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NUMERICAL MODELLING OF TEMPERATURE FIELDS
DURING IMPULSE FRICTIONAL HARDENING

IvaN CHYR, HEORGIY SHYNKARENKO

PE3IOME. Cdopmyib0BaHO 104aTKOBO-KPAMOBY Ta BiAOBiAHY Bapiauiiiny
3a/1a4y, sfKa MOJEJIIOE MOIIMPEHHS TeIIa B IPOIeci (GPUKINIHHOro 3MiIfHeHHS
JeTayi PyXOMUM IMITyJIbCHUM TTIOBEPXHEBUM ITOTOKOM Teria. Ha mimcrasi pis-
HSTHHSI OQJIAHCY eHeprii BCTAHOBJIEHO yMOBU KOPEKTHOCTI BapiamiifHOl 3a/1adi.
Jrckpern3anida OCTaHHBOI METOIOM CKiHYEHHHX eJIeMeHeTiB JTOIOBHEHA OZHO-
KPOKOBOIO PEKYDPEHTHOIO CXeMOIO IHTerpyBaHHs B 4aci. 3HalifileHo mocTaTHi
YMOBM CTIKOCTI Ta 3613KHOCTI I1i€l cxemu. 3amrpomoHOBAHA, METOINUKA, LIIOCTPY-
€THCS Pe3y/IbTaTaMU O0INC/IIOBAIBHAX €KCIIEPIMEHTIB, BUKOHAHUX 3 BUKOPHUC-
TaHHsaM cepemobumnia FreeFEM-++.

ABsTRACT. This paper focuses on the process of detail’s frictional hardening
with a jagged tool. We state initial boundary value problem for heat conduc-
tion in detail under a dynamic impulse heat source and correspondent varia-
tional formulation. Conditions for well-posedness of the latter were obtained
using the energy balance equation. Finite element space semi-discretization
with subsequent one step recurrent time integration scheme were employed.
Sufficient conditions for schemes stability and convergence were obtained. De-
scribed methodology is illustrated with the results of numerical experiments,
implemented using open source environment FreeFEM++.

1. INTRODUCTION

Machinery parts play an important role in the exploitation process. They
contact between themselves, with other objects and environment. As the main
loading of those processes is taken by details surface layers, those physical and
chemical properties are directly linked to machine’s reliability [9].

Superficial hardening of details results in increase of durability, toughness and
the time of their exploitation. We explore the process of superficial hardening
with highly concentrated energy source [11]. This energy source is generated
in the area of contact between the tool and detail due to friction. During the
contact this area is characterized by high increase in temperature and subse-
quently decrease during its absence [5]. As a result, a special “white” layer with
qualitatively better physical and chemical properties is formed.

This paper considers the problem of heat transfer [2] in the workpiece being
processed with serrated tool. This will enable us to test general approach to this
kind of problems and apply it to the problems of coupled thermo-mechanical
fields [8].

Key words. Heat equation, finite element method, mixed problem, impulse moving source,
superficial hardening.
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It should be mentioned that the problem of heat transfer in technological
processes related with hardening is actual and widely considered in technical
literature |7, §|.

Main feature of our problem is serration of the tool that produces regime
of friction. This property contributes in introducing specific features in the
formulation of initial-boundary value problem and needs additional theoretical
reasoning during the proof of correctness of its variational form.

So firstly we formulate initial boundary value problem of heat transfer for
detail [2]. Main sources of heat in- and outflow are represented with boundary
conditions for heat flux in the area of dynamic contact and heat exchange with
environment on the rest of details boundary. Then we formulate correspondent
variational problem with further Galerkin space semi-discretization. After a
little algebra we obtain appropriate Cauchy problem. Based on the properties
of the variation problem components we show the uniqueness of its solution.
On the next step we build energy equation and derive apriori estimates from
the upper limit of linear functional. Consequently, correctness of semi-discrete
problem is shown. To finish this whole procedure, we show the correctness of
variational problem. This is done on the foundation of the boundness of semi-
discrete approximations sequence and apriori estimate of linear functional.

Finally, a time discretization is applied to the semi-discrete problem. Fur-
thermore, sufficient conditions for convergence and stability of resulting one-
step time integration recurrent scheme are obtained.

Built numerical scheme was implemented with FreeFEM++ [4] using qua-
dratic finite element approximation. Rates of convergence were verified for the
simplest case of our practical problem that includes one contact and contactless
periods. Afterwards scheme was applied to model the full process. Resulting
data was analyzed and represented with graphs.

2. STATEMENT OF THE PROBLEM

We assume that the workpiece is elastic body which occupies the bounded
domain Q in euclidian space Q C R%(d = 1,2,3) with Lipschitz boundary T.
Let us denote by x = (1, ..., xq) arbitrary point set of the closure Q=QuUT
and t is arbitrary moment in time from interval [0,7], 0 < T < +o0.

Due to the application of internal heat sources f = {f;(z,t)}¢, and surface
heat fluxes ¢ = ¢(z,t) body temperature changes. These changes are relative
to given initial temperature fields ugp = g (z) and will be denoted as u(x,t).
Also they satisfy the following heat equation:

pcv% —V.(AVu) =f in Qx (0,77, (1)

where V.(AVu) = div (A\Vu), p= p(z) > 0is workpiece density, ¢, = ¢, (z) >
0 is its coefficient of specific heat capacity and A = {Aij(x)}gjzl represents

matrix of thermal conductivity coefficients that is symmetric and positively
defined:

Mem (2)8kEm = Ao&kéms Ao =const >0, Y €R in Q,
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where Einstein summation notation applies.
Equation (1) is supplemented with boundary conditions for interaction with
environment, in particular for contact with the tool:

—n.(AVu) =a(u—u)(1—-05) +¢ on T x[0,T], (3)

where 4 = 4 (x,t) is the temperature of environment, a« = a(x,t) is heat
transfer coefficient and n = {ni}?zl, n; = cos (n,x;) are outer unit normal
vector and respectively its components.We also introduce function 6(x,t) that
can accept two values: either 1 for all boundary points in the contact area
between tool and detail during the contact period, or 0 in all other cases.
Thereby we formulate the following initial boundary value problem:

given A= {Ag(@)}ei_s p= (), = cola),

ug = up(z), a=a(z,t), §=q4x,t), f=f(z1),
d=906(z,t), u="1au(x,t);

find temperature field uw = u(x,t), such that (4)
pcv% — V.(AVu) = pe, f in Qx (0,T],

—n.(AVu) =a(u—u)(1-90)+¢ onT x[0,T],

ul,_g = uo in €.

In addition, we suppose that the data of (4) satisfies the conditions

P Cu, )\Zj € L™ (OvTv L2 (Q)) , Up € L2 (Q) )
feL?(0,T;L%(Q), «a,6€L>(0,T;L*(T)), (5)
a,q€ L*(0,T; L* (D)) .

3. VARIATIONAL FORMULATION
To formulate a variational problem, let us introduce spaces of admissible
temperatures V = H'(Q), conjugated space V' and spaces H = L?(2).
Hereinafter we will use the following notation

u(t) =u(z,t) — function x — u(x,t),

. Oou(x,t
u' (t) = Ou/dt —  function z — %

Let us multiply heat equation of system (4) by arbitrary function v € V
with successive integration over ). After utilization of Green’s formula and
boundary condition (3) we obtain

0 :/Q {pcot (t) — V.[]AVu(t)] — f(t)} vdz = /Qpcvu’(t)vdaz
—i—/ﬂ(Vu).[)\Vu(t)]dx—/Qf(t)vda:—i—/ra(t)u(t)[l —0(t)Judy  (6)
- [t - sy~ [ awayedr

r

r
As the next step, we introduce the following bilinear forms
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s(u,v) = /Qpcyuvdac Yu,v € H, (7)

a(u,v) = / (V). [AVuldz + / aull —élvdy  VYu,v €V, (8)
) r
and such linear functional

<lv>= / pcy fudz + / [at(1 —0) + golvdy Vv e V. 9)
Q r

Thus the variatinal formulation of (4) can be represented in the following
manner:

find such heat distribution u(zx,t) that
s(u/(t),v) + a(u(t),v) =< l(t),v > YveV, Vte (0,T], (10)
s(u(0) — ug,v) = 0.

4. PROPERTIES OF THE VARIATIONAL PROBLEM COMPONENTS
From definition of bilinear forms we can state the following

symmetric continous bilinear form s(-,-) defined by (3)
is H — elliptic and generates norm |jul| gz = 53 (u,u) VYue H, (11)
which is equivalent to |||y q -

Second bilinear form has more complex structure that results is necessity of
additional confirmation of its properties.

Theorem 1. Let conditions (5) and (2) are satisfied.
Then bilinear form a(-,-) defined by (8) is continuous and the following in-
equality holds

a(u, )| < € [IM] oy + Nl ooy | Nl 071

Proof. Using Cauchy-Bunyakovsky-Schwarz inequality and trace theorem [10,
p. 72-73| we obtain

la(u,v)| < \/ (AVu) . (Vo) dz| —l—\/au(l—é)fudfy]
Q T
1
2
g/ ])\Vu].Wv\da:—i—/]auv\dfyg {/ \/\Vu\zda:/ Vo[2de)
Q T Q Q
1

2
+ {/F oo dy} ™ < AVl gl Vol + ol oy 1ol 2 )

< C Mgy + Nl Hllmsolellin oy Vv € HY(Q).

This means that a(-,-) is bounded and as a result continuous. |
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Theorem 2. Let conditions (5) and (2) are satisfied.
Bilinear form a(-,-) defined by (8) is H'(Q)— elliptic, moreover the following
inequality holds:

min{l, Cp
au,u) = mo {2} ||U”§{1(Q) :

Proof. The latter estimation can be obtained after utilization of Friedrichs in-
equality and the following transmutations

a(u, 1) > Amax /ﬂ (V) dz + /F au?(1 — 0)dy
min{ Amax, @0 } [/ﬂ (Vu)zdm—i-/rzfdﬂy]

min{)\max,ao}[é(/Q (Vu)%:x%—éu%’y)—l—%(/ﬂ (Vu)Qd:U+/Fu2d7)]
mg [; /Q (Vu)?de + & /Q u2d$] > mg min{; Cr}

Corollary 1. Let conditions (5) and (2) are satisfied then following statement
holds:

v

v

Y

ullF g -

O

symmetrical continuous bilinear form a(-,-) from (2.4)
is V — elliptic and generates norm |lul|,, = a2 (u,u) YueV, (12)

which is equivalent to || - ||| q.

Finally, let us derive the upper estimation of linear functional (9). This
is done starting with application of Cauchy-Bunyakovsky-Schwarz inequality
and theorem [10, p. 72-73] about the trace of the function from H'(Q) on the
boundary of

|<liv>| = ‘/ pcvadx—i—/aﬂ(l—d)vdv—i—/ddvd'y
Q r r

< llpeolloo gl fllmllolE + lledloo pllall L2y ol 2y + 1@l L2yl 0] 2(r)

R . 1/2 1/2
< llpeol 2ol 17 + el o pllal 2oy + 1111 72(0] / (ol + 210l 22 (] /
. R 1/2
< Cmax{ ||pey|loo, [alloors LI 17 + @720y + 11l 72(0)] ol
Yo e V.

This reasoning results in the following statement.

Theorem 3. Linear functional < l,v > defined by (9) in continuous and sat-
isfies the following estimation

. . 1/2
[<Lv>| < zolllfIE + a2y + 1l Zam) ol Vv eV,

where zg = Cmax{ ||pcy||oc.0,||0||oo,r; 1}
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5. GALERKIN SEMI-DISCRETIZATION
To calculate approximate solutions of variational problem (10) we select se-
quence of finite element subspaces {V},} C V such that dimVj, = N(h) = N —

+oo and |J V} is complete in V. Then for any A > 0 we gain the following
h>0
semi-discrete approximations of the variational problem (10)

given ug € V; find up(z,t) € L? (0, T; V},) suchthat
(’LL h( ) ) + a(uh(t) ) =< l(t),U > Vi€ (OaT} ’ (13)
s(up(0) — ug,v) =0 Yv € V.

Next we denote by {¢;}, the basis of the space V},. Consequently sought
solution of (13) will take form of the following linear combination

N
un(e ) =3 UnB)on(a) (14)
with unknown coefficients Uy (t), ..., Un(t). Substitution of (14) into (13) yeilds
such problem

given ug € V; finduy(z,t) € L?(0,T;V},) suchthat

SN U m()s(om(@),v) + SN U (t)a(om (), v) 1)
=<I(t),v > Vvte (0,T],
SN Un(0)8(pm(2),v) = s(ug, v) Vo € Vi

This problem can be transformed into Cauchy problem after consequent sub-
stitution of v = ;, i = 1,..., N, into (15). As a result, we receive the following
equations.

16

SU(0) = S°. (16)

Statements (11), (12) show that matrices S and A are Gramians of lin-

early independent functions {; } respectively to scalar products s (-, ) and
a(-,-). Thus

{ SU'(t) + AU(t) = R(t) vt € (0,1,

symmetrical matrices
S = {s(pi, i) }im1s A ={alvi 0)}m (17)
are positively defined.

Since data of the problem (4) satisfies regularity conditions (5) and (17)
holds, Cauchy problem (16) has unique solution.

6. ENERGY EQUATION
Special kind of equation can be obtained from (13) after assuming that v =

Up (t):
3 e [8(un (1), un ()] + alun(t), un(t))
=<1(t),up(t) > Vte (0,7T], (18)
s(un(0), un(0)) = s(uo, un(0)).
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If we take into account (11), (12), the latter system can be reformulated in
such a manner

{ L (D)% + Jun ()13 =< 1), un(t) >, (19)
Huh(o)qu = s(uo, upn(0)).

The first equation of (19) can be integrated over [0,¢] to get such equality:

1 ¢ 1 t
3 L@+ [ (Ol dr = 5 )1+ [ < 10).un() > ar
vt €[0,7].

It should be noted that the last equality is the basis for further proof of
well-posedness of (10). Futhermore, left part of (20) is natural (energy) norm
for this problem.

(20)

7. APRIORI ESTIMATES AND WELL-POSENDESS OF VARIATIONAL PROBLEM
Now we can apply Cauchy-Shwarz inequality to the right part of (20) to
calculate such an estimate

t t
[ <t@.untr) > ar| < [ 1Ll lun(o)llvar
0 0

t (21)
< ;/0 IR + [[un(0)][2] dr

Hence, utilizing equation (20) and inequality (21), we obtain

t t
éHUh(t)lqur/O IIuh(T)szdrs§IIUh(0)II§{+§/O LIUIE + Nlun(D)IF] dr

which can be rewritten into

JuntlE + [ Nun(@) I dr < @) + [ 10IRdr vt e 0.7 (22)
0 0

Consequently this states that

semi — discrete Galerkin approximations {up} (23)
form a bounded set in space L (0,T; H) N L? (0, T; V).
This also states the stability of semi-discrete approximations.

Theorem 4. Given fivzed h > 0 and {p;}}, the basis of Vi,. Then semi-
discrete problem (13) allows a unique solution u, € L™ (0,T; H)N L% (0,T;V)
that is uniquely defined by Cauchy problem (16) and decomposition (14). More-
over inequality (22) holds.

Corollary 2. For each h > 0 the semi-discrete problem (13) is well-posed.
Theorem 5. Given ug € H, 1€ L?(0,T;V’). Then variational problem (3.6)
has unique solution uw € L (0,T;H) N L?>(0,T;V) and v € L?(0,T;V").

Furthermore (I,ug) — u is continuous mapping from L*(0,T;V') x H into
L2(0,T;V') N L™ (0,T; H).
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Proofs of these theorems can be found e.g. in [12, pp. 44-45].

8. ONE-STEP TIME INTEGRATION RECURRENT SCHEME

To construct a numerical scheme for solving a variational problem (10) we
also need to discretize problem (13) in time. To accomplish this we use projec-
tion method. In this section we will omit index h for simplicity of notation.

Let us divide time interval [0, T] into P subintervals [tx, tx+1], k =0,.., P—1,
with the constant length At = tx1 —tx > 0. On every time step [tg, tg+1],
k=0,...,P—1, solution up(t) € V}, of (13) will be approximated by polynomial
function ua¢ (t) such that

war (t) = [1—w(t, O +w(ty, '™,

G = (= 1)/D telptl =01 Y
The latter function can be rewritten in the following manner:
une(t) = o + Atw(t;, 1)L
= Lt d) + At(w(ty, t) — L (25)

= w2 4 At(w(ty, t) — D)ad T2 @ T2 = (Wt — ) /AL
Linear functional will be approximated with piecewise-constant functions:
Ine(t) =liy1o = Utje1y0),  tjprp =t + 3AL (26)

Summing assumptions (25) and (26) and consequent substitution into (13)
yields:

find w12 Wt € Vi, suchthat
s(W 12 0) + Atw(ty, t)a(wW 12 v)

=<ljy1/2,v > —a(u,v), (27)
Wt =l + AtITY2 Yo € Vi, Vi € [t t4)),
S(UO—U(O),U):(), Jj=0,...,P—-1

\

The next phase is construction of projective equations. Here we denote by
(-,+) a scalar product in space L?((tj,t;+1)) and choose in it function £(¢) such
that

€= [ ewar-1.

tj

We introduce notation § = (w,&) and assume that (27) is orthogonal to
function £(t) with respect to scalar product (-,-) or in other terms:

s(iLjH/Q, v) + AtGa(iLjH/Z,v) =<ljt1/2,v > —a(u’,v),
VeV, j=0,..P—1, Yoelo,1].
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As a result we can denote the following one-step time-integration recurrent
scheme (hereinafter denoted as ORS):

given 6 € [0,1], u®; find w2 Wt € V, suchthat
s(W T2, 0) + Atfa(W 2 0) =<1y 9,0 > —a(u?,v),
Wt =l + Atad /2 Vv € Vp,

s(u® — u(0),v) =0 j=0,...,P—1

(28)

Taking into account the H— and V —ellipticity of bilinear forms s (-, -) and
a(-, ) and also Lax-Milgram-Vyshyk lemma [1], ORS (28) is uniquely solved
with respect to u?, @112 and w/t!,

In such manner, piecewise-linear approximation upa¢ (t) € Vj, of (13) solution
up, (t) € V4, is uniquely determined after application of scheme (28).

Stability and convergence of ORS must also be considered.

Theorem 6. If data of variational problem (10) fulfill (4), the ORS scheme
(28) with parameters At and 0 is:

1. unconditionally ( with respect to chosen At) stable in spaces H and V,

when 0 > %;
2. stable in spaces H and V', when parameter At meets inequality:

2

a(l—26)
Theorem 7. Let the solution wup, (t) of problem (12) is such that " €
C(0,T;V) and let upat (t) is his piecewise-linear approzimation, obtained with
application of unconditionally stable scheme (28) with parameter 6 > %

Then the sequence upae, with respect to enery norm

T
ol = & T oy + /O G-~

converges to u, when At — 0 and h — 0.

At <

Proofs of theorems 6, 7 and analisys of space and temporal error convergence
rates can be found e.g. in [12].

9. VALIDATION OF NUMERICAL SCHEME

Sheme (28) can be implemented in the majority of specialized environments.
So for testing of numerical scheme we used a free, open source environment
FreeFEM++-, with quadratic triangular finite elements, due to simplicity of
problem description, ability to work with resulting matrices and near optimal
execution speed [4].

Taking into account that the analytical solution of problem (4) is not known,
we will only examine a posteriori rates of convergence of finite element scheme.

Our two-dimensional model problem will be formed as (4) with the following
characteristics:

1 =41-10"* [m], b=55-10"°[m], T =56-10"°[s], z.=0 [m],
te=48-107° [s], q =82-10° [W/m?), p="7850 [kg/m?],
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cy =466 [J/(kg-K)], A=41 [W/(m-K)], a =500 [W/(m?- K)),
vy =4 [m/s], vg =60 [m/s|, mn.,=24, l.=3-1073[m].

where [ is the length and b is thickness of workpiece. Given that Q = (0,1) x
(0,b) we can concretize function d(z,t) from (4) in the following manner :

{ Lz eqy(t), teth,ti], t—tp <=t

oz, t) =
(@.%) 0.t —t), > Lo,

k=1,..,N,

where v(t) = {(x1,22) : x1 € [vpt — 1c/2 + ze,vpt + /2 + ], v2 = b} is area
of dynamic contact, t is the initial time of k£ contact, . is time of single tooth
contact, l. is length of contact zone, x. represents the initial displacement of
the contacts area and vy represents the velocity of contact zone.

For verification of approximate solutions accuracy we will evaluate rates of
convergence separately for space and time discretization in the following norms
(as in [13]) :

8a1+012 2
2 2
m = = _— d 5
HUHH (Q) HuHm Z‘ﬂq-ﬁ-dﬂﬁm Q(8$1a18$2a2U) €T (29)

T
2 2 2
= 3 1T oy + | I70(0) g .
Introduction of these norms enables us to calculate the following indicators

of convergence rates:

luae = warsl],, leae = warsa

paz(u) = logy pat(u) = logy

[unesz = wasall,,” [uarsz = warally (30)

len = wnpoll,, len = wnyall

m

Pp, (u) = logy

Pa(w) = log; [ unja — unyal|

uns2 = ungall,,”
10. CONVERGENCE OF SPATIAL APPROXIMATIONS
We use sequence of uniformly refined triangulations 7}, of isosceles triangles
to determine convergence rates with respect to space variables, where T} =
{K}, hix = diam K = /24, where N is the number of divisions of smaller side
b of . Results are obtained at time 7" with time step At = ﬁsz =2,5-10"7 [s].
For analysis of convergence we utilize norms (29) and the following indicators
of absolute and relative errors

l[un — up o
m — — h =T
eir () = llun =ungelly, &) = =

B B Huh—uh/2HT
en(u) = |lun —unpoll . enlu) = etnyall

x 100 %,
(31)
x 100 %.

Given that we use quadratic finite element approximations, theoretically
rates of convergence for given spaces are pj(u) =3, pj(u) =2 and
pr(u) = 1. Acquired results indicate ability of ORS to converge with required
rates. It should be noted that application of norm ||-|| gives ability to protect
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TABL. 1. Convergence of spacial approximations in norms (29)

N [ed(w) 103 ef(u) [en(w) [ phw) | pj(w) [ pr(u) [ h(w) | ef(u) | en(u)
1/7 4,22 158,08 | 5,15 | 1,49 | 0,47 | 0,45 | 0,92 | 39,74 | 39,77
1/14 1,94 122,18 | 2,71 | 1,12 | 0,37 | 0,92 | 0,42 | 31,06 | 20,77
1/28 0,41 31,88 | 1,18 | 2,23 | 1,94 | 1,20 | 0,09 | 8,08 | 9,02
1/56 0,04 7,30 | 0,48 | 3,30 | 2,13 | 1,29 | 0,01 | 1,85 | 3,70

against accidental measurements in “well-suited” time and represents accumu-
lation of special discretization error during preceding period.

11. CONVERGENCE IN TIME
To verify convergence in time we fix space mesh with initial parameters
256 x 64 and examine the nature of a posteriori rates of convergence during
successive refinement of time step At =T/P.
We also use the following indicators for this analysis:

eny(u) = Hum — UAt/sz, en(u) = HuAt _ UAMHT” x 100 %,
luaisell,,

H H 52
dat — YAl 609

eat(u) = HUAt - UAt/2HT’ ea(u) = HuAt/QH
T

TABL. 2. Convergence in time of solution in terms of norms (29)

P EOAt(u) 1077 elAt(u) eat(u) pOAt(u) plAt(u) pat(u) E%t(u) elAt(u) eat(u)
56 2,73 453,85 6,38 1,99 1,53 0,74 0,59 102,82 | 46,78
112 0,69 157,31 3,81 1,31 0,81 0,83 0,15 38,56 28,67
224 0,28 89,71 2,14 2,03 1,80 1,01 0,06 22,71 16,33
448 0,07 25,76 1,06 1,62 5,91 1,09 0,01 6,53 8,12

Based on these results we state that scheme (28) achieves theoretical rates
of convergence in time. As we use Crank-Nicolson scheme for time integration
pQ;(w), ph,(u) must be greater or equal to 2 and pa(u) this number is 1.

Acquired numerical results indicate the correctness of used ORS scheme and
its potential for practical utilization.

12. NUMERICAL EXPERIMENTS
As our paper also concerns practical experiment we modeled the process of
frictional hardening for detail with such parameters:

1=44-107%[m], b=65-107° [m]
Workpiece is made of steel (Stal-45) which has the following properties:
p = 7850 [kg/m?], cy = 466 [J/(kg - K)], A =41 [W/(m- K)].

In the initial time it is heated to the temperature of & = 293 [°, K]. It is
rigidly fixed on the table that moves with linear speed v, =4 [m/s]. Points on
tools surface circulate with speed vg = 60 [m/s]. Tool-workpiece interaction
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creates a contact zone l. = 3 - 1072 [m] in length causing a heat source with
the power of ¢ = 8.2-107 [W/m?] to be generated. Due to serration of tool’s
surface contact (and subsequently heat source) has a special periodic regime.
Also we assume that one contact lasts for ¢, = 48 - 107° [s], one contactless
period is t, = 8 - 107° [s] and . = —1.51. [m].

To complete the description of technological process we should mention that
the cooling liquid is supplied to the contact area. The heat transfer coefficient
between workpiece and coolant is o = 500 [W/(m?-K)]. We also consider time
T = 280 - 107 [s] that covers full processing of the workpiece. In the initial
moment of time the tool is situated aside of the detail. As experiment begins
it starts to move in the direction of detail.

As a result of numerical experiment, the following graphics of temperature
distribution were obtained ( Fig. 1). They represent state of temperature field
in different times so one can see the dynamics of the process.

| 293
298

FiGc. 1. Distribution of temperature after contact with the sec-
ond, third and fourth tooth of the tool (respectively first, second
and third figure from the top). Contact area is depicted with a
rectangle

Also special attention was drawn to evolution of maximal temperature that
clearly shows the influence of serration of tool’s surface into technological pro-
cess (Fig. 2).

Latter characteristic is aggregative and incomplete without full knowledge of
the place where this maximum occurs. As the maximum is reached on contact
surface we supply figures to show the evolution on temperature profile on it
(Fig. 3). Also to be noted that stripes in the background of these figures
represent the area of dynamic contact in corresponding points in time.

These figures shed a light on singularities of the temperature profile evolution
on the contact surface. First figure shows the last moment of the first contact.
Figure b illustrates temperature decrease and creation of unheated area. Then
second tooth starts to act and finishes with surface heated to temperature as
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Fia. 2. Evolution of maximal temperature during the experi-
ment with highlighted contactless intervals

can be seen of figure d. The following figures demounstrate further evolution of
heat profile on the surface.

These figures reveal interesting singularities of examined problem. Ilustra-
tions depict that the speed of heat conduction is less than the speed of contact
area. If we write down the corresponding ration in dimensionless form, we
obtain the Peclet number for a specific problem [11, p.12]:

_ 4-0,003
Pe=uvp-lg-(Nevp) ' = 1121-10°

Given the magnitude of this characteristic (singularly unperturbed problems
have Pe < 10) we can state that this problem is singularly perturbed.

~ 1070

13. CONCLUSIONS

In the process of research the initial boundary value problem for the heat
conduction process in workpiece during friction hardening was stated. Suc-
cessively we formulated correspondent variational problem and proved its wel-
posendess. With utilization of Poincare-Freidrich’s inequality a V-ellipticity of
bilinear form with term from boundary condition for heat exchange with envi-
ronment was proven. This gave opportunity to extend known result (e.g. [12,
pp. 29-62]) to our problem.

Modeling of the frictional hardening with a jagged tool brings in some dif-
ficulties related to its mathematical model. They show themselves in form of
mixed boundary conditions. Moreover due to magnitude of Peclet number,
investigated problem is singularly perturbed. This fact will also contribute
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0.003 0.004

373

353

333

313

293

xm
0.001 0.002 0.003 0.004 ’ d)

0.001

©.001 0.002 0.003 0.004

1) 0.001 0.002 0.003

FiG. 3. The distribution of temperature on the contact sur-
face at a)0.00048 s, b)0.00055875 s, ¢)0.000625 s, d)0.00104
s, €)0.00111875 s, f)0.001185 s, g)0.0016 s, h)0.00168 s,
1) 0.001745 s. (contact area is represented with a stripe)

x,m
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difficulties that would need to be overcome using appropriate methods (e.g.
apriori mesh refinement in contact area [6]).

10.

11.

12.

13.
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