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FORMULATION AND WELL-POSEDNESS
OF THE VARIATIONAL PROBLEM OF VISCOUS
HEAT-CONDUCTING FLUID ACOUSTICS

ViTALLY HORLATCH, IRA KLYMENKO, GEORGIY SHYNKARENKO

PEe3stoME. Ha mizgcrasi 3akomiB 30epexkenns: ¢hOpMYIbOBAHO JIHIWHY TOYaT-
KOBO-KpalioBy Ta Bimmosimmy it Bapiamiiiny 3amady y TepMmiHax HeEBiIOMUX
BEKTOPA 3MiIEHb TA TEMIIEPATYPH, STKA OMKCYE IIPOIEC MOMMNPEHHS aKyCTHI-
HUX XBUJIb y B’SI3Kiil TEIJIONPOBIAHIH piauHi 3 ypaxyBaHHAM 3B’ 13aHOCTI Mexa-
HiYHOrO Ta TemieparypHoro nosiB. OKpec/ieHO KJ/ac PeryJisipHOCTI BXiIHUX
JAHUX Bapiamiituoi 3a7ad4i, AKWi TapaHTy€e €THICTH Ta HeepEePBHY 3aJI€ZKHICTD
LIyKAHOTO PO3B’sI3Ky B €HepreTHdHiil HOpMi 3amadi. Ha momaTox mosenemo
iCHyBaHHS PO3B’A3KY PO3IVILAYBAHOI 337a4i IK IPAHUI] ITOC/IIJOBHOCT] HAIIIB-
JUCKPETHUX (32 TPOCTOPOBUMHF 3MIHHUMY) ampoKcHMartiii Lamnopkina.

ABSTRACT. On the basis of conservation laws, we formulate linear initial-
boundary value problem and corresponding variational problem in terms of
displacement vector and temperature, which describes the process of spreading
of acoustic waves in viscous heat-conducting fluid taking into account connec-
tivity of mechanical and thermal fields. We determined input data regularity
for the variational problem, which guarantee uniqueness and continuous de-
pendence of the solution in the energy norm of the problem. In addition we
prove the existence of the solution of the problem as a limit of a sequence of
the semi-discrete spatial Galerkin approximations.

1. INTRODUCTION

In most applications, when considering acoustic vibrations, the viscosity of
fluid is neglected, hence considering it to be ‘ideal’[5, 3]. However, there is a
considerable number of problems, which are first of all connected to spreading of
the high-frequency vibrations and vibrations at frequencies close to resonance,
for which neglecting medium viscosity (even for traditionally “ideal” water or
air) leads to considerable inaccuracies in solutions [1, 2, 10]. Furthermore,
analysis of dissipative loss of energy in such problems, as well as estimation of
reciprocal influence of acoustic and thermal processes are impossible without
introducing viscosity of the medium to the model. The general principles of
building corresponding models of acoustics of viscous heat-conducting fluid
(“dissipative acoustics” is a widely-used term) are studied in papers [11, 6,

7,9, 10].

K. ey words. Thermohydrodynamycs, dissipative acoustics, initial-boundary value problem,
variation problem, balance equation, the semi-discrete Galerkin method, well-posedness of
variation formulation.
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In paper [9], for numerical analysis of problems of dissipative acoustics with
additional assumption of vortex-free flow in fluid, it is proposed to use Raviart-
Thomas finite element approximations, and time integration schemes for semi-
discretized problem are built by means of Galerkin method. However, the
authors [2] proved earlier the correctness of application of classical approxima-
tions of finite element method for solving problems of spreading acoustic waves
in viscous fluids and fluid-structure systems in terms of unknown displacements
without additional assumptions. It is proposed that a similar approach should
be used for problems of thermal and hydro acoustics.

This paper is organized as follows. In section 2, with reference to conser-
vation law, we state a fundamental system of non-linear differential equations
and phenomenological relations, which describe the motion of viscous heat-
conducting Newtonian fluid, and complement them with possible initial and
boundary conditions. Although the obtained system of equations is open in
relation to density, mass, velocity, temperature, entropy of the fluid, the hy-
potheses of acoustics and thermodynamics applied in sections 3 and 4 allowed
us to formulate a linear initial-boundary value problem of acoustics with closed
system of equations of motion and heat conductivity in terms of acoustic dis-
placement vector and temperature. In section 5 we state variational formulation
of this problem as the main object of our study and in section 6 we characterize
the components of its equations with regard to continuity and ellipticity. Based
on these, in section 7 we describe an important instrument for research of the
variational problem — a concretized energy equations of dissipative acoustics.
A priori estimates, constructed on this basis in sections 8 and 9, make it pos-
sible to determine (quite usable) conditions of regularity of input data of the
problem, which guarantee uniqueness and stability of its solution. To prove
existence of this solution, in section 10 we recourse to space semi-discretization
Galerkin method [4], and in section 11 we show that approximations built in
such a way converge to such displacement vector and temperature, which satisfy
variation equations of the problem of dissipative acoustics.

2. FUNDAMENTAL EQUATIONS OF THERMOHYDRODYNAMICS
OF NEWTONIAN FLUID

Below we will consider mathematical models which describe motion of a
viscous fluid, which in each moment of time ¢ € [0,7],0 < T' < 400, occupies
connected bounded domain €2 of points x = (z1, ... ,z4) of Euclidian space
R (in applications d = 1,2 or 3). We denote as T' the domain boundary
Q, T'= 09, and assume that it is Lipschitz-continuous. The latter hypothesis
guarantees that almost everywhere on I' we can build a unit vector of outward
normal

n=ny, ... ,ng), mn;:=cos(n,x;).

It is well known that physical features of fluid are defined by coefficients
of bulk viscosity n and shear viscosity pu = const > 0, and its state can be
characterized by means of welocity vector v = {v;(x,t)}&, of its particles,
density of its mass

p=np(x,t) >0
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and scalar field of hydrostatic pressure p = p(x,t). If the above-mentioned
characteristics of the fluid are defined, then with the help of Cauchy relations
we can find the components of strain tensor

e (V) :_;@;’;JFZZQ, =1, ... .d (1)
and components of stress tensor
oij(v,p) == —pdsj + 1i;(v), 4,j=1, ... .,d, (2)
where 7;;(v) - components of viscous stress tensor,
75 (V) == 2pei;(v) + (n — %u)(%-V.v, i,j=1, ... ,d, (3)

;5 -Kroneckers symbol,

5' L e— 17 Z = j7

T 0, i £
Modeling of fluid flows reduces to initial-boundary value problems for the
partial differential equation system, which are based on the laws of mass con-

servation, momentum, energy, etc. |10, 11]. So, for example, the law of mass
conservation of continuous medium states that given the absence of sources

for mass increase, the density p = p(x,t) and the vector of fluid velocity
v = {v;i(x, 1)}, satisfy the so-called equation of mass continuity
Dip+pVo=0 in Qx(0,T]. (4)

At the same time, laws of momentum conservation can be presented as a system
of Navier-Stokes equations

pDyv; — aiaim(v,p) =pfi, i=1,...,d, in Qx(0,T], (5)
'Tm
where vector f = {f;(z,t)}¢, describes volume forces which act on the con-
sidered fluid.
Finally, the law of energy conservation leads to equation of continuily of
entropy s = s(x,t) formulated as

pODs +V.q(0) —7(v) 1 e(v) = pg in Q2 x(0,T], (6)

where g = g(z,t) is intensity of distributed in the fluid volume sources of heat,
q = {qi(z,t)}%_ is vector of heat flow, which is connected in most important
cases to the temperature § = 0(x,t) and coefficient of heat conductivity x > 0
of fluid through phenomenological Fourier law

q(0) = —xVo in Qx(0,T]. (7)

Here and further on we shall use the summation convention from 1 to d with
repeated indexes, eliminating the sign of summation itself; e.g. scalar product
in space RY is written as

a.b=a;b; = Z a;b; Ya = {ai}?zl , b= {bi}?zl e R%,
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and

d
P - E _ d _ d dxd
0 €= 0miCim ‘= Omi€im Vo = {O—ij}i,jzl , €= {eij}m.:l eR .

i,m=1

Finally, in the equations (4)-(7) we utilize widely-used symbols for full and
partial derivatives of a scalar function by time variable and its gradient by
spatial variable.

Do el 4 0.0 , 0 o [ 2w
w=w +ou.Vw, w = aw(x,t), w.—{amm}

Let us complement the system (1)-(7) with appropriate initial and boundary
conditions. If on the outer surface of fluid I'; C T' is affected by the applied
stress vector & = {6;(x,t)}L,, then the law of momentum conservation leads
to the following boundary condition for stress:

oij(v,p)nj =6; 1=1,....,d, on T, x10,T]. (8)

m=1

Similarly, if a part of the boundary I'y C I' is affected by heat flow, the
normal component of which is determined by the function ¢ = §(z,t), then
according to the law of energy conservation, the boundary condition will be

n.q(0) =q on Ty x[0,T]. 9)

Finally, if, for example, particles of the remaining fluid surface ', := '\,
move in compliance with the known rule at the speed 0 = {0;(x,t)}, then the
boundary condition on this part of the surface should be

v=0 on I'yx][0,T], 'y, :=T\T,. (10)
Similarly, if it is known that the part of the surface I'g := I'\I'y is maintained

at the defined temperature, 0 = 6(z,t), then the boundary condition assigned
to it is

0=0 on Tyx|[0,T], Ty:=T\T,. (11)

We have to mention that there might be boundary conditions for different
classes of applications, as a rule, formulated as linear combinations of condition
components (8), (9) and (10), (11) correspondigly.

Finally, considering the specifics of the structure of system relations and
equations (1)-(7), namely, the absence of pressure derivatives by time variable
in it, we come to a conclusion that during the study of viscous fluid motion it
is sufficient to reduce it to studying the initial conditions and values of mass
density, velocity vector and temperature

pli=0 = po, Vli=o =vo, Oli=o =06 in Q. (12)

The obtained nonlinear problem of thermohydrodynamics (1)-(12) contains
less equations (d+2) than, the unknowns (d+4), and must be complemented by
additional equations based on phenomenological deductions. For this purpose
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we shall use the hypotheses of acoustic approximation, which will allow us not
only to find a closed equation system, but also to linearize it.

3. LINEAR EQUATION SYSTEM OF DISSIPATIVE ACOUSTICS IN TERMS
OF ACOUSTIC DISPLACEMENT AND TEMPERATURE
Below we assume that, for one reason or another, there are connections
between the unknowns {p,p, s, 0}, which are expressed as

p=p(p,0), s=s(p,0).
It is known that pressure is related to density and temperature by the fol-
lowing thermodynamic connections [10]:

@ B c? Op
dp

Zpa

p ’y

o 90

)

where ¢ is velocity of sound, « coefficient of thermal expansion, v = cyc, L Cp

and ¢, specific heat of fluid at constant pressure and volume respectively. Then
to accuracy of an additive constant

p=rpo+ 7y [p+ pad)].
In addition we can linearize the obtained rule in the following way:
P, ) = po + 2y~ [o(, £) + poad(a, )], (13)
where pg is mass density distribution of fluid in the state undisturbed by acous-

tic factors. Here we implicitly assume that the mass density of fluid admits the
following decomposition

p(x,t) = po + p«(x,t) Ve e Q Vte[0,T],
Prlt=0 =0 in Q, (14)
oIl < lpol]-
Now we shall convey the velocity of fluid motion as a sum formulated as
{ v(z,t) = vo(x) + vi(, t) Vo e Q Vvt el0,T], (15)
Uslt=0 =0 in Q, [[oa]| < fwol|

And turn to the continuity equation from (4). Bearing in mind the hypotheses
(14) and (15), we shall linearize it in the following way

P +v.Vp+pV.o = p, + poV.v, + v9.Vp, =
= ol + poV.oue =0 in Qx (0,7,

And later integrate the obtained approximation into a time interval (0,t), 0 <
t <T. As a result, we find out that

px(z,t) = —poV. fg U (z, T)dT =
= —poV.u(z,t) Yo eQ Vtel0,T],

where v = u(x,t) — vector of acoustic displacement of fluid particles

(16)

u(z,t) == up(z) —i—/o v (x, T)dT in Qx (0,7].
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Taking into account (13) and (16), we come to a final expression for the linear
approximation of acoustic pressure in fluid

p(@,t) 2= po + 2y ps(@, 1) + poad(z, )] =
=~ po + Ay po[-V.u(z, t) + ab(x,t)] = (17)
= po + 7(u, ) Vo e Q Vt e [0,T].

Introducing the vector of acoustic displacements u = u(z, t) also leads to change
of notation and structure of stress tensor of fluid, such as

0ij(v,p) = —pdi; + 7i5(v) =

= —podi; + m(u, 0)8i; + 7ij(u') =

= —p()(sij + 5’2‘]‘(11,, 0) Vr e Q Vt e [O,T}.
In other words, taking into consideration the relation (17), pressure is excluded
when determining the stress tensor, instead we include the dependence of its
components from the temperature of fluid. Taking into account the hypotheses
of acoustics and linearization of convective constituents, the motion equations
(5) undergo some changes, such as
Ov; |- 9oim (v, p)
0xm

plvi(t) + vm —pfi =

0xm
0 im (u')
8332‘ ﬁxm
It follows that considering the hypotheses of acoustics and the linearization
of motion equations, performed above, lead to excluding pressure and density
from the unknown, and after this procedure the motion equations acquire the
form

= pouj (t) + —pofi =0.

0G;m (U
pou; (t) — ax() =rofi— e
oij(u) == —m(u,0)d;5 + Tim(u ,)7
7(u,8) = 2y~ Lpo[— Vu—i— 6],
Tij(u) == 2pe(u) + (n— )5Z]V o/,
1 /0u; Ou; )
eij(u) = 5 (8x —+ 61’j> in QX (O,T}
j i

Since entropy is related to density and temperature through thermodynamic
links expressed as [10]

P S
op’' 0 ‘00" 9

then
ds Aadp cyd9  Fadp cy a0

F I T TR v N i
ca cy 00 62a ,  cy 06

~ /

=Vt e T T Y g o
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and after substitution of this expression in the equation of conservation of
entropy in (6) and its linearization, we will come to the equation of thermal
conductivity of viscous fluid
p9Dts+V-q+T( )z e(u) — pg =
cy 00
= p090 V fe- B0 Ot — V- [xVO] — () : e(u') — pog

or
00\/% — V- [xVO] + Ay L poboaV . = pog in Q x (0,T).
4. LINEARIZED INITIAL-BOUNDARY VALUE PROBLEM
OF DISSIPATIVE ACOUSTICS
Summarizing the results of section 3, we come to the following linearized
initial-boundary value problem of dissipative acoustics with a closed system of
fundamental equations:

Find displacement u = {u;(z, t)} _, and temperature 0 = 0(z,t)
which satis fy the linearized system of equations of dissipative

acoustics
pocv by 39 0, V. [XVO] + v L poaV.a’ = pobyty,
o () + () - ) gy O (18)
m(u,0) := 2y Lpg[~V.u + ab],
Tij(u) == 2pes(u) + (n— %,u)éijv.u’,
eij(u) == % (g;: + ZZ> in Qx(0,7],
boundary conditions
oiin; = 0y, on I'yx[0,T], I'v CT,
u =1, on Ty, x10,T], T'y:=T\Ty, (19)
gn =g, on T'yx[0,T], I'yCT,
0=60 on Tyx[0,T], Ty:=T\I,
andinitial conditions (20)

Uli=0 = ug, Ul|=0 =vo, Oli=o =6y in Q.

5. VARIATIONAL PROBLEM OF DISSIPATIVE ACOUSTICS
To build a variational formulation of the initial-boundary value problem (18)-
(20), we first (taking into account Dirichlet boundary conditions) introduce the
space of admissible displacement vectors
Vi={v={v}, e [HY(Q)]?: v=00nT,}
and the space of admissible temperatures
G:={CecH(Q): (=0 on Ty}
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respectively.

Now we shall multiply the equation of heat conductivity of the problem
(18)-(20) by arbitrary function ¢ € G and integrate the obtained result over
the domain €2 using integration by parts

Jo poby tg(t)¢dx =
= Jo{pocv 0y 10" (t) — 65V - [XVO(t)] + 2y poaV . () Hdap =
= Jolpoevlg 10/ (£)C + 65 VC. X VO] + Ay poaV ' (1) hdar+
+ Jr, 05 ' Cam(O)nmdy =
= Jolpocv 8510 ()¢ + 65 V. [XVO(1)] + 2y~ poa V.l (1)) da+
+ Jr, 05 ta(t)¢dy V¢ € G.
Let us introduce bilinear and linear forms
x(0, C) = fQ eglxvg.vedx
5(0,¢) == [, pocv Oy t0Cdx vo,¢ € G, (21)
(UC = [o A7t poad(V.v)da YVoeV V(ed@
and
< 2,( >i= /onﬁo_lggd:c—/r 0, 4¢cdy  V(ed
a

and re-write the equation obtained above as

s(O'(£),C) + x(0(t), C) +b(u'(1),¢) =< 2(t),¢ > VC€G.

Similarly, we shall multiply the equation of motion of the problem (18)-(20) by
arbitrary vector v € V' and integrate the obtained result over the domain {2

Jo po f(t).vdx =
0
= Jo {0) + 5 10060}~ T ()] v =
= [qpv.u"(t)dx + [,y po[V.u(t)](V.v)de—
— fQ Ay poab(t)V.vda+
+ Jo (@' (1) s e(v)dz — [, v-o(t)dy Yo e V.
Taking the obtained equation into account, we introduce the forms
m(u,v) == [q pou.vdx,
v) = [o7(u) : e(v)de =
= Jolue(u) < )+ (= 20)(V-0)(V.0)] e,
c(u,v) == [ v po(V.u)(V.v)de, Yu,v €V,

<lv>=m(f— p51Vpo,v) +/ v.ody YveV (22)

o
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and finally write the variational formulation of the initial-boundary value prob-
lem of dissipative acoustics

Find pair {u( ) 0(t)} € V x G such that
m(u"(t),v) + a(u'(t),v) + c(u(t), v)—
—b(v,0(t)) =< I(t),v >,
s(0'(t), ¢) +x(0(t),¢) +b(u'(t),¢) = (23)
=< z(t),( > Vte (0,77,
m(u'(0) —vo,v) =0, a(u(0) —ug,v) =0, Yv eV,
s(0(0) —00,() =0 Y(eq.

Let us remark that bilinear form b( . , . ): G x V — R, we determined in
(21), binds variational equations of the problem (23) into a system for deter-
mining thermal and mechanical fields of acoustic wave. On the other hand, as
we shall see later, this bilinear form describes the mechanism of heat-to-work
conversion, and, since it is present in both variational equations, a contraria.

6. PROPERTIES OF COMPONENTS OF VARIATIONAL PROBLEM
OF DISSIPATIVE ACOUSTICS
To perform the analysis of properties of bilinear forms and linear functional
which constitute the structure of variational problem (23), we shall first intro-
duce the following notation for spaces of scalar and vector functions

H:=1*Q), H:=H? H(dw;Q) :={veH: VuweH}.

Taking into account the additive values of the problem data (22), it is easy to
notice that continuous symmetric bilinear forms

m(u,v) = [q pou.vdx Yu,v € H,
s(0,¢) = [ pocoly'0¢dx ¥ 0,( € H

are scalar products on spaces H and H and as consequence, form norms on
them

(24)

[v|lg == /m(v,v) Vv e H,

ICla == /s(¢,¢) V(e d,

Equivalent to the norms of spaces [L?(Q)]¢ and L?(Q) respectfully.
Similarly, taking into consideration Korn inequality, continuous symmetric
bilinear forms

a(u v) = [o] 2M€ij w)eii(v) + (n — %,u)(v.u)(v.v)}dx Yu,v €V, (25)
= [0 (xV0).(V()dz Vo,CeG

are scalar products on spaces V and G respectively, and as consequence, form
norms on them
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[lv|lv := Va(v,v) Vo eV  (equivalent || - H[HI(Q)]d),

I<lle = v/Xx(¢, Q) V¥V ¢ €G (equivalent || - || (q) )-
The properties of bilinear forms of variational problem that we have mentioned
here are well known for problems of elastodynamics and heat conductivity
which, as a matter of fact, form the core structure of variational problem of
dissipative acoustics.
One of the specific properties of the problem of dissipative acoustic is illus-
trated by a continuous symmetric bilinear form

c(u,v) = / Apoy Y (V) (Vao)dr Vu,v €V,
Q

which is non-negative on the space of admissible displacements V and creates
seminorm in space H (div; Q). We shall denote the latter as follows:

vy = v/ e(v,v) Yv e V.
And finally, the bilinear form

b(v,() :== /902”)/1p005C(V.1))d(E YoeV V(e G,

which determines the interaction mechanism of thermal and mechanical fields
in the process of spreading acoustic waves, is continuous on the space V' x G.
Linear functionals also possess this property

<n¢= [ pbitocde~ [ g7lach wea, (26)
Q

q

<lLv>=m(f — py Vpo,v) +/ v.ody Yv eV (27)

in case that external sources of mechanics and thermal energy of the problem
possess the following properties of regularity

g e H7 Cj € LQ(Fq)a Po € Hl(Q)7
feH, &elLl*T,)

7. ENERGY EQUALITIES OF DISSIPATIVE ACOUSTICS
We shall accept for the problem equations (23) for admissible functions v =
u'(t) and ¢ = 0(t) and add the first pair of variational equations. As a result
of elimination of summands with the value of bilinear form b(u’(t),6(t)) (which
indicates energy conversion without losses!) and using norms from p.6, we shall
obtain energy equations of this problem

%%HIU’@)H?{ + )} + 0@ + Il O +110@)11E =

=< 1I(t),u'(t) >+ < z(t),0(t) > vt € (0,7
Or after integrating over arbitrary time interval [0,¢], 0 <¢ < T,
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S OIB, + (o) + 1]+ sl ) + 165 ldr =
= IO + () + 100} I3]+ (28)
+ < Ur), ' (7) > + < 2(7),0(7) >]dr ¥t € [0,T).
We shall write the last equation as
Kslu/ (0] + Ps[u(t)] + Polo(t)] + [;{Dslu(r)] + Delo(r)]}dr =
— Ksloo] + Ps[uo] + Pelfo] + Qs ()] + Qclo(®)] vt e o, T1,
where
Ksl ()] := S|, Pslu(t)] = 3 ()l

2
Dg[u'(t)] = [|u' ()|l
are instantaneous values of kinetic and potential energy, and its dissipation
caused by kinetic motion of fluid, in the function

Pel0(0)] = 10@t)l[7,  Delo®)] = 10)lIE

they are instantaneous values of energy and its losses, caused by the existence
of heat flow pattern of fluid,

Qs[u'(t)] :—/0 <Ur),d (1) > dr, QclO(t)] :—/O < u(1),0(1) > dr.

8. DATA REGULARITY OF A PROBLEM OF DISSIPATIVE ACOUSTICS
Let us consider the conditions of data regularity for the variation problem
(22), as functions of space and time variables, which can be determined on
the basis of equality analysis (28). In particular, to allow the total energy of
acoustic field of fluid

Efu(t),6(1)] = %HIU’(@II?{ + )} + [10@)]17]

take finite values in each moment of time ¢ € (0,7, it is necessary that the
following conditions are held

u' € L0, T; H), ue L*0,T; H(div;Q)), 6 € L>(0,T; H).
Similarly, to allow the the losses of acoustic field of fluid

Dlu(t),0(t)] ::/0 [l @)IIF + [10(r)[[&)dr

take finite values in each moment of time (0,¢] C (0,77, it is necessary that the
following conditions are held

u' € L*(0,T;V), 6 L*0,T;G).
Thus, appropriate solutions of the variational problem of dissipative acoustics
should satisfy the following conditions
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u' € L>(0,T; H) N L?(0,T;V),
u € L>®(0,T; H(div; Q)),
6 cL>®0,T;H)no e L*0,T;G).

Now based on the requirement

/t[< (), v (1) >+ < 2(7),0(7) >]dr| < 400 Vt € (0,T)
0

we find sufficient requirements of regularity for energy sources, such as,

1€ L*(0,T;V"), z€ L*0,T;G")

Or in more detail, taking into consideration the structures (26) and (27) of
these functionals

feL?0,T;H), 6¢c L*0,T;[L*T,)]%),
g€ L*0,T;H), 4€ L*0,T;L*(T,)).

The latter sum

Efu(0),6(0)] := é[llu’(O)II% + [u(0)} + [10(0)]]7]

of energy equality (28) shows that the total energy of the acoustic field at the
initial moment of time ¢ = 0 will have finite values, if the initial data of the
problem of dissipative acoustics are selected according to the rules

9. UNIQUENESS AND STABILITY OF SOLUTION OF THE VARIATIONAL
PROBLEM OF DISSIPATIVE ACOUSTICS
Now we are ready to prove the next theorem

Theorem 1. Assume that the variational problem of dissipative acoustics (23),
whose data satisfy the conditions of reqularity

U()GH, UOEV, 90€H (29)
and
feL*(0,T;H), 6 e L*0,T;[L*(Is)]"), (30)
ge L2(07T7H)7 quLQ(OvT;Lz(Fq)%
has the solution ¥(t) = {u(t), 0(t)} .
Then the pair ¥(t) = {u(t), 0(t)} will be the unique solution to the problem

(23) and
L>(0,T; H(div; Q)), ' € L>(0,T;H)NL*0,T;V),
0 c L>®0,T; H)NL*(0,T;G);
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Moreover, the solution ¥(t) = {u(t), 0(t)} is continuously dependent on the
problem data (23) and under these conditions the following a priori estimate is
correct

%HIU'(t)H?{ +u®)} + 1017 +/O [l @IIF + [10(r)[[&]dr <

sc@wmﬂﬂm@+wm%+AHWﬂ%wwwan}, 8D

vt € [0,T].

with constant C' > 0, the value of which is independent of quantities under
consideration.

Proof. Bearing in mind the conditions (30)
le L*0,T;V"), =€ L*0,T;G"),

we conclude that the following estimates are correct

<1, () > < vl Dl < 5 I @IF + 5 IR

1 1 (32)
< 2(7),0(1) >| = 5 16|l + 3 lz()i& s VEe[0,T].
From the initial condition of the problem (23)
m(u'(0) — vg,v) =0, Yve H
After substituting v = «/(0) and v = vy we obtain that
14/ (0)[[7 = m(u(0), vo) = m(vo, u'(0)) = m(vo,vo) = |Jvoll7r.  (33)
Applying the same principle
[u(O)llv = lluollv, 116(0)|[z = [|6o]|s- (34)

Next, taking into account the results from p.6, we find C' = const > 0, such
that

luly < Clv||v YoeV

and, in particular,

[u(0)lv < Cllu(0)[lv = Clluollv - (35)

Summarizing (32)-(34) and (35) in energy equality (28), we come to an estimate
(31).

Based on the same estimate, by contradiction, we demonstrate the unique-

ness of the problem solution (23). O
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Corollary 1. Let us assume that the hypotheses of theorem 1 are satisfied in
relation to the variation problem of dissipative acoustics (23).
Then the natural norm for its solution (t) = {u(t), 6(t)} is

1) 11 = [l )17 + [ + 11017+

+/ [l (DI +116(n)l[Eldr - vt € [0,7].
0

10. GALERKIN SEMI-DISCRETIZATION OF VARIATIONAL PROBLEM
OF DISSIPATIVE ACOUSTICS
Let us assume that {V},} ta {G}} are sequences of finite-dimensional spaces,
such that

V,CV, G, G  Yh>0,
dimV}, = N = N(h) — oo,
dimGp =M = M(h) — oo, if h—0,

U Vi dense in V, |J Gpdense in G.
h>0 h>0

On this basis we determine the sequence of semi-discrete Galerkin approxima-
tions {Yn}tns0 = {(un,0p)}r>0 expressed as solutions of the following varia-
tional problems:

given h > 0; find pair ¥ (t) = (up(t), 0n(t)) € Vi, x Gy, such that
m(uy(t), v) + a(uy,(t),v) + c(un(t),v)—

—b(On(t),v) =<1(t),v >,
5(0,,(1), Q) + k(On(t), C) + b(¢, up (1)) =< 2(£),( >Vt € (0,T],
m(u,(0) —vo,v) =0, a(ux(0) —ug,v) =0 Yv € Vp,

s (0r.(0) —60,¢) =0 V¢ € Gh.

To concretize the structure of problems we have just formulated and the

required approximations (up, 0p) € LQ(O, T; Vi, x Gp,), let us select certain bases
{or(x)}Y_, and {pk(x)HL, of spaces V}, and G, respectively. First of all, this

selection univalently determines the form of each sequence member of semi-
discrete approximations as a linear combination

(36)

M
On(x,t) =D Op(t)or(x) V(z,t) € Qx[0,T]

with unknown coefficients U(t) = {uy ()}, and O(t) = {9, (t)}_,, and sec-
ondly, after application of Ga,lerkm procedure, allows obtaining Cauchy problem
for finding the above-mentioned coefficients
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MU"(t)+ AU'(t) + CU(t) — B ©(t) = L(t),
SO'(t)+ KO(t)+ BTU'(t) = Z(t) Vte (0,T),
MU'(0) =Y AU(0) = U"Y,
SO(0) =a’.

Here the components of matrices and vectors of the right side of equation are
calculated according to the rules

C = {c(¢i, ¢x) e B = {blsi, ¢k)}%£]:vp K = {k(¢i, o1) izt »

L(t) = {< (), ¢ >}y, Z() ={<z(t), i >} VT €(0,1],

(37)

and

Yo = {m(v()v ¢]€)}ka:1 ) Up = {G(UO, ¢/~C)}ka:17 60 = {8(907 Pi >}7{\il

Since the rest of the matrices
M = {m(e:, ) f,vk:p A= {@(@'7%)}%:17 S = {S(SDZ‘790]€)}%:1

are the Gram matrices in systems of linearly independent functions {¢x(z)}4_,
and {pg(z)}L, (in relation to scalar products described in p.6, see (24)
and (25)), it follow that they are positively defined. This fact guarantees
the possibility of unique solution of the system of ordinary differential equa-
tions of Cauchy problem (37) and also systems of linear algebraic equations
of its initial conditions in relation to vectors U(0), U’(0)and ©(0). From
here it follows that for each constant h > 0 the Cauchy problem (37) has a
unique solution{U (¢), ©(¢)}, which allows finding univalently the semi-discrete
Galerkin approximation (up,0;) € L2(0,T; V), x G1,) as (36).

Theorem 2. Let us assume that the data of variational problem of dissipative
acoustics (23) is characterized by the conditions of reqularity

vg € H, ug €V, 0y € H
and
feL*0,T;H), &€ L*0,T;[L*(T)]%),
g€ L*0,T;H), §e€ L*0,T;L*(T,)).

Then for each value of discretization parameter h > 0 the following statements
will be true:

(i) the semi discretized problem has a unique solution (36) vp = {upn, Op}
and

up, € L0, T; H(div;Q)],  u) € L=(0,T; H) N L*(0,T;V),
0, € L>®(0,T; H) N L*(0,T;G);

(1) semi-discrete approzimation V¥, = {uyp, 0} is continuously dependent on
the problem data (23), more, the following a priori estimate is correct
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%HIU’}L(t)H% + [un(®)} + 10017 + J[I%(t)H?v +10n(7)|[E]dr <

< c{mvon% T uol2 + 1160l + (fmzw% n |z<7>||%,v1df}

vVt € [0,7] Vh > 0.

with constant C' > 0, the value of which is independent of quantities under
consideration.

11. EXISTENCE OF SOLUTION VARIATION PROBLEM
OF DISSIPATIVE ACOUSTICS

Theorem 3. Let us assume that the data of problem of dissipative acoustics
(23) are characterized by reqularity conditions (29) and (30). Then the varia-
tional problem (23) has a unique solution ¥ = {u, 0} and

up, € L0, T; H(div;Q)],  u) € L=(0,T; H) N L*(0,T;V),
0, € L>(0,T; H) N L*(0,T; G);
moreover

%[HU’(t)qu + @ + 10N+ [l O +10(n)][E)dr <

< C 4 [llvoll + luoli, + [16ollz] + [ UIUDIIT + [z(n)l[Edr o

o O —_

vt € [0,T].

with constant C' > 0, the value of which is independent of quantities under
consideration.

Proof. Bearing in mind the theorem 1 we need to estimate the existence of
solution (23).

As it follows from the theorem 10.1, the sequence of semi-discrete Galerkin
approximations ¢, = {un, 65} (and also {u},}) form at A — 0 bounded sets in
the space L>(0,T;V) x [L*(0,T; H)N L?(0,T; G)] (respectively L>(0, T; H) N
L?*(0,T;V)).

Therefore, among them we can select convergent subsequence YA = {ua, 0o}
and {u/y }such that

A = {un, GA}A—>01/) ={u, 0} in L*0,T;V x G) weakly,

(N P o in L?(0,T;V) weakly.

—0

After that it remains for us to show that the limit ¢ = {u, 0} obtained in
this way from space L2(0,T;V x G)is the solution of the problem (23); more
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precise, it is the matter of direct verification to prove that the pair ¢ = {u, 0}
satisfies the equation of this problem.

For this purpose we select the spaces Vj, C V, G, C G and W = {g €
ci(o, 1)) | g(T) = 0}. Let us assume that as before {¢x(2)}_, and
{or(x)}M_| are bases of the spaces Vj, and G}, respectively and

= ait)pi €Vi Vi €W,  gu(t) = ni(T)pi € Gy Vi € W.
i=1 :

Due to the problem (36) we have
m(up(t), vn(t)) + a(ux (t), vn(t)) + c(ua(t), va(t))—
—b(0a(t), vn(t)) =< (¢ )ﬂfh(t) >,
S(OA (1), gn (1) + k(0 (2), gn(t)) + blgn(t), un (1)) =
=< pu(t), gn(t) > Vvt e (0,T).

After time integration over the interval (0,7) when applying integration by
parts and initial conditions from (36), we obtain

T
Of{—m(u’A,v;L) + a(uy, vp) + c(ua, vy) — b(0a, vp)— < l,vp) >}dT =
= _m(u/A(O)vvh(O)) = _m(UOa Uh(o))a

T
‘({_S(HAMQ;L) + k(Oa, gn) + b(gn, un)— < pt, g >}dT =
= —5(0a(0), gn(0)) = —5(00, gn(0)).

In the derived equations we proceed to the limit with A — 0, and then again
perform integration by parts, we obtain

(T
f{m(uﬁv Uh) + a(ula Uh) + C(“? Uh) - b<97 Uh)_ < la vh) >}dT =
0

= m(u'(0) — vg, vy (0)) Yo, € CL([0,T; V3)

T
I s(0, gn) + k0, gn) + b(gn, w')— < p, gn >}dT =
0

= 5(0(0) — 60,9n(0)) Vg € CH([0,T]; Gp).

Since V}, is dense in space V', and G}, is dense in space G, the final equations is
true for each v € C*([0,T];V) and g € C1([0,T]; G) .

m(u”,v) + a(u',v) + c(u,v) — b(6,v) =< l,v >,
s(t',9) + k0, 9) + (g, u') =< p,9 >,
m(u'(0) —vg,v) =0 Yo eV, s(6(0) —6by,9) =0 VgeGQG.
Finally, from the initial conditions and considering (36)

a(ug,v) = a(ua(0),v) — a(u(0),v) YoeV.
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It follows that the pair v = {u, 0} is the solution of the variational problem
(23). Moreover, for this solution the energy equation (28) and estimate (31)
stay true. The uniqueness of solution of variational problem (23) results from
(31) and proof by contradiction. O

12. CONCLUSIONS

On the basis of the conservation laws, we have formulated fundamental equa-
tions, phenomenological relations, initial and boundary conditions that describe
the motion of Newtonian viscous heat-conducting fluid in terms of mass density,
vector of velocity, pressure, entropy and temperature. By applying for this non-
closed model of hydrodynamics the hypotheses of acoustic disturbances of fluid
by linearization, we have found the initial boundary value problem and corre-
sponding variational problem only in terms of vector of acoustic displacements
and temperature, which describes the process of spreading acoustic waves with
consideration of connectivity of mechanical and thermal fields. We have deter-
mined the regularity class of input data of variational problem, which guarantee
uniqueness and continuous dependence of the required solution in the energy
norm of the problem. In addition, the existence of solution of the considered
problem has been presented as a limit of sequence of semi-discrete (by spatial
variables) Galerkin approximations.

The obtained results form a fully-functional system for successful modeling
and analysis of numeric schemes for solving problems of dissipative acoustics.
In particular, one of such schemes can be obtained by direct application of the
one-step recurrent scheme for time integration of semi-discretized variational
problem (36) using classic approximation spaces of the finite element method
[8]. The results of modeling and analysis of convergence of such schemes will
be presented in the nearest future.
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