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THE DYNAMICS OF RECURRENT
STATISTICAL EXPERIMENTS WITH
PERSISTENT NON-LINEAR
REGRESSION AND EQUILIBRIUM

DwMITRI KOROLIOUK

PE3IOME. BuB4aerbcs noc/iiioBHICT OIHAPHUX CTATUCTUYHUX €KCIIEPUMEHTIB
3 HAIOJIETJINBOIO HeJTHIiHOI perpecieio Tumy Paitta-®imepa, gxa 3aJa€TbCd
KyOiumol mapabosoro, mo Ma€ Tpu AicHUX KopeHi. Bymyerbcs croxactwdana
AIPOKCUMALIid TOCJIIOBHOCTI CTATUCTUYHUX €KCIIEPUMEHTIB IIPOLECOM aBTO-
perpecii 3 HOpMa/JIbHUMU 30YPEHHSIMH, 8 TAKOXK CTOXACTUYIHA AITPOKCHUMAITis
MOCJIJOBHOCTI eKCIIOHEHIIIHHUX CTATUCTUYHUX €KCIIEPUMEHTIB IIPOIIECOM aBTO-
perpecii, aKuil 331a€ThCS TTPOIIECOM TE€OMETPUIHOTO OPOYHIBCHKOTO PYXY.

ABsTRACT. We study a sequence of binary statistical experiments with per-
sistent non-linear regression with Wright—Fisher normalization [1], which is
given by a cubic parabola, which has three real roots. We construct sto-
chastic approximation of recurrent statistical experiments by autoregression
process with normal disturbances, as well as stochastic approximation of ex-
ponential statistical experiments by exponential autoregression process with
normal disturbances.

1. INTRODUCTION

In our previous paper [1] there has been searched a limit behavior of recur-
rent statistical experiments (SE) with persistent linear regression by increasing
sample volume N — oco. An important role in the analysis of SE with persistent
linear regression plays the control parameter a of the regression function which
provides a steady state with equilibrium point and, at the same time , gives a
possibility of approximating the original recurrent SE by normal autoregression
process, which statistical analysis is significantly easier.

In this paper, we study a similar problem for a sequence of SE with persistent
regression with an additional term which determines the non-linear regression.
The initial assumptions about the binary nature [1], as well as non-linear re-
gression model with Wright—Fisher normalization [2] make a natural choice for
the regression’s nonlinear component as a cubic parabola, which has three real
roots in the value interval —1 < s < +1 of the results of statistical experiments.
It is natural to assume that the non-linear component of the regression takes
the value 0 at the ends of the interval s = £1, as well as at the equilibrium
point p of the linear regression.

Key words. Binary statistical experiment, persistent regression, stabilization, stochastic
approximation, exponential statistical experiment, exponential autoregression process.
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These considerations lead to the clear conclusion that the non-linear compo-
nent of the regression is as follows:

Co(s) = —g(1=s*)(s—p), Is|<1, g>0. (1)

2. STEADY STATE REGIME
In this paper we consider the sequence of the SE

N
S (k) = %Zar(k), k> 0. @)
r=1

with persistent non-linear regression:
BlSx(k+ D)ISn(k) = 5] = C(s), C(s) = s+ Co(s). (3)
The parameter g of non-linear regression significantly changes the dynamics of

the recurrent SE.

Remark 1. Setting the SE using the regression (2) - (3) means that the prob-
ability sample values are given by:

PLS,(k + 1) = 1|y (k) = 5} = %[1 +C(s)]. (4)

At the same time, there exist control parameters g and p such that the condition

(4) is correctly defined.

The specificity of the binary SE is, in particular, that the conditional variance
SE is simply calculated

D[Sn(k+1)|Sy(k) = s] = B(s)/N , B(s):=1-C?%s). (5)
Now it is possible to verify the existence of the steady state (see [1, Theorem
1]).
Theorem 1. Provided the initial condition (convergence with probability 1)
Sn(0)=p, N — oo, (6)
there is the convergence with probability 1
Sn(k)=p, N — 0, (7)
for each finite k > 0.

Proof of Theorem 1. We introduce a martingale as the sum of martingale dif-

ferences:
n

pn(n) =) [Sn(k+1) = E[Sn(k+1)| S (k)] (8)
k=0
or another, in view of the properties of persistent regression (3)
pn(n) =Y [Sn(k+1) — C(Sn (k)] (9)
k=0
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The quadratic characteristic of the martingale (8), considering (9), is given by
the sum:

(un)n =) _ DISn(k+1)|Sn(k)] = %ZB(SN(/{))' (10)
k=0 k=0

Hence for any fixed n > 0 the following convergence takes place (with prob-
ability 1):
(un)n =0, N — 0. (11)

This implies the convergence with probability 1 of the martingales (8) for each
finite n >0
pun(n) =0, N — oo, n>0. (12)

In particular when n = 0 we have
pn(0) = Sn(1) = C(Sn(0)) = Sn(1) — p — [Sn(0) — p] — Co(Sn(0))
In this case, by the condition of Theorem 1
Co(Sn(0)) = Co(p) =0, N — 0.
So there is the convergence with probability 1:
Sn(1)—p=0, N — oo.

By induction, we deduce that for every k > 1 the convergence (7) takes
place. (]

3. STOCHASTIC APPROXIMATION OF STATISTICAL EXPERIMENTS
As in previous work [1] appears the problem of simplified description of the
recurrent SE dynamics by increasing sample volume N — oo. The nonlinear
component of the regression function, which has the factor (s — p), preserves
the possibility of approximating SE by normal autoregression process.

Theorem 2. Under the conditions of Theorem 1 there takes place the limait
relation (in probability):
VN[Sn(k+1)—C(Sn(k)] = ocW(k+1), N — 0 (13)

for each finite k > 0.
The sequence of independent, normally distributed random variables W (k),
k > 1 satisfies the normalization conditions :

EW(k)=0, DW(k)=1, k>1, o?>=1-p (14)
Proposition 1. The limit relation (13) is the basis to use the normal process
of autoregression

Sn(k+1) = C(Sy(k)) + \/"—NW(k +1), k>0,

— Sn(k) + Co(Sn (k) + \/U—NW(k +1), k>0,

as an approzimation of the original SE (2)—(3) with nonlinear regression func-
tion (3).

(15)
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Remark 2. It is clear that the stochastic approximation in (15) is considerably
simpler than the original model (2)—(5) and at the same time, preserves the
condition of persistent regression:

E[Sx(k+1)| Sn(k)] = C(Sn(k)), k= 0. (16)

Proof of Theorem 2. We introduce a martingale as the sum of martingale dif-
ferences:

px(n) == VN S [Sw (k + 1) — C(Sn ()], n > 0. (17)
k=0

Using the equilibrium state p (cm. Teopemy 1), and the relations (2), (3) and
(5), we get the following result.

Lemma 1. The martingale (17) has the following asymptotic representation:

n 1 n
pn(n) = kZ:O[CN(k +1) = bocw (W] + —= ;)C?V(k)R(SN(k)) , n>0. (18)
Here
(n (k) := VN[Sn (k) — p], k>0,
2

19
R(s) = g(s+p) , b02=1—g02, 02:1—,0, (19)

According to Theorem 1 and relation (19), the nonlinear term in (19) con-
verges (in probability) to zero as N — oo for each finite n > 0. Now the normal
approximation of martingale (17) - (19) is realized in the same manner as in
[1]. First, we compute the quadratic characteristic of martingale (17)

wmnzﬁémem),Bwy=1—0%@,nzo. (20)
k=0

Then, according to Theorem 1, there is a limit (with probability 1)
(in)n = (n+1)e%, N—oo, n>0. (21)

However, according to the central limit theorem, the primary (linear) martin-
gale portion (18) converges (in probability) to the sum of normally distributed
random variables.
The convergence of the quadratic characteristics (21) implies the convergence
in probability of martingale-differences
n n
iWy(n) =S len(k+1) = (1= go?)Cn (k)] = o S Wk +1).  (22)
k=0 k=0
The limit normally distributed random variables W (k) , k > 1 are mutually
independent with

EW(k)=0, EW?*k)=1, k>1

because the limit dispersion of martingale (21) is equal too sum of dispersions
of martingale-differences.
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The convergence of the original martingale (17) means that there is the
convergence (in probability) :

VN[Sn(k+1)— C(Sn(k)] = oW (k+1), N — o0 (23)

for each finite k > 0. The proof of Theorem 2 in complete. U

Corollary 1. The convergence of the linear component of the martingale (18)
implies the convergence (in probability)

(n(E+1)— (1 —go®)n(k) = oW(k+1), N — . (24)

Proposition 2. The convergence (24) serves as the basis to use approzimation,
in the neighborhood of the equilibrium point p, of the original statistical experi-
ments with persistent regression (2) by the new process of normal autoregression
with linear regression function:
e o~ o
SU(k+1) — p=(1—go?)[SY(k) — p] +ﬁW(k+1), (25)
so that

S (k+1) = (1 — go?)S% (k) + go?p + %W(k—kl). (26)

The stochastic approximation by the normal process of autoregression (25)
- (26) (Proposition 2) for the linear regression function

C(s) = s — go*(s — p) (27)

has a stationary distribution, which is given by the density of the normal dis-
tribution (see [2, item 5])

ols) = W expl—(s — p)?/252/N]. (25)
52 =02/(1 - go?). (29)

4. EXPONENTIAL STATISTICAL EXPERIMENTS: STEADY-STATE BEHAVIOR
In many applications in biology |2, 6] and economics [7| important role is
played symmetric exponential statistics
N
n (A k) = [0+ 26.(R)], & =>0. (30)
r=1
For example, if the sample values §,(k) , 1 < r < N, k > 0 define
success rates 0,(k)) = +1 or failure ones 6,(k)) = —1 , then (31) sets the total
value of the interest rate in the k-th experiment. The parameter A > 0 can be
considered as a discount factor.

We consider exponential statistical experiments (ESE) (30) in the series
scheme with increasing sample size N — oco.
The property of persistent regression (3) is converted to the following form:

E[My(\ K+ 1)[Sn (k)] = [1 + AC(Sn (k)] (31)
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Now we introduce the exponential martingale
pS Nk +1) =TIn(\ k+1)/TIn(\E) , k>0. (32)
TN\ E) = [1+AXC(SNENY , k>0, (33)
Its martingale property is obvious:
ElpsNE+1)|Sn(k)] =1, kE>0.
Steady state of SE is established by the following

Theorem 3. By the condition of convergence with probability 1 of the SE initial
values

Sn(0) = p=p/(1-a), N — oo, (34)
there is the convergence in probability of ESE (31)
P lim Tx(A/N.K) = exp(hp) . k>0, (35)

and also the convergence in probability of conditional expectations (32), (34)

P. A}im N (A/N, k) =exp(Ap) , k>0. (36)
Corollary 2. Under the condition (35) the following convergence takes place:
P- ]\}im uN(A/N k) = 1. (37)

Proof of Theorem 3. We use the approximation formula of Le Cam in the
following form:

Lemma 2. (cp. [5, Lemma 6.3.1]) Assume thal the convergence in probability
takes place:

max |0.(k+1)=0, N—o00, k>0. (38)
1<r<N

Then there takes place the convergence in probability

N
P. ]&@w{gln[l + A0, (k 4+ 1)/N] = ASy(k+1)} = 0. (39)

The condition (38) is obviously satisfied for binary random variables d,(k +
1), 1 <r <N, k>0, taking two values £1. In addition, by Theorem 1

Sny(k+1)=p, N — oo.

Hence the convergence (40) is equivalent to the convergence:

N
P- lim ) In[l+ A6, (k+1)/N] = Ap. (40)
=1

N—oo

We now use the obvious identity

H :explnH.



32 DMITRI KOROLIOUK

The convergence (36) is equivalent to the convergence in (40). Even easier to
establish the convergence (37) using the relation

C(Sn(k) = p, N — o0, k>0.

Theorem 3 is proved. The Corollary 1 is obvious.

5. EXPONENTIAL STATISTICAL EXPERIMENTS: APPROXIMATION BY THE
NORMAL PROCESS OF AUTOREGRESSION
The exponential statistical experiments (ESE) (31) with conditional ex-
pectation (32) are considered in the scheme of series with series parameter
Av = M/VN :
N
Oy (A/VN,k+1) =[]0+ A6:(k+ 1)/VN], k>0. (41)
r=1

However, the averaging of ESE in given by the relation:

In(A/VN,E) = [1+XC(Sx(k)/VNIY | k>0. (42)
So that the corresponding exponential martingale has the form:
O,k +1) =TIy (AN, bk + 1) /TIy(An, k), k> 0. (43)

The fundamental importance for the of ESE approximation has the following

Theorem 4. (ESE approzimation) Under the conditions of Theorem 3 we have
the convergence in probability

P lim N/ VN E4+1) =exphaW(k +1) — XN202/2], k>0, (44)

Remark 3. The exponential martingale in the series scheme (44), given by
ESE (41), converges (as N — o0) to exponential normal martingale. It is
obvious that

Eexp oW (k+1) = 0?/2] =1, k>0. (45)

Proof of Theorem 4. As in the proof of Theorem 3, we use Lemma approxi-
mation of Le Cam and the obvious identity II = expInIl.

Lemma 3. (Le Cam approzimation [5, Lemma 6.3.1]) Assume that the con-
vergence in probability takes place

1ga£>3\f|5r(k+l)/N| =0, N — oo,

and also the sums
| N
._ 2
Vi) s= 5 3 (6 (4)

are bounded in probability. Then there takes place the convergence in probability

N
P lim D [l 4 A6, (k)/VN] = \WNSy (k) + XV (k)/2=0.  (46)
r=1
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Note that in our case Vy(k) = 1. So the convergence in Lemma 3 has the
following form:

N—oo

N
P- lim Y Il + A6 (k)/VN] = AWNSy (k) = —X?/2. (47)
r=1

Note that ESE (42) is represented in the form:

N
In(A/VN,k+1)=expd [l +A5.(k+1)/VN], k>0.  (48)
r=1

So that the convergence (48) means
P-A}im TNy (A/VN, k+1) exp[-AVNSn(k+1)] = exp[-A2/2] , k> 0. (49)

Similarly, the conditions of Lemma 3 provide the convergence in probability
(by N — 00) of the averaged ESE:

P lim TIx(A/VN, k) exp[-AVNC(Sy (k)] = exp[-X*p?/2] . k> 0. (50)
We should use the Theorem 1, according to which
C(Sn(k)=C(p)=p=p/1—a), N—oo, k>0.
Now we introduced the centered ESE:
G (A/VN, k+1) :=HOy(A/VN, k+1)exp[-A\VNSy(k+1)] , k>0, (51)
9,(A/VN, k) :=TIx(\/VN, k) exp[-A\WNC(Sy (k)] , k>0.  (52)
By Theorem 2, there is convergence (in probability):
VN[Sn(k+1) — C(Sn(k))] = oW (k+1), N—oco, k>0. (53)
So that the exponential martingale (44) is represented in the following form:
p N VNE+1) = [TIY(V/VN, k+1) / TIS(A/VN, k)| x -
x exp{ \WWN[Sn(k+1) = C(Sx(k))]}, k>0.

Using the the relations (50) - (53), taking into account the relations 02 = 1—p?,
we get the assertion (45).

Theorem 4 is proved. O

We now rewrite the approximations (51) and (45) in the original series scheme
with the series parameter Ay = A/N:

N (A/N, k) exp[-AC(Sy (k)] = exp(A2p?/2N)e®N | k>0,  (55)

p% (AN k +1) = exp[Mo/VN)W (k + 1) — A202 /2N]efV. (56)

Here the residual term Ry = o(1/N), n — oc.
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Hence the normalized ESE (31) admit the following approximation:
(AN, k+1) = exp[]A\C(Sn (k) — A\2p%/2N]x
x exp[Mo/VN)W (k +1) — \20%/2N]ef~ .

The approximation of the ESE (57) serves as a basis the following statement.

(57)

Proposition 3. The exponential statistical experiments (31) can be approzi-
mated by an exponential process of autoregression

N
Ty (AN + 1) == []IL + A6, (k + 1)/N] =
r=1 (58)
= exp[AC(Sn (k) — A2p%/2N] - exp[A(oc/VN)W (k + 1) — X202 /2N],

Here by definition
— N ~
Sn(k) ==Y 6.(k), k> 0.
r=1

Remark 4. An important basis for the application of approximation (58) is the
fact that the conditional expectations asymptotically coincides with the regres-
sion function (conditional expectation) of the original ESE (30), namely (cf.

(58)):

N
E |t + X0k +1)/N]|Sn (k) | = exp[AC(Sn (k) — A?p?/2N]efV . (59)
r=1
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