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Ðåçþìå. Ó ïðåäñòàâëåíié ðîáîòi ìè äîñëiäæó¹ìî ðiçíi àñïåêòè ïîáóäîâè
íàáëèæåíèõ ñõåì äëÿ ðîçâ'ÿçóâàííÿ iíòåãðàëüíîãî ðiâíÿííÿ ïåðøîãî ðîäó
çi ñëàáêîþ îñîáëèâiñòþ â ÿäði, ÿêå ¹ õàðàêòåðíèì äëÿ òåîði¨ ïîòåíöiàëó. Ó
çâ'ÿçêó ç öèì ìè ïðèéìà¹ìî äî óâàãè ñóòò¹âî ïðîñòîðîâå ôîðìóëþâàííÿ
ïî÷àòêîâî¨ ïðîáëåìè, à òàêîæ ñèíãóëÿðíó ïîâåäiíêó øóêàíîãî ðîçâ'ÿçêó
â îêîëi êîíòóðó ðîçiìêíåíî¨ ãðàíè÷íî¨ ïîâåðõíi. Ç ìåòîþ îòðèìàííÿ
ãàðàíòîâàíî¨ òî÷íîñòi ðåçóëüòàòó, âèêîðèñòîâóþ÷è âiäîìi çàãàëüíi iäå¨
ìåòîäîëîãi¨ àïîñòåðiîðíî¨ îöiíêè ïîõèáêè, ìè ïðîïîíó¹ìî òàêó ¨¨ âåðñiþ,
ùî ¹ ïðèäàòíîþ ñàìå äî ðîçãëÿäóâàíîãî iíòåãðàëüíîãî ðiâíÿííÿ.
Abstract. In the article we investigate di�erent aspects of approximate
schemes construction for the �rst kind integral equations being used in po-
tential theory. In this connection we take into consideration substantially
spatial setting of the problem and speci�c behavior of desired solution near
the contour of unclosed boundary surface. With a view to obtain guaran-
teed accuracy of results, using known general concept of a posteriori error
estimation methodology, we propose such it version applicable precisely to
considered integral equation.

1. Introduction
The main object of our analysis is di�erent aspects of approximate schemes

construction for the �rst kind integral equation solving. In addition, we have
to do with equations in the form as

(Aσ)(M) ≡
∫∫

S

σ(P ) |M − P |−1dSP = U(M), M ∈ S; (1)

where in general case S is an open Lipschitz surface, M and P are the points of
Euclidean space R3. The type (1) equations appear at the modelling of poten-
tial theory some boundary problems, in particular, electron optics. Ordinary
generalization of (1) is a permission that S is formed by the aggregate m of
surfaces, so that S :=

⋃m
i=1 Si. In this case we interpret σ(P ) as a desired total

charge distribution density on S, that is σ(P ) := {σi(P ), P ∈ Si; i = 1, m}.
It is possible to research operator equation (1) solvability in various functional
spaces [4, 8]. However, it should be taken into account the speci�city of investi-
gated physical phenomenon. Thus, for example, the modelling of electrostatic
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�eld in substantially spatial setting foresees the account of desired charge dis-
tribution density σ(P ) behavior near the contour of unclosed surface S and
lines of its fracture [7]. In this case we consider that U(M), M ∈ S, is the
given boundary value of potential on an electrode which is actually modeled
by a surface S (U(M) ≡ const). As to numerical methods applied for ini-
tial problem solving we can point out in principle some approaches for integral
equations approximate schemes construction [1, 2, 6]. In this connection, taking
into account substantially spatial setting of the problem and speci�c behavior
of desired solution, from practical point of view, in the best way, mentioned
above questions were solved in [2].

2. Considered set of boundary surfaces and the ways
of their specification

At �rst, using parametric representation of S, we will consider that

M :=
{

x(α0, β0), y(α0, β0), z(α0, β0); (α0, β0) ∈ D := (−1, 1)2
}

,

P :=
{

x(α, β), y(α, β), z(α, β); (α, β) ∈ D
}

.

At that time, integral equation (1) will be shown as
∫∫

D

σ(α, β)K(α, β; α0, β0) dαdβ = U(α0, β0), (α0, β0) ∈ D; (2)

where

K(α, β; α0, β0) :=
{

[x(α, β)− x(α0, β0)]2 + [y(α, β)− y(α0, β0)]2+

+[z(α, β)− z(α0, β0)]2
}−1/2

J(α, β);

and J(α, β)dαdβ is an element of surface S in local coordinates (α, β) asso-
ciated with S. Keeping in (2) notation for σ and U from (1), we will also
remark that from functions x(α, β), y(α, β), and z(α, β), which express the
Cartessian coordinates (x, y, z) of the points on a surface S, it is required, at
least, continuous di�erentiability in D because

J(α, β) :=
{

E(α, β) G(α, β)− F 2(α, β)
}1/2 ;

and
E(α, β) :=

(
x′α

)2 +
(
y′α

)2 +
(
z′α

)2
,

G(α, β) :=
(
x′β

)2 +
(
y′β

)2 +
(
z′β

)2
,

F (α, β) := x′αx′β + y′αy′β + z′αz′β.

As an example, for arbitrary charged quadrangular plate presentation we
make use of the following equations:
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x(α, β) =
1
4

4∑

j=1

xj ϕj(α, β), ϕj(α, β) :=
(
1 + (−1)pα

)(
1 + (−1)qβ

)
,

y(α, β) =
1
4

4∑

j=1

yj ϕj(α, β), p :=
[ j

2

]
+ 1, q :=

[j − 1
2

]
+ 1,

z(α, β) =
1
4

4∑

j=1

zj ϕj(α, β), (α, β) ∈ D;

where (xj , yj , zj) are coordinates of corresponding plate vertex. It is obvious
that we simulate this and similar plates with the help of double-sided in�nitely-
thin surfaces.

Addressing to such type of boundary surfaces is explained by a possibility of
the use for the approximate solving (2) in this case of numerically-analytical
methodology introduced by the authors [3].

Another example of parametric equations is related to the necessity of so-
called �at diaphragms descriptions. The last ones are components of rather
complicated and actual in practice electron-optical systems. The �gure 1 rep-
resents a projection of a diaphragm on the plane z = const. It is easy to notice
that in this case the examined surface S represents the combination of eight
elements. In addition, each of them is expressed by a �at curvilinear quadran-
gle. In order to obtain every element a unique description it is necessary to �x
only eight points along its boundary as shown at the �gure 1.

Fig. 1. A projection of �at diaphragm on the plane z = const

In this connection parametric equations have such expression as
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x(α, β) =
1
4

4∑

j=1

xj ϕj(α, β),

y(α, β) =
1
4

4∑

j=1

yj ϕj(α, β), (α, β) ∈ D;

where
ϕ1(α, β) := (1 + α) (1 + β) (α + β − 1),

ϕ2(α, β) := (1− α2) (1 + β), . . . ;

and xj , yj are coordinates of points Mi (i = 1, 8).

3. General remarcs concerned with numerical analysis
of type (1) integral equations

Two-dimensional integral equation (2) was solved by the method of colloca-
tion with the use of piecewise-constant and bilinear approximation of desired
σ(P ). It is easy to see that (2) belongs to integral equations with weak sin-
gularity in the kernel. Therefore, in the process of (2) solving it is necessary
to calculate approximately some two-dimensional singular integrals of speci�c
class. In this connection the algorithms of such integrals calculation become
substantially complicated through the presence of certain atypical weight func-
tions. The point is that the last ones represent precisely singular behavior of
desired solution near the contour of open surface S.

Integral equations of type (1)-(2) were also examined in the context of elec-
trostatic �eld determination, in the case when the systems of charged electrodes
have rather complicated con�guration. We will �nd out some details of initial
problem e�ective solution, based on the integral equations method, in sub-
stantially spatial setting, taking into account present symmetry at geometry
of unclosed surfaces-electrodes. The account of symmetry enables to interpret
initial problem as a task with �nite order abelian group of symmetry. It allows
to reduce (2), set on all boundary surface, to the sequence N of independent
integral equations, set on one of their congruent constituents. Here N is an
order of established group of symmetry. It results in avoidance of numerical
instability of the systems of linear algebraic equations solving. With the help of
these systems the approximation of corresponding integral equations is realized.
In addition, their dimensions excessively increase. There is also a possibility to
create pre-conditions for parallelizing an algorithm of the basic problem solving.
Choosing a di�erent number of processors, it allows to reach maximal e�ciency
of their loading and increasing the speed of calculation.

4. Scheme of results refinement obtained in the process
of specific model task solving

Illustrating the expediency of the mentioned methodology application, we
will consider the problem of electrostatic �eld calculation of so-called plane-
parallel condenser (see Fig. 2).
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Fig. 2. Investigated plane-parallel condenser

In the course of initial problem mathematical modelling we will represent
the corresponding systems of electrodes as an combination of two open surfaces
which do not have common points, so that S := S1

⋃
S2. It is easy to see

that surfaces Si are bounded to the piecewise-smooth contours of �nite length.
We consider this task as model one. The point is that the electrostatic �eld
reproduction under the conditions of essential di�erence of potentials on the
plates and step-by-step decrease of the distance between indicated plates is not
trivial problem. In this case the results of calculation are especially sensitive
with respect to variation of output date.

Returning to our integral equation let us assume that

Sl :=
{

(x, y, z) ∈ R3
∣∣∣ (x, y) ∈ [−a, a]× [−b, b];

z = (−1)l−1h; l = 1, 2; a, b, h > 0
}

.

Considering the geometric characteristics of total surface S, let us represent the
last one in the form of congruent constituents combination:

S =
2⋃

l=1

(
4⋃

k=1

Slk

)
.

Taking into account such subdivision of Sl (l = 1, 2), integral equations (2), in
turn, can be formally represented as

2∑

l=1

4∑

k=1

∫

Slk

σlk(P ) |P −M |−1dSP =

= U(M) =





U1, M ∈ S1;

U2, M ∈ S2;

(3)
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where σlk(P ) is the projection of σ(P ) on Slk;

|P −M |−1 =
[
(x− x0)2 + (y − y0)2 + (z − z0)2

]−1/2;

M := (x0, y0, z0 = ±h); (x, y), (x0, y0) ∈ [−a, a]× [−b, b].

Fig. 3. A projection of congruent component S11 on the plane
z = const together with the consequent step-by-step partition
into elements for the attainment of desired accuracy
of (4) solving

Then, applying in (3) trivial changes of variables, we realize the conversion
from integration over total surface S to integration over it congruent constituent
S11. In addition, let us note than the point of collocation M is placed also on
S11. As a result, we have obtained in fact the system of eight linear integral
equations with respect to unknown density σj(x, y) (j = 1, 8), according to
chosen group of symmetry of surface S:

8∑

j=1

∫∫

∆1

σj(x, y) G| i−j |+1(x, y, h; x0, y0, z0) dxdy = U(Mi) (i = 1, 8). (4)

Here ∆1 := [0, a]× [0, b];
Mi :=

(
(−1)r−1x0, (−1)s−1y0, (−1)p−1h

) ∈ Spq;

in this case i := 4(p− 1)+2(r− 1)+ s, and q := 2(r− 1)+ s with p, r, s = 1, 2.
The point of integration is

P :=
(
(−1)n−1x, (−1)m−1y, (−1)l−1h

)
∈ Slk;
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in this case j := 4(l−1)+2(n−1)+m, and k := 2(n−1)+m with n, m = 1, 2
(see Fig. 2); and �nally,

G| i−j |+1(x, y, h; x0, y0, z0) := |P −Mi|−1.

Now the procedure of splitting (4) into eight independent integral equations
may be applied. But, at �rst, we will observe that the choice of symmetry
group with an order of eight is exhaustive from the point of view of electrodes
systems design. Another advantage is a possibility to take into account a priori
information about desired solution behavior only along a free part of congruent
component S11 contour. Under these conditions, ignoring the weight function
mentioned above, it is possible to apply one of the e�ective methods of received
solution accuracy control. In addition, the correction of required function is
carried out by use of special a posteriori error estimation and provided by net
condensing in the neighborhood of S11 singular points.

Tabl. 1. The value of potential at veri�ed points

x y z U(x, y, z)
0.9510 0.9510 0.5000 999.1812
0.8590 0.8590 0.5000 999.9378
1.0000 1.0000 0.4990 780.6304
0.9900 0.9900 0.4990 979.5774
0.9500 0.9500 0.4990 995.8487
0.9000 0.9000 0.4990 996.2100
0.7000 0.7000 0.4990 997.7024
0.5000 0.5000 0.4990 997.9232
0.3000 0.3000 0.4990 997.9784
0.0000 0.0000 0.4990 997.9939
0.0000 0.0000 0.4000 799.4128
0.0000 0.0000 0.2000 399.0503
0.0000 0.0000 0.1000 199.4134
1.0000 1.0000 0.4900 731.5166
1.0000 1.0000 0.4800 688.9154
1.0000 1.0000 0.4000 492.6562
1.0000 1.0000 0.2000 219.5428
1.0000 1.0000 0.1000 107.6509

Using known general concept of a posteriori error estimation methodology
[5], we propose such it version applicable precisely to integral equation of type
(1). Let σh(P ) is a solution which belongs to chosen approximation space.
This solution, taking into consideration it integral representation, generates
approximate value of potential in an arbitrary point M of interelectrodes space

Uh(M) = (Aσh)(M).

At that time, error function eU is de�ned with the help of such formula
eU = Aσ −Aσh = A(σ − σh) = Aeσ;
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where eσ is the solution of such integral equation
(Aeσ)(M) = U0 − (Aσh)(M), M ∈ S;

here U0 is the given value of potential on S. The behavior of this solution
is irregular only in the neighborhood of unclosed surface S contour. That is
why, we reproduce eU only over element De which appears in the process of
S partition and where eU may be obtained maximal value. We consider this
element as "extremal". Then, it is necessary to verify the condition of the
accessibility of preassigned accuracy

‖ eσ‖L2(De)√
‖σh‖2

L2(De) + ‖ eσ‖2
L2(De)

100% ≤ TOL.

If the last condition is not realized, then, it is necessary to repeat stated above
procedure, using more dense net as it was shown at the �gure 3. We repeat
the described procedure so many times that it needs to obtain the guaranteed
accuracy of equation (1) solving.

The considered numerical scheme was applied to solve one typical problem.
Computations were realized with the use of some parameters: a = 1, b = 1,
h = 0.5, U1 = 1000, U2 = −1000, TOL = 0.1%. The solution of this problem
was shown at some points (see the Table 1). In this case the number of iterations
to attain preassigned accuracy is 5.
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