∣∣
≤ A ln R

R
→ 0, R →∞.

From the formula (2.4), at R →∞, ε → 0, basing on the information above and considering the
conditions (1.2), we will get

U (x) =

υ∑
j=1

∫

L′j

Ψ(x, y)τ(y)dsy +

2υ∑
m=1

U∗m(x, ρ) + C. (2.5)

Let us consider the values U∗m (x, ρ), taking into account that ρ > 0 is an arbitrarily small
number. As Ψ(x, y) is continuously di�erentiable at y 6= x, then, |Ψ(x, y)| and

∣∣∣∣
∂Ψ(x, y)

∂ny

∣∣∣∣ are

bounded for any y ∈ C∗m (ρ). Therefor, |U∗m (x, ρ)| ≤ B

∫

C∗m(ρ)

[|U (y)|+ +

∣∣∣∣
∂U(y)

∂ρ

∣∣∣∣
]
dsy, where

B > 0 is a certain constant. At realization of the condition (1.4) lim
ρ→0

U∗m (x, ρ) = 0.
As a result of an assumption, related to the existence of the problem (1.1)�(1.4) solution, the

expression in the right part (2.5), which exists at arbitrary ρ, will converge to the given U (x),
when ρ → 0. Taking it into account, we will get
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U (x) =

υ∑
j=1

∫

Lj

Ψ(x, y)τ(y)dsy + C,

or using abridged notation,

U (x) =

∫

L

Ψ(x, y)τ (y) dsy + C.

Finally, we will get an integral equation (2.2). For this purpose, in (2.1) we will direct a point
x to the point x0 ∈ L from a positive or negative side. Taking into account the properties of a
simple layer potential [6], we will get

U± (x0) =

∫

L

Ψ(x0, y)τ(y)dsy + C, (2.6)

and the use of boundary conditions (1.2) results in
∫

L

Ψ(x0, y)τ(y)dsy = g(x0)− C.

Thus, the integral equation is obtained and the �rst part of theorem is proven.
On the contrary, we will suppose that U (x) is given by the right part (2.1), and τ(y) i C

satisfy the system (2.3). Obviously, that U (x) is a solution to (1.1). As boundary values of U (x)
are expressed by a formula (2.6), and τ(y) satis�es the system (2.3), so it is easy to notice that
U± (x0) = g(x0).

As no restrictions are imposed on a constant C, we will choose it in the way that a condition
(2.3) was performed.

For this purpose we will show τ(y) as τ(y) = τ1(y) − Cτ2(y), where τ1(y) i τ2(y) are the
solutions of the integral equations

∫

L

Ψ(x, y)τ1(y)dsy = g(x)

and ∫

L

Ψ(x, y)τ2(y)dsy = 1, x ∈ L,

accordingly. If C =




∫

L

τ1(y)dsy







∫

L

τ2(y)dsy



−1

, then τ(y) satis�es (2.3), which is easy to

check. At the condition of
∫

L

τ(y)dsy = 0 a function τ(y) is limited on in�nity. In fact, if x∈L,

and ŷ is an arbitrary point on L, then, U (x) =

∫

L

Ψ(x, y)τ(y)dsy + C =

=
1

2π

∫

L

ln
1

|x− y|τ(y)dsy +
1

2π
ln |x− ŷ|

∫

L

τ(y)dsy =
1

2π

∫

L

ln
|x− ŷ|
|x− y|τ(y)dsy + C. Applying

a theorem about the middle, we will get such estimation as 1

2π

∣∣∣∣∣∣

∫

L

ln
|x− ŷ|
|x− y|τ(y)dsy

∣∣∣∣∣∣
≤ ≤

1

2π

∫

L

|τ(y)|
∣∣∣∣ln

|x− ŷ|
|x− y|

∣∣∣∣ dsy =

∫

L

|τ(y)| dsy 1

2π

∣∣∣∣ln
|x− ŷ|
|x− y∗|

∣∣∣∣, where y∗ is some point on L. Then, at

x →∞ we will get |x− ŷ| |x− y∗|−1 → 1, and ln
|x− ŷ|
|x− y∗| → 0, that is U(∞) = C. We will also

notice that the value
∫

L

|τ(y)|dsy is limited, which is clear from the following considerations.
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The realization of condition (1.4) remains to be checked. For this, it is enough to show that
|∂U(y)/∂ρ| at y ∈ C∗m (ρ) and ρ → 0 is a value of o(ρα) order, where α > −1. We will use the
familiar presentation to the Cauchy integral [7]:

Φ(z) :=
1

2πi

∫

L

ϕ(t)

t− z
dt = v(x1, x2) + iu(x1, x2),

where z := x1 + ix2∈L, ϕ(t) is the real-valued function limited on L, v(x1, x2) is a potential of
double layer, and u(x1, x2)is a logarithmic potential of simple layer up to constant. It easy to
notice that

Φ′(z) =
1

2πi

∫

L

ϕ(t)
(t− z)2

dt.

On the other hand, taking into account the condition of Cauchy-Riman,

Φ′(z) =
∂v

∂x1
+ i

∂u

∂x1
, Φ′(z) =

∂u

∂x2
− i

∂v

∂x2
. (2.7)

Without loss of generality, we will consider that L is the interval (0, 1) of abscise axis of the
Cartesian rectangular system of co-ordinates 0x1x2. We will build the circle of radius ρ with
the center at the beginning of co-ordinates. The point z of the circle, which does not lie on L,
belongs to the complex plane, that is why it can be shown as

z = x1 + ix2 = ρeiβ = ρ(cos β + i sin β),

where β is an argument, ρ is a module of a complex number z.
The derivative of logarithmic potential U with respect to ρ can be calculated by the formula

∂U

∂ρ
=

∂U

∂x1
cos β +

∂U

∂x2
sin β,

and the Cauchy integral derivative on the circle of radius ρin this case looks as

Φ′(z) =
1

2πi

1∫

0

ϕ(s)
(s - ρeiβ)2

ds.

Separating real and imaginary parts in the last integral, and taking into account (2.7), we will
get

∂U

∂x1
= − 1

2π

1∫

0

s2 − 2ρs cos β + ρ2 cos 2β

(s2 + ρ2 − 2ρs cos β)2
ϕ(s)ds,

∂U

∂x2
=

ρ sin β

π

1∫

0

s− ρ cos β

(s2 + ρ2 − 2ρs cos β)2
ϕ(s)ds.

Now formula for the calculation of the derivative U with respect to ρ can be shown as

∂U

∂ρ
=

1

2π

1∫

0

2ρs− (s2 + ρ2) cos β

(s2 + ρ2 − 2ρs cos β)2
ϕ(s)ds.

For estimating this integral after the value order we will use an obvious inequality 2ρs ≤ ≤ s2+ρ2,
which is heed strictly at s 6= ρ. Then, we will get

2ρs− (s2 + ρ2) cos β ≤ (1− cos β)(s2 + ρ2),

(1− cos β)2(s2 + ρ2)2 ≤ (s2 + ρ2 − 2sρ cos β)2, 0 < β ≤ π

2
,
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∂U

∂ρ
<

1

2π

ϕ (s∗)
1− cos β

1∫

0

ds

s2 + ρ2
= o

(
1

ρ

)
, ρ → 0, s∗ ∈ (0, 1).

Strict realization of the last inequality and a property of monotonicity of exponential function
allows to claim that

∂U

∂ρ
= o(ρα), α > −1.

Thus, the equivalence of the initial problem (1.1)�(1.4) to the integral equation of the �rst
kind with a weak singularity in a kernel is proven.

Using the di�erential setting of the initial problem (1.1)�(1.4), the methodology introduced
above and reasoning from opposite, it is easy to prove the unity of solving the corresponding
integral equation. 2

3. Additive constant theorem
To make more precise of the previous results we will formulate and prove such theorem.

Theorem 3.1 If the initial boundary problem (1.1)�(1.4) owns the Abelian group of symmetry
of �nite k-order and the boundary values of potential on the separate sections of the bound take
on arbitrary constant values C1, C2, . . . , Ck, |Ci| < +∞, i = 1, k, then the additive constant in
the presentation of the solution (2.1) can be calculated by the following formula

C =
1

k

k∑
i=1

Ci.

Proof. Proving of the theorem 2.1 results in the fact that the additive constant in the integral
expression of the solution to the task (1.1)�(1.4) looks as:

C =




∫

L

τ1 (y) dsy







∫

L

τ2 (y) dsy



−1

.

Here τ1 (y) and τ2 (y) are the solutions to such integral equations
∫

L

τ1 (y)Ψ (x, y) dsy = g (x) , x ∈ L, (3.1)

∫

L

τ2 (y)Ψ (x, y) dsy = 1, x ∈ L, (3.2)

accordingly. We will remind that g (x) ≡ const on every constituent L, and Ψ(x, y) is a funda-
mental solution to the Laplace equation in R2 .

As the initial boundary problem (1.1)�(1.4) owns the Abelian group of symmetry of �nite
k-order, then a bound L assumes splitting in congruent constituents Li

(
i = 1, k

)
, where L :=

k∪
i=1

Li, at Li ∩Lj = 0 for i 6= j. Interpreting the sought densities τ1 (y) and τ2 (y) in accordance
with such splitting L, we will show the integral equations (3.1) and (3.2) as

k∑
i=1

∫

Li

τ1i (y) Ψ (x, y) dsy = Cj , x ∈ Lj , j = 1, k, (3.3)

k∑
i=1

∫

Li

τ2i (y)Ψ (x, y) dsy = 1, x ∈ Lj , j = 1, k, (3.4)

where τ1i (y), τ2i (y) is narrowing of τ1 (y) and τ2 (y) on Li, accordingly.
Carrying out the parameterization of the integral equations (3.3) and (3.4), we will get:
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k∑
i=1

bi∫

ai

τ1i (α)Φ [yi (α) , x]dα = Cj , x ∈ Lj , j = 1, k (3.5)

k∑
i=1

bi∫

ai

τ2i (α)Φ [yi (α) , x] dα = 1, x ∈ Lj , j = 1, k, (3.6)

where
τ1i (α) := τ1 [yi (α)] , τ2i (α) := τ2 [yi (α)] , i = 1, k;

Φ [yi (α) , x] := |yi (α)|Ψ(yi (α), x) ,

where yi (α)
(
ai ≤ α ≤ bi, i = 1, k

)
are parametric presentations of L sections, and for notation

of unknown densities the notations from (3.3), (3.4) are preserved. We also assume that vector-
functions yi (α) own a su�cient smoothness. As an operation of superposition of the elements
of the group of symmetry, which are corresponding transformations of congruent constituents L
from the aggregate of {Li}k

i=1, is transitive, then at elements σi of this group enumeration we
will consider that L1 = σiLi, i = 1, k, where σ1 is identical transformation. Then, in (3.5), (3.6)
we will do a transfer to a new base:

τ ′1i (α) := τ1

[
σ̃−1

i y1 (α)
]
, τ ′2i (α) := τ2

[
σ̃−1

i y1 (α)
]
, a1 ≤ α ≤ b1, i = 1, k.

Here, σ̃−1
i are matrices, inverse to the matrices, which, in their turn, are the presentation of the

elements of the group {σi}k
i=1. Thus, "the replacements of variables which are introduced, allow

us to pass from (3.5), (3.6) to such integral equations as

k∑
i=1

b1∫

a1

τ ′1i (α)Φ
[
σ̃−1

i y1 (α) ; σ̃−1
j y1 (ᾱ)

]
dα = Cj , (3.7)

k∑
i=1

b1∫

a1

τ ′2i (α)Φ
[
σ̃−1

i y1 (α) ; σ̃−1
j y1 (ᾱ)

]
dα = 1, (3.8)

where ᾱ ∈ [a1, b1], j = 1, k. Thus, at this stage of research we get two systems of the integral
equations (3.7) and (3.8), in which the integration is carried out only on a congruent component
L1 of the bound L.

It is convenient to represent the systems (3.7) and (3.8) as such operator equations as

(AG1) (α) = Ĉ, (3.9)
(AG2) (α) = I. (3.10)

Here A := (Aji)
k
j,i=1 is a matrix of operators; G1 (α) := [τ ′1i (α)]

k
i=1, G2 (α) := [τ ′2i (α)]

k
i=1 are

column-functions; Ĉ := (C1, C2, ..., Ck)T ; I is a unit column. In this connection each of the
operators is calculated by formulas

(
AjiG

(i)
1

)
(α) :=

b1∫

a1

τ ′1i (α)Φ
[
σ̃−1

i y1 (α) ; σ̃−1
j y1 (α)

]
dα,

(
AjiG

(i)
2

)
(α) :=

b1∫

a1

τ ′2i (α)Φ
[
σ̃−1

i y1 (α) ; σ̃−1
j y1 (α)

]
dα,

where, G
(i)
1 , G

(i)
2 � i components

(
i = 1, k

)
of columns-functions G1 (α), G2 (α), accordingly.

Further, using the theory of characters [4], we will build the matrix of Fourier transformation for
the examined group of k-order which enables to show (3.9) and (3.10) as the split form:

(
BpG1p

)
(α) = Cp, (3.11)



106 L. I.MOCHURAD AND B.A.OSTUDIN

(
BpG2p

)
(α) = Ip, (3.12)

where p = 1, k; a1 ≤ α ≤ b1;

G1p (α) :=

k∑
i=1

FpiG
(i)
1 (α); G2p (α) :=

k∑
i=1

FpiG
(i)
2 (α);

a1 ≤ α ≤ b1; Cp :=

k∑
i=1

FpiCi; Ip =

k∑
i=1

Fpi,

and Bp are elements of diagonal matrix FAF−1, with F := {Fpi}k
p,i=1.

On the basis of the above-mentioned methodology of passage to k independent integral equa-
tions (3.11), (3.12) the sought additive constant can be calculated by such formula:

C =




k∑
i=1

b1∫

a1

τ ′1i (α) dα




/


k∑
i=1

b1∫

a1

τ ′2i (α) dα


 =

=


 1

k

b1∫

a1

k∑
p=1

k∑
i=1

FipG1i (α)dα




/
 1

k

b1∫

a1

k∑
p=1

k∑
i=1

FipG2i (α) dα


.

Taking into account the species of Fourier transformation matrix for the group of k-order, it
is easy to notice that

C =




b1∫

a1

G11 (α) dα




/


b1∫

a1

G21 (α) dα


,

where G11 (α) and G21 (α) are evaluated from such integral equations:
(
B1G11

)
(α) = C1, (3.13)

(
B1G21

)
(α) = I1, (3.14)

accordingly. Here

C1 =

k∑
i=1

F1iCi =

k∑
i=1

Ci,

and

I1 =

k∑
i=1

F1i · 1 = k, a1 ≤ α ≤ b1.

As the initial problem (1.1)�(1.4) has a unique solution, there is an operator B−1
1 , that allows

to show the solutions (3.13), (3.14) as G11 = B−1
1 C1, G21 = B−1

1 I1. As C1 are I1 are constants,

C =




b1∫

a1

(
B−1

1 C1

)
(α) dα




/


b1∫

a1

(
B−1

1 I1

)
(α) dα


 =

C1

I1

=

k∑
i=1

Ci

k
,

that we had to prove. 2

This fact substantially simpli�es the algorithm of the numerical solving the task (1.1)�(1.4),
as at calculating τ(y) we can limit our research to only one integral equation of

∫

L

Ψ(x, y) τ(y)dSy = ĝi(x), x ∈ Li,

where ĝi(x) = gi(x)−C, gi(x) ≡ Ci, i = 1, N . Thus, the value of C can be found simply without
additional di�cult calculations.
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Remark 3.2 Taking into account the complication of numerical realization of the corresponding
algorithms based on the apparatus of the theory of groups, it is possible to be limited to the
16-order of the group of symmetry. A choice of the group with exactly such maximal order is,
to our opinion, exhaustive from the point of view of presentation of the systems of electrodes,
which are mostly used in the process of the real modeling of cathode-ray devices.

4. Numeral experiments
The problem of �nding the electrostatic �eld of the �at electron-optical system is considered

and shown in the �g. 1. As we can see, the information about geometry of the charged electrodes
is shown as some aggregate of congruent smooth open circuit arcs L1, L2, L3, L4. The boundary
values of potential gi(x) ≡ Ci, i = 1, 4, are the arbitrary known values.

Fig. 1. The investigated �at electron-optical system

The numerical solution of such problem is carried out with the use of methodology, o�ered
in the work [8]. It is taken into account that the boundary L =

4∪
i=1

Li owns the Abelian group of
symmetry of eighth order. For veri�cation of authenticity of the results the additive constant C,
which appears in the integral presentation of the �eld (2.1), is found numeral, without considering
the results of the theorem 3.1. The approximate solution of integral equations is carried out by
the method of collocation with approximation of the sought density by piecewise-constant base
functions. The improper integrals, which we got, were calculated analytically. For the evident
presentation of the electrostatic �eld the lines of equal potential and equipotential surfaces are
used.

Example 4.1 In the table 4.1 the value of potential at some points of segment [−5, 5] is shown
with a step h = 0, 5 under the anti-symmetric boundary values g1(x) = g3(x) = 1, g2(x) =
g4(x) = −1. The number of points of collocation is n = 100. The general view of solution is
shown by the lines of level (see �g. 2) and equipotential surface (see �g. 3).

Example 4.2 In the table 4.2 the value of potential at some points of segment [−5, 5] is shown
with a step h = 0, 5 under the boundary values g1(x) = 1, g2(x) = 10, g3(x) = −1000, g4(x) =
100. The number of points of collocation is n = 100 . The general view of solution is shown by
the lines of level (see �g. 4) and equipotential surface (see �g. 5).

In the table 4.3 the calculated values of the additive constant are shown under the di�erent
boundary values of potential by the methodology which foresees the solution of two auxiliary
integral equations.
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Tabl. 4.1. Results at one point for the example 4.1.

x y u

-1.0 2.0 0.945862
0.0 2.0 0.995043
0.5 4.0 0.288362
0.0 1.5 0.561519
1.0 1.0 0.000000
1.5 0.5 -0.506728
-1.5 -0.5 -0.506728

Fig. 2. Distribution of lines of level for the example 4.1

Fig. 3. Equipotential surface for the example 4.1
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Tabl. 4.2. Results at one point for the example 4.2.

x y u

-1.0 -2.0 -998.868931
0.0 -2.0 -999.884148
-1.0 -2.5 -717.181022
-0.5 -0.5 -333.964404
0.5 1.0 -10.502750
0.0 0.0 -222.250000
0.0 2.0 0.996728

Fig. 4. Distribution of lines of level for the example 4.2

Fig. 5. Equipotential surface for the example 4.2
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Tabl. 4.3. The value of constant C on the basis of numeral experiments

g1(x) g2(x) g3(x) g4(x) C

1 -1 1 -1 0.00
1 10 -1000 100 -222.25
10 20 10 -20 5.00
5 -100 -10 -1000 -276.25
50 100 500 1000 412.50

The analysis of the recent results shows that the e�ective formula for the calculation of the
additive constant received in the theorem 3.1 is correct.
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