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TWO-STEP METHOD FOR SOLVING
NONLINEAR EQUATIONS WITH
NONDIFFERENTIABLE OPERATOR

STEPAN SHAKHNO, HALINA YARMOLA

PE3IOME. 3anponoHoBaHO IBOKPOKOBUII METOJ, /IJisi PO3B’A3yBaHHs HeJiHiii-
HUX DIBHSIHB 3 HeandepeHIifioBHNM orepaTopoM, mobymoBanmii Ha 6a3i ABOX
MEeTO/IiB 3 TOPsIKOM 30i:kHOCTI 1+ ﬂ BuBueHo JIOKa/IbHY Ta HAIBIOKAJIBHY
301KHICTh 3aIPOIIOHOBAHOTO METOy Ta BCTAHOBJIEHO MOPII0K 301KHOCTI.
IIpoBemero 9mMCIOBE TOCIIIIKEHHS HA TECTOBUX 33a9YaX Ta 3pOOJIEHO TTOPiB-
HAHHS OTPUMAHUX PEe3yJIbTaTiB.

ABSTRACT. In this paper we propose a two-step method for solving nonlin-
ear equations with a nondifferentiable operator. Its method is based on two
methods of order of convergence 1 + /2. We study a local and a semilocal
convergence of the proposed method and set an order of convergence. We ap-
ply our results to the numerical solution of a nonlinear equation and systems
of nonlinear equations.

1. INTRODUCTION
We consider the equation

H(z) = F(z) + G(z) =0, (1)

where F' and G are nonlinear operators, defined on a convex subset D of a
Banach space X with values in a Banach space Y. F'is a Fréchet-differentiable
operator, G is a continuous operator.

There are kinds of methods to find a solution of (1). In [1] Argyros studied
the two-point iterative process

L1 = 2n — A (F(z,) + G(zn)), n=0,1,..., (2)

where A,, = A(zp_1,%,) is a bounded linear operator. There was provided a
local and a semilocal convergence analysis for the method (2) and some cases
where A, = F'(xy,), A, = F'(xy,) + G(2n—1; 25) were considered. Here G(z;y)
is a first order divided difference of the operator G at the points  and y. The
convergence analysis for the case where A,, = F'(z,,) was given by Zabrejko and
Nguen [11]. In the paper [3] the convergence analysis results for modification
of the method (2) for some cases of A, were presented. There are studies
in which there are considered difference methods, i.e., the secant method, the
parametric secant method |5, 6] and the method based on the method of linear
interpolation and the secant method [7]. In [4] Chen studied a Broyden-like
method for solving (1). In |9] we researched a semilocal convergence of the

TKey words. Nondifferentiable operator, convergence order, local and semilocal
convergence.
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method (2) for A, = F'(xy,) + G(2z, — p—1;2n—1). The Newton’s method
cannot be applied, as differentiability of operator H is required.

In this work we propose a two-step method which is based on the methods
with the order of convergence 1+ /2 [8, 10],

tsr = = [T + Glonin)]| (Flaa) + Glan)),

Tn + Yn -1 3)
2

Yn+1l = Tp41 — {F,( ) + G(xmyn)} (F(@nt1) + G(zn41)), (

n=01,....
Although the numbers of evaluations of the function values increases by one at

each step for the proposed method (3), the convergence order is higher than for
the one-step methods.

2. CONVERGENCE ANALYSIS

Definition 1. Let F' be a nonlinear operator defined on a subset D of a linear
space X with values in a linear space Y and let z, y be two points of D. A
linear operator from X into Y, denoted as G(z;y), which satisfies the condition

G(ziy)(z —y) = G(z) — G(y).
is called a divided difference of G at the points « and y.

Theorem 1. Let F' and G be nonlinear operators, defined on an open convez
subset D of a Banach space X with values in a Banach space Y. F is a twice
Fréchet-differentiable operator, G is a continuous operator. Let us suppose that
equation (1) has a solution v* € D, G has a first order divided difference in

D and there erist [A(z,y)]™! = [F’(%) + G(an’;y)}_1 for all x # y and
I[A(z,y)]7t|| < B. Let in D the following conditions fulfill

17/ () = F'(y)|| < 2p1]lz =y, (4)

1F"(2) - F"()]| < poll — oIl @ € (0,1], (5)

1G (@5 y) — G(w; )| < qallle = ull + lly = vl])- (6)

Suppose that U = {z : ||z —2*|| < r«} C D, where 1« is the smallest positive
zero of equations

(7)
3B(p1+q)rq(r) =1,
_ P2 1+
Q(r)_B|:(p1+Q1)T+4(OZ—|—1)(Oé—|—2)T :
Then the sequences {xn}n>0, {Yn}n>0 generated by the iterative process (3)
are well defined for all xo, yo € U, remain in U and converge to the solution
x*. Moreover, the following inequalities hold for alln >0

a1 =l <B|(p1 + an)llyn — 2*l|+

8)
P2 x4 - (
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lynss =" B+ 1) |l — 2|+
+ e = 2l + 2ns1 = 2] lznsn =271

Proof. Since the following equality holds for all z, h € D [10]
1
F(x+h)=F(z)+ F'(2)h + /(1 — t)F"(x + th)hhdt,
0

then

Flan) ~ F(a) = /(" ‘g ﬁ)m _ ) =

Ty + Ty + 2\ Ty — 2
_ _F( n )_F,< n ) n—a*
(zn) 2 2 2

[re-r(mE) P ()=

fl F,,(:L‘n—l-l‘* xn—x*)xn—a}*mn—m*
0

13
2 + 2 2 2

_f F,,(a:n—Qi-x*_'_tx*;xn)xn;x*xn;x*dt.

Using the condltlon (5) and the equality (10), we obtain

Ty + 2

HF(mn) — F(z*) — F’(T) (xn — ™)

* |24 1 * || 24+ (11)
< pQHl’n—l’ || /(1_t)tadt: pQHxTL_CC H
- 4 da+1)(a+2)

<

0
Let us choose g € U and show that the sequences given in (3) are well

defined. We denote A4,, = F’(W) + G(zp;yn). If x4, yn € U, then from
the definition of the first order divided difference and (4), (6), (11), we obtain

|lzn1 = 2*[| = llon — 2% = AZH(F (20) + G(zq) — F(a*) = G(z"))|| <

A

<A Fa) = F(a) = P25 ) (= 2|+

Ty + ¥ Ty +
A F () = P () [l - 2l

+[l Ay 1IHIG(me ) = G(@n; yn) | lzn — 27| <

D2
d(a+1)(a+2)

< B| (o1 + a)llyn — 2"l| + o = 2* 1] 2 — 2*|

and

||yn+1 - -T*H = ||55n+1 -z — AEI(F(anrl) + G(anrl) - F(x*) - G(ZL‘*))H <

1 Tn +Y
<4 || S { P/ + e = 2%) = B (E2) bt |l — 21+
I . () e s
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HAL NG (@413 27) = Glans yn)ll@nss — ¥ <

< B+ a)llyn — 2™l + lzn — 2| + 201 — 2"l 2nga — 27|

We prove that inequalities (8) and (9) are fulfilled. Taking n = 0 above, we
obtain

P2 1+a * *

-z < B{ x } — < — < T
Hxl x H (pl + Q1)7“ + 4(0[ n 1)(0& + 2) T on x H = on x H T
and

* P2 1+a *
— 2*|| <3B? + { +q1)re + Ty ]r* o — 27| <

<lxg — || < 7y

Therefore, z1, y1 € U. If ||zy, — 2*|| < ry and ||y, — 2*|| < 74 then from (7) —
(9), it follows

* D2 1+« *
- <B[ X . } — <
a1 =27l <B[1 +are + gy e — 7l <

g — 2| < ..o <74y

lyns1 = @* | <3B2(p1 +a1) (b1 + a)rot

P2 1+a] _ ¥ <
et n@ry s e mels

Lz — 2% < ... < 7y
So, iterative process (3) is well defined, the sequences {xy, }rn>0, {yn}n>0 belong

to U. From the last inequalities and estimates (8) and (9) we can see that
{zn}n>0 and {yn}n>0 converge to x*. O

Corollary 2. Let us suppose that the hypotheses of Theorem 1 hold. Then the
iterative process (3) converges to a solution * of the equation (1) with the order
of convergence 1 ++v1+ a.

Proof. We denote

Bps
da+1D)(a+2)

an = [lzn — 27, bn = [lyn — 27[|, C1 = B(pr + 1), C2 =

By (8) and (9), we get
ant1 < Cranb, + Caa?te,
bn+1 < Cr(ant1 + an + bp)ans1 < C1(2ap + bp)ant1 <
< C1(2an + C1(2a0 + bo)ay)ant+1 = C1(2 4+ C1(2ap + by))anan+1,
Then for large n and a,—1 < 1, from previous inequalities, we obtain
ant1 < Crapb, + Caa2a® | <

< 012(2 + C4 (2&0 + bo))a%anq -+ CQCL?LCL%_l < (12)
< [012(2 + 01(2(1() + bo)) + C’z]a%a;ffl.
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From (12) we can write down an equation of the convergence order of the
iterative process (3): t2 — 2t — a = 0. The order of convergence is the unique
positive solution t* = 1+ /1 4+ a. If « = 1, we get that the iterative process
(3) converges to the solution of the equation (1) with the order 1 + /2. O

Theorem 2. Let F' and G be nonlinear operators, defined on an open convex
subset D of a Banach space X with values in a Banach space Y. F is a Fréchet-

differentiable operator, G is a continuous operator. We assume that Uy = {z :
Zo + yo) I

G(zo;yo), where x0, yo € D, is invertible and the Lipschitz conditions are
fulfilled

|z — xo|| < ro} is contained in D, the linear operator Ay = F’(

145 (F' () = F'(y))l < 2pollz = yll, (13)
1451 (G (z59) = Glus )| < g0z —ull + [y — o])). (14)

Let’s a, ¢ (¢ > a), ro be non-negative numbers such that
loo — 21 < a, [l Ay (Flao) + Glao)]l < e, (15)

ro>c¢/(1=7), (po+qo)(2ro—a) <1,
(po + qo) (10 — a) + 0.5pgro
- , 0<~<L.
T T o+ @) — a) !
Then the following inequalities hold for all n > 0

Hxn - xn—l—l” S tn - tn+17 Hyn - xn—i—l” S Sn — tn—‘rla (16)
[zn —a*[| < tp =t lyn — 2" < 5 — 17, (17)
where
to=70, So=ro—a, l1=70—¢,
Po+ qo)(s —1 1+0.5p0t —thal
tn+1 o tn+2 _ ( )( n n+ ) ( n n+ )(tn - tn+1)7 (18)

1 — (po + qo)[(fo — tnt1) + (S0 — Snt1)]
(p(] + QO)(Sn - tn+1) + 0'5p0(tn - thrl)

B (T A CTEr™) B At
{tn}n>0, {Sn}n>0 are non-negative, decreasing sequences that converge to cer-
tain t* such that ro—c/(1—~) < t* < to; sequences {zn}n>0, {yn}n>0 generated
by the iterative process (8) are well defined, remain in Uy that converge to a
solution =* of equation (1).

Proof. Firstly, we prove, by mathematical induction, that the following inequal-
ities hold for all K > 0

¢
tht1 = Sky1 = thyo =70 — i~ >0, (20)

thr1 — thp2 <Ytk — thg1)s thgr — Sk1 < V(e — thgr)- (21)

From (18), (19) for k£ = 0 we obtain
(po + qo)(so — t1) + 0.5pg(to — 1)
b=ty = to—t1) < y(to — t1),
L 1*(PO+QO)[(750*t1)+(80—51)]( 0—t) <9t —1t)

t1 —s1 = [(po + qo)(s0 — t1) + 0.5po(to — t1)](to — t1) < v(to — t1),
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0.5pot
tzzro_c_(poJrQO)So-F poto . _

1 — (po + q0)[to + o]

2
A=ve ¢ oy
1—v 11—~

:To—(l—l-’Y)C:T‘Q—

c
t1 > t2, 81 = 1o, 751281215227“0—1720-

Let us suppose that inequalities (20) and (21) hold for k£ =0,1,...,n — 1.
Then for k = n we obtain
(pO + q0)<3n - tn—i—l) + 0'5p0(tn - tn—i—l)
1 — (po + qo)[(to — tnt1) + (S0 — 5n41)]

(po + q0)sn + 0.5potn
b —tnr) < Aty — tnst),
- 1—(p0+QO)[to+$0]( n = tnt1) S 700 = fot)

tn+1 - tn+2 — (tn - tn+1) <

(po + QU)(STL - tn+1) =+ 0'5p0(tn - tn+1)
1= (po + qo)[(to — tn) + (50 = sn)]

(pO + QO)Sn + 0.5poty,
< tn — 1 <~(t, —t

(tn - tn—i—l) S

lnt1 — Sp41 =

and
tn+1 > Sn+1 > tnt2 > tn+1 — V(tn - tn+1) >
_ An+2 c
>rg— ——c>rg— —— > 0.
> 70 1= Zr0 -7~ 2
So, we prove, that sequences {t, }n>0 and {s, }n>0 are non-negative, decreas-
ing sequences and converge to t* such that t* > 0.
Let us prove, by mathematical induction, that the iterative process (3) is
well defined and inequalities (16) hold for all n > 0.
Using (15) and t9 — t1 = ¢, we prove that (16) hold for n = 0.

Let denote A,, = F’(xn ;— yn) + G(zn; yn). Using Lipschitz conditions (13)
and (14), we have
1 — A5 Anall = 145 [Ao — Ana] | <

< [agt [mr () - () |+

+1 45 G (203 y0) — G(@ns1; Ynr1)]|| <

< 2m(Hfﬂo — Tpq1| I lyo — Yn+1l|

; ) 4 aolzo = | + 130 — s ) <

< (po + q0)(lzo — Tnt1ll + |0 — Ynt1l]) <
< (po + qo)(to — tn+1 + S0 — Snt1) <
< (po + qo)(to + s0) = (Po + qo)(2r0 — a) < 1.

By Banach lema on invertible operator, it follows that A,11 is invertible and
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147140l < 1= (po + q0) (2o — Tt + [lyo — ynsall)

Let us prove that iterative process (3) is well defined for k = n + 1. From
the definition of the first order divided difference and (13), (14), we obtain

145 (F(zn41) + Glzng))| =
= HA(;l [F(zn41) + G(@n+1) — F(2n) — G(20) — An(Tns1 — z0)] || <

< HAgl ul‘ {F’(:Un+1 +t(xn — Tpg1)) — F’(W) }dt} H 20 — Tngr ||+
+ ]| A5 (G (@0 yn) — G(@ns Tns)]|| 20 — Tniall <

Hyn - wn-i-lH
2

+qollyn — zntallllzn — zniall =

! 1
< 20 llom = wna | [ [t = 3|t + len = @i+
0

= (Po + q0)llyn — Tnsallllzn — sl + 0.5polzn — 2|,

Hence, using (16), we have
2011 = Tnsall = |47 (F(2n41) + G(@n41))]| <
< |45 Aol A5 (F(2n41) + G(@ns1) |20 — znsa | <

(Po + q0) 1y — znt1ll + 0-5pol|zs — Tt |

~ 1= (po+qo)([zo — Znt1ll + lyo — yn+1])
(pO + QO)(Sn - tn—i—l) + 0.5p0(tn - tn-‘,—l)
1 — (po + qo)[(to — tns1) + (S0 — Snt1)]

[Znr2 = Ynsall = A1 (F(2ni2) + Gani2))|| <

< 1451 Aol 1A (F (zns2) + G(@ns2))lzn — 2 ]| <

|Zn — Tpy || <

S (tn - tn—l—l) - tn+1 - tn+27

< (pO + QO)”yn—l-l - xn+2H + O-5p0Hxn+1 - xn+2”
1—(po + o) (lzo — Zn1ll + lyo — yn1l)
(Po + qo)(Snt1 — tnt2) + 0.5po(tnt1 — tni2)
1= (po + qo)[(to — tns1) + (s0 — snt1)]
So, iterative process (3) is well defined and (15) holds for all n > 0. From this
it follows

|Znt1 — Tpt2l| <

(tn—i-l - tn+2) = Sp+2 — tnt2.

lzn—2kl] < tn—tr, |Yn—2kll < Sn—th, |Yn—ull < sn—sk, 0<n <k, (22)

e, {zp}tn>0 and {y,}n>0 are fundamental sequences in a Banach space X.
From (22) for k — oo it follows inequalities (17). Let’s show that 2* is solution
of equation (1). Indeed,

1A (F(2n11) + G(zns1))| <

< (po + q0)lyn — Tn1llllzn — Tns1l| + 0.5pol|l2n — Tl — 0, 1 — oo.
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So, H(z*) = 0. O

Remark 5. If we choose F(x) =0, p1 =0, po = 0 then the estimates (8) and
(9) reduce to similar ones in [8] for the case o = 1.

Remark 6. If the divided difference of the operator G satisfies the condi-
tion (6), i.e. the operator G(x;y) is Lipschitz continuous, then G is Fréchet-
differentiable.

3. NUMERICAL EXPERIMENTS
For the numerical investigation we choose the equation and the systems of
equations considered in [1, 4, 5, 6, 7].

Example 1.
€05 — 1.05 +0.2z|z — 1| = 0,
z* =0.5.
Example 2.
322y —y? — 14|z — 1] =0,
rt 4oyl — 14|yl =0,
(z*;y*) ~ (0.894655;0.327827).
Example 3.
1
xz—y+1—|—§|x—1| =0,
9 1
(z*;y*) ~ (1.15936; 2.36182).
Example 4.

P21 —y) —zy+ly—2* =0,

2@ —z)—y?+ |3y — 22+ 1| =0,
6> + 222 — Pz + |z + 2 —y| =0,
(59" 2") = (=1;2:3).

Let X =Y =1R™, m = 1,2,3. In this case the first order divided difference
G(z;y) is a matrix of dimension m x m. Its elements are calculated as [§]

Gi(zt, . . 2 P y™) = Gi(at, Ty ™)

G(z;y)ij = pep— :
i, j=T1,m.
In calculations we use the norm ||z||c = max |z'|. In the following Tables
sm

there are results obtained by methods (3) and (2) in particular, for such cases
Tna1 = T = [F'(20)] 7 (F(2n) + Glzn)), n=0,1,..., (23)
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Tyl = T — [F'(20) + G(xn_1;2,)] N (F(x) + G(z)), n=0,1,..., (24)
Tni1 = Tn — [H(@n_1;22)] " (F(zn) + G(z)), n=0,1,.... (25)
TABL. 1. Numbers of iterations for solving equations with ini-

tial points x9 = 1-d, z—1 = yo = 2 -d — for Example 1,
zo = (1,0)d, z_1 = yo = (5,5)d — for Example 2

Example 1 Example 2

(23) [ (24) | (25) [ (3) | (23) [ (24) | (25) | (3)
1[10°] 5 |56 [5[11 ] 45 1[5
1076 | 7 | 8633696
10 [10° ][ 14 |15 | 20 [13[ 19 [ 13 | 18 |12
100715 | 17 | 22 [ 14| 41 [ 15 | 21 |13
100 107° [104 [ 105 | — [88[ 27 [ 21 | 30 |19
1077105 [ 107 | - [89[ 49 [ 23 [ 32 |20

d €

The calculations were conducted in MATLAB 7.1. Iterations were stopped
after conditions ||Zp1+1 — Zn|leo < € and [|H (zp41)]|co < € were satisfied. Sign
""" means, that in this case the solution was not possible to be found. We
examined the convergence of the considered method for such variants of choice
of the additional initial approximation yg: for Example 1 —x_1 = yg = 2-d,
for Examples 2, 3 yo was chosen as x_; in the works [1, 5, 6, 7] and 2 ; =y} =
xd +107% i =1,2,3 - for Example 4.

The obtained results show that the methods (24) and (3) differ a little for
the initial points that are close to the solution. But the method (3) converge
faster than (2) for the initial points with d = 100. In this case ||zo — x*|| takes
the largest value. The method (23) has the lowest speed of convergence.

TABL. 2. Numbers of iterations for solving equations with ini-
tial points xo = (1,1)d, z_1 = yo = (0.9,1.1)d — for Example 3,
zo = (=2,3,5)d, 2* | =y} = 2} + 101 — for Example 4

d . Example 3 Example 4
(23) [ (24) [ (25) | (3) | (23) | (24) | (25) | (3)
1110 6 5 6 |58 | 7107
10°P] 13 7 9 |6 [266] 10 | 12 | 8
100 10°] 8 7 9 6 | 102 | 10 | 25 | 14
107151 9 11 | 7 [ 284 ] 20 | 27 | 16
100 10° [ 11 | 11 | 14 | 9 [ 110 ] 28 | 39 | 23
100 18 [ 12 [ 16 [ 10 [ 292 [ 30 | 41 | 24

In Table 3 the numerical results are presented for the example 1 with € =
10719 where n is the iteration number, z, is the approximate value for z*,
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TaBL. 3. Numerical results for the Example 1: g =1, yo = 2

Ln

’xn - xn—1|

|H (20)|

1

0.5987212707001

0.8079964212227

0.1920035787772

0.3417237602029

0.5200746907444

0.28792173047835

0.02019694382837

0.5000182789519

0.02005641179247

1.827905217970 - 10~°

0.5000000000006

1.827895124595 - 10~°

6.967343368913 - 10~ 13

O s|lw N =IO 3

0.5

6.967759702547 - 10~ 13

4163336342344 - 10~ 17

| — Xp—1] is the norm of correction and |H(x,)| is the norm of deviation on
every step of the iterative process (3).

Now we verify whether the hypothesis of Theorem 2 are satisfied. The re-
search are carried out for the example 1. Since m =1 than || - ||cc = |- |. In [9]
we showed that the following estimates hold for all z, y € [0;1]

€0.5
A (F' () = F' ()] <A |(F'(2) = F'(y))| < m\fc —yl,

451 (G(x,9) = G(u, )| <|AG (G2, y) — G(u,v))| <

<

1
T —u|+|y—1v|).
sy 7 = ul+ =)

60'5

—_— Let us choose x¢g = 0.43, yo = 0.47. Then
2| Ao

1
and qg = ——

Hence pg = BlAg]’

we get
1
Ao = 1.049985813745361, po = 0.8655669725276801,
0
qo = 0.2099971627490723, ¢ = 0.07201451611773883, a = 0.04.
Let us choose rg = 0.1. Then, according to formulas (18) and (19), we get
to = 0.1000000000000000, so = 0.06000000000000000,
t1 = 0.0798548388226117, s; = 0.02326130579394141,
to = 0.0226355142098747, s9 = 0.02261740817032270,
t3 = 0.02261727501017343, ..., t* =~ 0.02261727484294557,
0.01720355125317807 < t* < 0.1, v = 0.1302221628134378 < 1.

The solution z* is obtained in 3 iterations with ¢ = 1075,

TABL. 4. Numerical results for the Example 1

Sp—1 — Un
3.2014516 - 102
6.2579158 - 102
1.3316015 - 10~

‘yn—l - xn|
3.0617898 - 102
1.8418431 -107°
6.1617378 - 10~ 13

tn—l - tn
7.2014516 - 102
5.3499697 - 103
1.8239200 - 10>

|xn—1 - $n|
7.0617898 - 102
6.1790108 - 10~ %
3.4257955 - 1077

W= 3

Thus for the given values hypothesis of the Theorem 2 are satisfied (See
Tabl.4). According to this theorem, the iterative process (2) is well-defined,
remains in Uy and converges to the solution z* € Uy.
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