UDC 519.6

TWO-STEP METHOD FOR SOLVING NONLINEAR EQUATIONS WITH NONDIFFERENTIABLE OPERATOR

STEPAN SHAKHNO, HALINA YARMOLA

Резюме. Запропоновано двокроковий метод для розв'язування нелінійних рівнянь з недиференційовним оператором, побудований на базі двох методів з порядком збіжності $1+\sqrt{2}$. Вивчено локальну та напівлокальну збіжність запропонованого методу та встановлено порядок збіжності. Проведено числове дослідження на тестових задачах та зроблено порівняння отриманих результатів.

ABSTRACT. In this paper we propose a two-step method for solving nonlinear equations with a nondifferentiable operator. Its method is based on two methods of order of convergence $1+\sqrt{2}$. We study a local and a semilocal convergence of the proposed method and set an order of convergence. We apply our results to the numerical solution of a nonlinear equation and systems of nonlinear equations.

1. Introduction

We consider the equation

$$H(x) \equiv F(x) + G(x) = 0,\tag{1}$$

where F and G are nonlinear operators, defined on a convex subset D of a Banach space X with values in a Banach space Y. F is a Fréchet-differentiable operator, G is a continuous operator.

There are kinds of methods to find a solution of (1). In [1] Argyros studied the two-point iterative process

$$x_{n+1} = x_n - A_n^{-1}(F(x_n) + G(x_n)), \quad n = 0, 1, \dots,$$
 (2)

where $A_n = A(x_{n-1}, x_n)$ is a bounded linear operator. There was provided a local and a semilocal convergence analysis for the method (2) and some cases where $A_n = F'(x_n)$, $A_n = F'(x_n) + G(x_{n-1}; x_n)$ were considered. Here G(x; y) is a first order divided difference of the operator G at the points x and y. The convergence analysis for the case where $A_n = F'(x_n)$ was given by Zabrejko and Nguen [11]. In the paper [3] the convergence analysis results for modification of the method (2) for some cases of A_n were presented. There are studies in which there are considered difference methods, i.e., the secant method, the parametric secant method [5, 6] and the method based on the method of linear interpolation and the secant method [7]. In [4] Chen studied a Broyden-like method for solving (1). In [9] we researched a semilocal convergence of the

 $^{^\}dagger \textit{Key words}.$ Nondifferentiable operator, convergence order, local and semilocal convergence.

method (2) for $A_n = F'(x_n) + G(2x_n - x_{n-1}; x_{n-1})$. The Newton's method cannot be applied, as differentiability of operator H is required.

In this work we propose a two-step method which is based on the methods with the order of convergence $1 + \sqrt{2}$ [8, 10],

$$x_{n+1} = x_n - \left[F'\left(\frac{x_n + y_n}{2}\right) + G(x_n; y_n) \right]^{-1} (F(x_n) + G(x_n)),$$

$$y_{n+1} = x_{n+1} - \left[F'\left(\frac{x_n + y_n}{2}\right) + G(x_n; y_n) \right]^{-1} (F(x_{n+1}) + G(x_{n+1})),$$

$$n = 0, 1, \dots,$$
(3)

Although the numbers of evaluations of the function values increases by one at each step for the proposed method (3), the convergence order is higher than for the one-step methods.

2. Convergence analysis

Definition 1. Let F be a nonlinear operator defined on a subset D of a linear space X with values in a linear space Y and let x, y be two points of D. A linear operator from X into Y, denoted as G(x; y), which satisfies the condition

$$G(x;y)(x-y) = G(x) - G(y).$$

is called a divided difference of G at the points x and y.

Theorem 1. Let F and G be nonlinear operators, defined on an open convex subset D of a Banach space X with values in a Banach space Y. F is a twice Fréchet-differentiable operator, G is a continuous operator. Let us suppose that equation (1) has a solution $x^* \in D$, G has a first order divided difference in D and there exist $[A(x,y)]^{-1} = \left[F'\left(\frac{x+y}{2}\right) + G(x;y)\right]^{-1}$ for all $x \neq y$ and $\|[A(x,y)]^{-1}\| \leq B$. Let in D the following conditions fulfill

$$||F'(x) - F'(y)|| \le 2p_1 ||x - y||, \tag{4}$$

$$||F''(x) - F''(y)|| \le p_2 ||x - y||^{\alpha}, \ \alpha \in (0, 1],$$
(5)

$$||G(x;y) - G(u;v)|| \le q_1(||x - u|| + ||y - v||).$$
(6)

Suppose that $U = \{x : ||x - x^*|| < r_*\} \subset D$, where r_* is the smallest positive zero of equations

$$q(r) = 1,$$

$$3B(p_1 + q_1)rq(r) = 1,$$

$$q(r) = B\left[(p_1 + q_1)r + \frac{p_2}{4(\alpha + 1)(\alpha + 2)}r^{1+\alpha}\right].$$
(7)

Then the sequences $\{x_n\}_{n\geq 0}$, $\{y_n\}_{n\geq 0}$ generated by the iterative process (3) are well defined for all $x_0, y_0 \in U$, remain in U and converge to the solution x^* . Moreover, the following inequalities hold for all $n\geq 0$

$$||x_{n+1} - x^*|| \le B \Big[(p_1 + q_1) ||y_n - x^*|| + \frac{p_2}{4(\alpha + 1)(\alpha + 2)} ||x_n - x^*||^{1+\alpha} \Big] ||x_n - x^*||,$$
(8)

$$||y_{n+1} - x^*|| \le B(p_1 + q_1) \Big[||y_n - x^*|| + + ||x_n - x^*|| + ||x_{n+1} - x^*|| \Big] ||x_{n+1} - x^*||.$$
(9)

Proof. Since the following equality holds for all $x, h \in D$ [10]

$$F(x+h) = F(x) + F'(x)h + \int_{0}^{1} (1-t)F''(x+th)hhdt,$$

then

$$F(x_n) - F(x^*) - F'\left(\frac{x_n + x^*}{2}\right)(x_n - x^*) =$$

$$= F(x_n) - F\left(\frac{x_n + x^*}{2}\right) - F'\left(\frac{x_n + x^*}{2}\right)\frac{x_n - x^*}{2} -$$

$$-\left[F(x^*) - F\left(\frac{x_n + x^*}{2}\right) - F'\left(\frac{x_n + x^*}{2}\right)\frac{x^* - x_n}{2}\right] =$$

$$= \int_0^1 (1 - t)F''\left(\frac{x_n + x^*}{2} + t\frac{x_n - x^*}{2}\right)\frac{x_n - x^*}{2}\frac{x_n - x^*}{2}dt -$$

$$-\int_0^1 (1 - t)F''\left(\frac{x_n + x^*}{2} + t\frac{x^* - x_n}{2}\right)\frac{x_n - x^*}{2}\frac{x_n - x^*}{2}dt.$$
(10)

Using the condition (5) and the equality (10), we obtain

$$\left\| F(x_n) - F(x^*) - F'\left(\frac{x_n + x^*}{2}\right)(x_n - x^*) \right\| \le$$

$$\le \frac{p_2 \|x_n - x^*\|^{2+\alpha}}{4} \int_0^1 (1-t)t^{\alpha} dt = \frac{p_2 \|x_n - x^*\|^{2+\alpha}}{4(\alpha+1)(\alpha+2)}.$$
(11)

Let us choose $x_0 \in U$ and show that the sequences given in (3) are well defined. We denote $A_n = F'\left(\frac{x_n + y_n}{2}\right) + G(x_n; y_n)$. If $x_n, y_n \in U$, then from the definition of the first order divided difference and (4), (6), (11), we obtain

$$||x_{n+1} - x^*|| = ||x_n - x^* - A_n^{-1}(F(x_n) + G(x_n) - F(x^*) - G(x^*))|| \le$$

$$\le ||A_n^{-1}|| ||F(x_n) - F(x^*) - F'\left(\frac{x_n + x^*}{2}\right)(x_n - x^*)|| +$$

$$+ ||A_n^{-1}|| ||F'\left(\frac{x_n + x^*}{2}\right) - F'\left(\frac{x_n + y_n}{2}\right)|| ||x_n - x^*|| +$$

$$+ ||A_n^{-1}|| ||G(x_n; x^*) - G(x_n; y_n)|| ||x_n - x^*|| \le$$

$$\le B\left[(p_1 + q_1)||y_n - x^*|| + \frac{p_2}{4(\alpha + 1)(\alpha + 2)}||x_n - x^*||^{1+\alpha}\right]||x_n - x^*||$$

and

$$||y_{n+1} - x^*|| = ||x_{n+1} - x^* - A_n^{-1}(F(x_{n+1}) + G(x_{n+1}) - F(x^*) - G(x^*))|| \le$$

$$\le ||A_n^{-1}|| \left\| \int_0^1 \left\{ F'(x^* + t(x_{n+1} - x^*)) - F'\left(\frac{x_n + y_n}{2}\right) \right\} dt \left\| ||x_{n+1} - x^*|| + \frac{1}{2} \left\| \frac{x_n + y_n}{2} \right\| \right\| \le$$

$$+\|A_n^{-1}\|\|G(x_{n+1};x^*)-G(x_n;y_n)\|\|x_{n+1}-x^*\| \le$$

$$\leq B(p_1+q_1)[\|y_n-x^*\|+\|x_n-x^*\|+\|x_{n+1}-x^*\|]\|x_{n+1}-x^*\|.$$

We prove that inequalities (8) and (9) are fulfilled. Taking n = 0 above, we obtain

$$||x_1 - x^*|| < B\Big[(p_1 + q_1)r_* + \frac{p_2}{4(\alpha + 1)(\alpha + 2)}r_*^{1+\alpha}\Big]||x_0 - x^*|| \le ||x_0 - x^*|| < r_*$$

and

$$||y_1 - x^*|| < 3B^2(p_1 + q_1) \Big[(p_1 + q_1)r_* + \frac{p_2}{4(\alpha + 1)(\alpha + 2)} r_*^{1+\alpha} \Big] r_* ||x_0 - x^*|| \le$$

$$\le ||x_0 - x^*|| < r_*.$$

Therefore, $x_1, y_1 \in U$. If $||x_n - x^*|| < r_*$ and $||y_n - x^*|| < r_*$ then from (7) – (9), it follows

$$||x_{n+1} - x^*|| < B \left[(p_1 + q_1)r_* + \frac{p_2}{4(\alpha + 1)(\alpha + 2)} r_*^{1+\alpha} \right] ||x_n - x^*|| \le$$

$$\le ||x_n - x^*|| < \dots < r_*,$$

$$||y_{n+1} - x^*|| < 3B^2(p_1 + q_1) \Big[(p_1 + q_1)r_* + \frac{p_2}{4(\alpha + 1)(\alpha + 2)} r_*^{1+\alpha} \Big] r_* ||x_n - x^*|| \le$$

$$\le ||x_n - x^*|| < \dots < r_*.$$

So, iterative process (3) is well defined, the sequences $\{x_n\}_{n\geq 0}$, $\{y_n\}_{n\geq 0}$ belong to U. From the last inequalities and estimates (8) and (9) we can see that $\{x_n\}_{n\geq 0}$ and $\{y_n\}_{n\geq 0}$ converge to x^* .

Corollary 2. Let us suppose that the hypotheses of Theorem 1 hold. Then the iterative process (3) converges to a solution x^* of the equation (1) with the order of convergence $1 + \sqrt{1 + \alpha}$.

Proof. We denote

$$a_n = ||x_n - x^*||, \ b_n = ||y_n - x^*||, \ C_1 = B(p_1 + q_1), \ C_2 = \frac{Bp_2}{4(\alpha + 1)(\alpha + 2)}.$$

By (8) and (9), we get

$$a_{n+1} \leq C_1 a_n b_n + C_2 a_n^{2+\alpha},$$

$$b_{n+1} \le C_1(a_{n+1} + a_n + b_n)a_{n+1} \le C_1(2a_n + b_n)a_{n+1} \le C_1(2a_n + C_1(2a_0 + b_0)a_n)a_{n+1} = C_1(2 + C_1(2a_0 + b_0))a_na_{n+1},$$

Then for large n and $a_{n-1} < 1$, from previous inequalities, we obtain

$$a_{n+1} \le C_1 a_n b_n + C_2 a_n^2 a_{n-1}^{\alpha} \le$$

$$\le C_1^2 (2 + C_1 (2a_0 + b_0)) a_n^2 a_{n-1} + C_2 a_n^2 a_{n-1}^{\alpha} \le$$

$$\le [C_1^2 (2 + C_1 (2a_0 + b_0)) + C_2] a_n^2 a_{n-1}^{\alpha}.$$
(12)

From (12) we can write down an equation of the convergence order of the iterative process (3): $t^2 - 2t - \alpha = 0$. The order of convergence is the unique positive solution $t^* = 1 + \sqrt{1 + \alpha}$. If $\alpha = 1$, we get that the iterative process (3) converges to the solution of the equation (1) with the order $1 + \sqrt{2}$.

Theorem 2. Let F and G be nonlinear operators, defined on an open convex subset D of a Banach space X with values in a Banach space Y. F is a Fréchet-differentiable operator, G is a continuous operator. We assume that $U_0 = \{x : \|x - x_0\| \le r_0\}$ is contained in D, the linear operator $A_0 = F'\left(\frac{x_0 + y_0}{2}\right) + G(x_0; y_0)$, where $x_0, y_0 \in D$, is invertible and the Lipschitz conditions are fulfilled

$$||A_0^{-1}(F'(x) - F'(y))|| \le 2p_0||x - y||, \tag{13}$$

$$||A_0^{-1}(G(x;y) - G(u;v))|| \le q_0(||x - u|| + ||y - v||).$$
(14)

Let's $a, c \ (c > a), r_0$ be non-negative numbers such that

$$||x_{0} - x_{-1}|| \le a, \quad ||A_{0}^{-1}(F(x_{0}) + G(x_{0}))|| \le c,$$

$$r_{0} \ge c/(1 - \gamma), \quad (p_{0} + q_{0})(2r_{0} - a) < 1,$$

$$\gamma = \frac{(p_{0} + q_{0})(r_{0} - a) + 0.5p_{0}r_{0}}{1 - (p_{0} + q_{0})(2r_{0} - a)}, \quad 0 \le \gamma < 1.$$

$$(15)$$

Then the following inequalities hold for all $n \geq 0$

$$||x_n - x_{n+1}|| \le t_n - t_{n+1}, \quad ||y_n - x_{n+1}|| \le s_n - t_{n+1},$$
 (16)

$$||x_n - x^*|| \le t_n - t^*, \quad ||y_n - x^*|| \le s_n - t^*,$$
 (17)

where

$$t_0 = r_0, \quad s_0 = r_0 - a, \quad t_1 = r_0 - c,$$

$$t_{n+1} - t_{n+2} = \frac{(p_0 + q_0)(s_n - t_{n+1}) + 0.5p_0(t_n - t_{n+1})}{1 - (p_0 + q_0)[(t_0 - t_{n+1}) + (s_0 - s_{n+1})]}(t_n - t_{n+1}), \quad (18)$$

$$t_{n+1} - s_{n+1} = \frac{(p_0 + q_0)(s_n - t_{n+1}) + 0.5p_0(t_n - t_{n+1})}{1 - (p_0 + q_0)[(t_0 - t_n) + (s_0 - s_n)]} (t_n - t_{n+1}),$$
(19)

 $\{t_n\}_{n\geq 0}$, $\{s_n\}_{n\geq 0}$ are non-negative, decreasing sequences that converge to certain t^* such that $r_0-c/(1-\gamma)\leq t^*< t_0$; sequences $\{x_n\}_{n\geq 0}$, $\{y_n\}_{n\geq 0}$ generated by the iterative process (3) are well defined, remain in U_0 that converge to a solution x^* of equation (1).

Proof. Firstly, we prove, by mathematical induction, that the following inequalities hold for all $k \geq 0$

$$t_{k+1} \ge s_{k+1} \ge t_{k+2} \ge r_0 - \frac{c}{1-\gamma} \ge 0,$$
 (20)

$$t_{k+1} - t_{k+2} \le \gamma(t_k - t_{k+1}), \quad t_{k+1} - s_{k+1} \le \gamma(t_k - t_{k+1}).$$
 (21)

From (18), (19) for k = 0 we obtain

$$t_1 - t_2 = \frac{(p_0 + q_0)(s_0 - t_1) + 0.5p_0(t_0 - t_1)}{1 - (p_0 + q_0)[(t_0 - t_1) + (s_0 - s_1)]} (t_0 - t_1) \le \gamma(t_0 - t_1),$$

$$t_1 - s_1 = [(p_0 + q_0)(s_0 - t_1) + 0.5p_0(t_0 - t_1)](t_0 - t_1) \le \gamma(t_0 - t_1),$$

$$t_{2} \ge r_{0} - c - \frac{(p_{0} + q_{0})s_{0} + 0.5p_{0}t_{0}}{1 - (p_{0} + q_{0})[t_{0} + s_{0}]}c =$$

$$= r_{0} - (1 + \gamma)c = r_{0} - \frac{(1 - \gamma^{2})c}{1 - \gamma} \ge r_{0} - \frac{c}{1 - \gamma} \ge 0,$$

$$t_{1} \ge t_{2}, \ s_{1} \ge t_{2}, \ t_{1} \ge s_{1} \ge t_{2} \ge r_{0} - \frac{c}{1 - \gamma} \ge 0.$$

Let us suppose that inequalities (20) and (21) hold for k = 0, 1, ..., n - 1. Then for k = n we obtain

$$\begin{split} t_{n+1} - t_{n+2} &= \frac{(p_0 + q_0)(s_n - t_{n+1}) + 0.5p_0(t_n - t_{n+1})}{1 - (p_0 + q_0)[(t_0 - t_{n+1}) + (s_0 - s_{n+1})]}(t_n - t_{n+1}) \leq \\ &\leq \frac{(p_0 + q_0)s_n + 0.5p_0t_n}{1 - (p_0 + q_0)[t_0 + s_0]}(t_n - t_{n+1}) \leq \gamma(t_n - t_{n+1}), \end{split}$$

$$t_{n+1} - s_{n+1} = \frac{(p_0 + q_0)(s_n - t_{n+1}) + 0.5p_0(t_n - t_{n+1})}{1 - (p_0 + q_0)[(t_0 - t_n) + (s_0 - s_n)]} (t_n - t_{n+1}) \le \frac{(p_0 + q_0)s_n + 0.5p_0t_n}{1 - (p_0 + q_0)[t_0 + s_0]} (t_n - t_{n+1}) \le \gamma(t_n - t_{n+1})$$

and

$$t_{n+1} \ge s_{n+1} \ge t_{n+2} \ge t_{n+1} - \gamma (t_n - t_{n+1}) \ge c_0 - \frac{1 - \gamma^{n+2}}{1 - \gamma} c \ge r_0 - \frac{c}{1 - \gamma} \ge 0.$$

So, we prove, that sequences $\{t_n\}_{n\geq 0}$ and $\{s_n\}_{n\geq 0}$ are non-negative, decreasing sequences and converge to t^* such that $t^*\geq 0$.

Let us prove, by mathematical induction, that the iterative process (3) is well defined and inequalities (16) hold for all $n \ge 0$.

Using (15) and $t_0 - t_1 = c$, we prove that (16) hold for n = 0.

Let denote $A_n = F'\left(\frac{x_n + y_n}{2}\right) + G(x_n; y_n)$. Using Lipschitz conditions (13) and (14), we have

$$||I - A_0^{-1}A_{n+1}|| = ||A_0^{-1}[A_0 - A_{n+1}]|| \le$$

$$\le ||A_0^{-1}[F'(\frac{x_0 + y_0}{2}) - F'(\frac{x_{n+1} + y_{n+1}}{2})]|| +$$

$$+ ||A_0^{-1}[G(x_0; y_0) - G(x_{n+1}; y_{n+1})]|| \le$$

$$\le 2p_0(\frac{||x_0 - x_{n+1}||}{2} + \frac{||y_0 - y_{n+1}||}{2}) + q_0(||x_0 - x_{n+1}|| + ||y_0 - y_{n+1}||) \le$$

$$\le (p_0 + q_0)(||x_0 - x_{n+1}|| + ||y_0 - y_{n+1}||) \le$$

$$\le (p_0 + q_0)(t_0 - t_{n+1} + s_0 - s_{n+1}) \le$$

$$\le (p_0 + q_0)(t_0 + s_0) = (p_0 + q_0)(2r_0 - a) < 1.$$

By Banach lema on invertible operator, it follows that A_{n+1} is invertible and

$$||A_{n+1}^{-1}A_0|| \le \left[1 - (p_0 + q_0)(||x_0 - x_{n+1}|| + ||y_0 - y_{n+1}||)\right]^{-1}.$$

Let us prove that iterative process (3) is well defined for k = n + 1. From the definition of the first order divided difference and (13), (14), we obtain

$$||A_0^{-1}(F(x_{n+1}) + G(x_{n+1}))|| =$$

$$= ||A_0^{-1}[F(x_{n+1}) + G(x_{n+1}) - F(x_n) - G(x_n) - A_n(x_{n+1} - x_n)]|| \le$$

$$\le ||A_0^{-1}[\int_0^1 \left\{ F'(x_{n+1} + t(x_n - x_{n+1})) - F'\left(\frac{x_n + y_n}{2}\right) \right\} dt]|||x_n - x_{n+1}|| +$$

$$+ ||A_0^{-1}[G(x_n; y_n) - G(x_n; x_{n+1})]|| ||x_n - x_{n+1}|| \le$$

$$\le 2p_0[||x_n - x_{n+1}|| \int_0^1 \left| t - \frac{1}{2} \right| dt + \frac{||y_n - x_{n+1}||}{2} \right] ||x_n - x_{n+1}|| +$$

$$+ q_0||y_n - x_{n+1}|| ||x_n - x_{n+1}|| =$$

$$= (p_0 + q_0) ||y_n - x_{n+1}|| ||x_n - x_{n+1}|| + 0.5p_0 ||x_n - x_{n+1}||^2.$$

Hence, using (16), we have

$$||x_{n+1} - x_{n+2}|| = ||A_{n+1}^{-1}(F(x_{n+1}) + G(x_{n+1}))|| \le$$

$$\le ||A_{n+1}^{-1}A_0|| ||A_0^{-1}(F(x_{n+1}) + G(x_{n+1}))| ||x_n - x_{n+1}|| \le$$

$$\le \frac{(p_0 + q_0)||y_n - x_{n+1}|| + 0.5p_0||x_n - x_{n+1}||}{1 - (p_0 + q_0)(||x_0 - x_{n+1}|| + ||y_0 - y_{n+1}||)} ||x_n - x_{n+1}|| \le$$

$$\le \frac{(p_0 + q_0)(s_n - t_{n+1}) + 0.5p_0(t_n - t_{n+1})}{1 - (p_0 + q_0)[(t_0 - t_{n+1}) + (s_0 - s_{n+1})]} (t_n - t_{n+1}) = t_{n+1} - t_{n+2},$$

$$||x_{n+2} - y_{n+2}|| = ||A_{n+1}^{-1}(F(x_{n+2}) + G(x_{n+2}))|| \le$$

$$\le ||A_{n+1}^{-1}A_0|| ||A_0^{-1}(F(x_{n+2}) + G(x_{n+2}))|||x_n - x_{n+1}|| \le$$

$$\le \frac{(p_0 + q_0)||y_{n+1} - x_{n+2}|| + 0.5p_0||x_{n+1} - x_{n+2}||}{1 - (p_0 + q_0)(||x_0 - x_{n+1}|| + ||y_0 - y_{n+1}||)} ||x_{n+1} - x_{n+2}|| \le$$

$$\le \frac{(p_0 + q_0)(s_{n+1} - t_{n+2}) + 0.5p_0(t_{n+1} - t_{n+2})}{1 - (p_0 + q_0)[(t_0 - t_{n+1}) + (s_0 - s_{n+1})]} (t_{n+1} - t_{n+2}) = s_{n+2} - t_{n+2}.$$

So, iterative process (3) is well defined and (15) holds for all $n \ge 0$. From this it follows

$$||x_n - x_k|| \le t_n - t_k, \ ||y_n - x_k|| \le s_n - t_k, ||y_n - y_k|| \le s_n - s_k, \quad 0 \le n \le k,$$
 (22)

i.e., $\{x_n\}_{n\geq 0}$ and $\{y_n\}_{n\geq 0}$ are fundamental sequences in a Banach space X. From (22) for $k\to\infty$ it follows inequalities (17). Let's show that x^* is solution of equation (1). Indeed,

$$||A_0^{-1}(F(x_{n+1}) + G(x_{n+1}))|| \le$$

$$\le (p_0 + q_0)||y_n - x_{n+1}|| ||x_n - x_{n+1}|| + 0.5p_0||x_n - x_{n+1}||^2 \to 0, \quad n \to \infty.$$

So,
$$H(x^*) = 0$$
.

Remark 5. If we choose F(x) = 0, $p_1 = 0$, $p_2 = 0$ then the estimates (8) and (9) reduce to similar ones in [8] for the case $\alpha = 1$.

Remark 6. If the divided difference of the operator G satisfies the condition (6), i.e. the operator G(x;y) is Lipschitz continuous, then G is Fréchet-differentiable.

3. Numerical experiments

For the numerical investigation we choose the equation and the systems of equations considered in [1, 4, 5, 6, 7].

Example 1.

$$e^{x-0.5} - 1.05 + 0.2x|x-1| = 0,$$

 $x^* = 0.5.$

Example 2.

$$3x^2y - y^2 - 1 + |x - 1| = 0,$$

 $x^4 + xy^3 - 1 + |y| = 0,$
 $(x^*; y^*) \approx (0.894655; 0.327827).$

Example 3.

$$x^{2} - y + 1 + \frac{1}{9}|x - 1| = 0,$$

$$y^{2} + x - 7 + \frac{1}{9}|y| = 0,$$

$$(x^{*}; y^{*}) \approx (1.15936; 2.36182).$$

Example 4.

$$\begin{split} &z^2(1-y)-xy+|y-z^2|=0,\\ &z^2(x^3-x)-y^2+|3y^2-z^2+1|=0,\\ &6xy^3+y^2z^2-xy^2z+|x+z-y|=0,\\ &(\boldsymbol{x}^*;\boldsymbol{y}^*;\boldsymbol{z}^*)=(-1;2;3). \end{split}$$

Let $X = Y = \mathbb{R}^m$, m = 1, 2, 3. In this case the first order divided difference G(x; y) is a matrix of dimension $m \times m$. Its elements are calculated as [8]

$$G(x;y)_{i,j} = \frac{G_i(x^1, \dots, x^j, y^{j+1}, \dots, y^m) - G_i(x^1, \dots, x^{j-1}, y^j, \dots, y^m)}{x^j - y^j},$$

$$i, j = \overline{1, m}.$$

In calculations we use the norm $||x||_{\infty} = \max_{1 \leq i \leq m} |x^i|$. In the following Tables there are results obtained by methods (3) and (2) in particular, for such cases

$$x_{n+1} = x_n - [F'(x_n)]^{-1}(F(x_n) + G(x_n)), \quad n = 0, 1, \dots,$$
 (23)

$$x_{n+1} = x_n - [F'(x_n) + G(x_{n-1}; x_n)]^{-1}(F(x_n) + G(x_n)), \quad n = 0, 1, \dots, (24)$$

$$x_{n+1} = x_n - [H(x_{n-1}; x_n)]^{-1} (F(x_n) + G(x_n)), \quad n = 0, 1, \dots$$
 (25)

Tabl. 1. Numbers of iterations for solving equations with initial points $x_0 = 1 \cdot d$, $x_{-1} = y_0 = 2 \cdot d$ – for Example 1, $x_0 = (1,0)d$, $x_{-1} = y_0 = (5,5)d$ – for Example 2

d	ε	Example 1		Example 2					
		(23)	(24)	(25)	(3)	(23)	(24)	(25)	(3)
1	10^{-5}	5	5	6	5	11	4	5	5
	10^{-15}	6	7	8	6	33	6	9	6
10	10^{-5}	14	15	20	13	19	13	18	12
	10^{-15}	15	17	22	14	41	15	21	13
100	10^{-5}	104	105	_	88	27	21	30	19
	10^{-15}	105	107	_	89	49	23	32	20

The calculations were conducted in MATLAB 7.1. Iterations were stopped after conditions $||x_{n+1} - x_n||_{\infty} \le \varepsilon$ and $||H(x_{n+1})||_{\infty} \le \varepsilon$ were satisfied. Sign "'-" means, that in this case the solution was not possible to be found. We examined the convergence of the considered method for such variants of choice of the additional initial approximation y_0 : for Example $1 - x_{-1} = y_0 = 2 \cdot d$, for Examples 2, 3 y_0 was chosen as x_{-1} in the works [1, 5, 6, 7] and $x_{-1}^i = y_0^i = x_0^i + 10^{-4}$, i = 1, 2, 3 for Example 4.

The obtained results show that the methods (24) and (3) differ a little for the initial points that are close to the solution. But the method (3) converge faster than (2) for the initial points with d = 100. In this case $||x_0 - x^*||$ takes the largest value. The method (23) has the lowest speed of convergence.

Tabl. 2. Numbers of iterations for solving equations with initial points $x_0 = (1,1)d$, $x_{-1} = y_0 = (0.9,1.1)d$ – for Example 3, $x_0 = (-2,3,5)d$, $x_{-1}^i = y_0^i = x_0^i + 10^{-4}$ – for Example 4

d	arepsilon	Example 3			Example 4				
		(23)	(24)	(25)	(3)	(23)	(24)	(25)	(3)
1	10^{-5}	6	5	6	5	85	7	10	7
	10^{-15}	13	7	9	6	266	10	12	8
10	10^{-5}	8	7	9	6	102	10	25	14
	10^{-15}	15	9	11	7	284	20	27	16
100	10^{-5}	11	11	14	9	110	28	39	23
	10^{-15}	18	12	16	10	292	30	41	24

In Table 3 the numerical results are presented for the example 1 with $\varepsilon = 10^{-10}$, where n is the iteration number, x_n is the approximate value for x^* ,

n	x_n	$ x_n - x_{n-1} $	$ H(x_n) $
0	1		0.5987212707001
1	0.8079964212227	0.1920035787772	0.3417237602029
2	0.5200746907444	0.28792173047835	0.02019694382837
3	0.5000182789519	0.02005641179247	$1.827905217970 \cdot 10^{-5}$
4	0.5000000000006	$1.827895124595 \cdot 10^{-5}$	$6.967343368913 \cdot 10^{-13}$
5	0.5	$6.967759702547 \cdot 10^{-13}$	$4.163336342344 \cdot 10^{-17}$

Tabl. 3. Numerical results for the Example 1: $x_0 = 1$, $y_0 = 2$

 $|x_n - x_{n-1}|$ is the norm of correction and $|H(x_n)|$ is the norm of deviation on every step of the iterative process (3).

Now we verify whether the hypothesis of Theorem 2 are satisfied. The research are carried out for the example 1. Since m=1 than $\|\cdot\|_{\infty}=|\cdot|$. In [9] we showed that the following estimates hold for all $x, y \in [0; 1]$

$$|A_0^{-1}(F'(x) - F'(y))| \le |A_0^{-1}||(F'(x) - F'(y))| \le \frac{e^{0.5}}{|A_0|}|x - y|,$$

$$|A_0^{-1}(G(x, y) - G(u, v))| \le |A_0^{-1}||(G(x, y) - G(u, v))| \le \frac{1}{5|A_0|}(|x - u| + |y - v|).$$

Hence $p_0 = \frac{e^{0.5}}{2|A_0|}$ and $q_0 = \frac{1}{5|A_0|}$. Let us choose $x_0 = 0.43$, $y_0 = 0.47$. Then we get

 $\frac{1}{|A_0|} = 1.049985813745361, \quad p_0 = 0.8655669725276801,$ $q_0 = 0.2099971627490723, \quad c = 0.07201451611773883, \quad a = 0.04.$

-t --- -l ---- - 0.1 Tl--- -----l-- (10) --- l (10)

Let us choose $r_0 = 0.1$. Then, according to formulas (18) and (19), we get

 $t_1 = 0.0798548388226117, \quad s_1 = 0.02326130579394141,$

 $t_2 = 0.0226355142098747$, $s_2 = 0.02261740817032270$

 $t_3 = 0.02261727501017343, \dots, t^* \approx 0.02261727484294557,$

 $0.01720355125317807 < t^* < 0.1, \quad \gamma = 0.1302221628134378 < 1.$

The solution x^* is obtained in 3 iterations with $\varepsilon = 10^{-5}$.

Tabl. 4. Numerical results for the Example 1

n	$ x_{n-1}-x_n $	$t_{n-1} - t_n$	$ y_{n-1} - x_n $	$s_{n-1}-t_n$
1	$7.0617898 \cdot 10^{-2}$	$7.2014516 \cdot 10^{-2}$	$3.0617898 \cdot 10^{-2}$	$3.2014516 \cdot 10^{-2}$
2	$6.1790108 \cdot 10^{-4}$	$5.3499697 \cdot 10^{-3}$	$1.8418431 \cdot 10^{-5}$	$6.2579158 \cdot 10^{-4}$
3	$3.4257955 \cdot 10^{-9}$	$1.8239200 \cdot 10^{-5}$	$6.1617378 \cdot 10^{-13}$	$1.3316015 \cdot 10^{-7}$

Thus for the given values hypothesis of the Theorem 2 are satisfied (See Tabl. 4). According to this theorem, the iterative process (2) is well-defined, remains in U_0 and converges to the solution $x^* \in U_0$.

BIBLIOGRAPHY

- Argyros I. K. A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space / I. K. Argyros // J. Math. Anal. Appl.-2004. Vol. 298. P. 374-397.
- Argyros I.K. Improving the rate of convergence of Newton methods on Banach spaces with a convergence structure and applications / I.K. Argyros // Appl. Math. Lett.– 1997.– Vol. 6.– P. 21-28.
- 3. Argyros I. K. On the convergence of modified Newton methods for solving equations containing a non-differentiable term / I. K. Argyros, H. Ren // J. Comp. App. Math.—2009.— Vol. 231.— P. 897-906.
- Chen X. On the convergence of Broyden-like methods for nonlinear equations with nondifferentiable terms / X. Chen // Ann. Inst. Statist. Math. – 1990. – Vol. 42, № 2. – P. 387-401.
- 5. Hernandez M. A. A uniparametric family of iterative processes for solving nondiffrentiable operators / M. A. Hernandez, M. J. Rubio // J. Math. Anal. Appl.— 2002.— Vol. 275.— P. 821-834.
- 6. Hernandez M. A. The Secant method for nondifferentiable operators / M. A. Hernandez, M. J. Rubio // Appl. Math. Lett. -2002. Vol. 15. -P. 395-399.
- 7. Ren H. A new semilocal convergence theorem for a fast iterative method with nondifferentiable operators / H. Ren, I. K. Argyros // J. Appl. Math. Comp. − 2010. − Vol. 34, № 1-2. − P. 39-46.
- 8. Shakhno S. M. On an iterative algorithm with superquadratic convergence for solving nonlinear operator equations / S. M. Shakhno // J. Comp. App. Math.—2009.—Vol. 231.—P. 222-235.
- 9. Shakhno S. M. Twopoint method for solving nonlinear equation with nondifferentiable operator / S. M. Shakhno, H. P. Yarmola // Matematychni Studii. 2010. Vol. 36, № 2. P. 213–220 (in Ukrainian).
- 10. Werner W. Über ein Verfarhren der Ordnung $1+\sqrt{2}$ zur Nullstellenbestimmung / W. Werner // Numer. Math. 1979. Vol. 32. P. 333–342.
- 11. Zabrejko P. P. The majorant method in the theory of Newton-Kantorovich approximations and the Pta'k error estimates / P. P. Zabrejko, D. F. Nguen // Numerical Functional Analysis and Optimization. − 1987. − Vol. 9, № 5-6. − P. 671-684.

1, Universytets'ka Str., Lviv, 79000, Ukraine

Received 12.04.2012