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Ðåçþìå. Âèâ÷à¹òüñÿ ïîñëiäîâíiñòü áiíàðíèõ ñòàòèñòè÷íèõ åêñïåðèìåíòiâ
ç íàïîëåãëèâîþ íåëiíiéíîþ ðåãðåñi¹þ òèïó Ðàéòà-Ôiøåðà, ÿêà çàäà¹òüñÿ
êóái÷íî¨ ïàðàáîëîþ, ùî ìà¹ òðè äiéñíèõ êîðåíi. Áóäó¹òüñÿ ñòîõàñòè÷íà
àïðîêñèìàöiÿ ïîñëiäîâíîñòi ñòàòèñòè÷íèõ åêñïåðèìåíòiâ ïðîöåñîì àâòî-
ðåãðåñi¨ ç íîðìàëüíèìè çáóðåííÿìè, à òàêîæ ñòîõàñòè÷íà àïðîêñèìàöiÿ
ïîñëiäîâíîñòi åêñïîíåíöiéíèõ ñòàòèñòè÷íèõ åêñïåðèìåíòiâ ïðîöåñîì àâòî-
ðåãðåñi¨, ÿêèé çàäà¹òüñÿ ïðîöåñîì ãåîìåòðè÷íîãî áðîóíiâñüêîãî ðóõó.
Abstract. We study a sequence of binary statistical experiments with per-
sistent non�linear regression with Wright�Fisher normalization [1], which is
given by a cubic parabola, which has three real roots. We construct sto-
chastic approximation of recurrent statistical experiments by autoregression
process with normal disturbances, as well as stochastic approximation of ex-
ponential statistical experiments by exponential autoregression process with
normal disturbances.

1. Introduction
In our previous paper [1] there has been searched a limit behavior of recur-

rent statistical experiments (SE) with persistent linear regression by increasing
sample volume N →∞. An important role in the analysis of SE with persistent
linear regression plays the control parameter a of the regression function which
provides a steady state with equilibrium point and, at the same time , gives a
possibility of approximating the original recurrent SE by normal autoregression
process, which statistical analysis is signi�cantly easier.

In this paper, we study a similar problem for a sequence of SE with persistent
regression with an additional term which determines the non-linear regression.
The initial assumptions about the binary nature [1], as well as non-linear re-
gression model with Wright�Fisher normalization [2] make a natural choice for
the regression's nonlinear component as a cubic parabola, which has three real
roots in the value interval −1 ≤ s ≤ +1 of the results of statistical experiments.
It is natural to assume that the non-linear component of the regression takes
the value 0 at the ends of the interval s = ±1, as well as at the equilibrium
point ρ of the linear regression.

Key words. Binary statistical experiment, persistent regression, stabilization, stochastic
approximation, exponential statistical experiment, exponential autoregression process.
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These considerations lead to the clear conclusion that the non-linear compo-
nent of the regression is as follows:

C0(s) = −g(1− s2)(s− ρ) , |s| ≤ 1 , g > 0. (1)

2. Steady state regime
In this paper we consider the sequence of the SE

SN (k) =
1
N

N∑

r=1

δr(k), k ≥ 0. (2)

with persistent non-linear regression:
E[SN (k + 1)|SN (k) = s] = C(s) , C(s) = s + C0(s). (3)

The parameter g of non-linear regression signi�cantly changes the dynamics of
the recurrent SE.

Remark 1. Setting the SE using the regression (2) - (3) means that the prob-
ability sample values are given by:

P{δr(k + 1) = ±1|SN (k) = s} =
1
2
[1± C(s)]. (4)

At the same time, there exist control parameters g and ρ such that the condition
(4) is correctly de�ned.

The speci�city of the binary SE is, in particular, that the conditional variance
SE is simply calculated

D[SN (k + 1)|SN (k) = s] = B(s)/N , B(s) := 1− C2(s). (5)
Now it is possible to verify the existence of the steady state (see [1, Theorem
1]).

Theorem 1. Provided the initial condition (convergence with probability 1)
SN (0) ⇒ ρ , N →∞, (6)

there is the convergence with probability 1
SN (k) ⇒ ρ , N →∞, (7)

for each �nite k > 0.

Proof of Theorem 1. We introduce a martingale as the sum of martingale dif-
ferences:

µN (n) :=
n∑

k=0

[SN (k + 1)− E[SN (k + 1) |SN (k)]] (8)

or another, in view of the properties of persistent regression (3)

µN (n) =
n∑

k=0

[SN (k + 1)− C(SN (k)]. (9)
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The quadratic characteristic of the martingale (8), considering (9), is given by
the sum:

〈µN 〉n :=
n∑

k=0

D[SN (k + 1) |SN (k)] =
1
N

n∑

k=0

B(SN (k)). (10)

Hence for any �xed n ≥ 0 the following convergence takes place (with prob-
ability 1):

〈µN 〉n ⇒ 0, N →∞. (11)
This implies the convergence with probability 1 of the martingales (8) for each
�nite n ≥ 0

µN (n) ⇒ 0, N →∞, n ≥ 0. (12)
In particular when n = 0 we have

µN (0) = SN (1)− C(SN (0)) = SN (1)− ρ− [SN (0)− ρ]− C0(SN (0))

In this case, by the condition of Theorem 1
C0(SN (0)) ⇒ C0(ρ) = 0, N →∞.

So there is the convergence with probability 1:
SN (1)− ρ ⇒ 0, N →∞.

By induction, we deduce that for every k ≥ 1 the convergence (7) takes
place. ¤

3. Stochastic approximation of statistical experiments
As in previous work [1] appears the problem of simpli�ed description of the

recurrent SE dynamics by increasing sample volume N → ∞. The nonlinear
component of the regression function, which has the factor (s − ρ), preserves
the possibility of approximating SE by normal autoregression process.
Theorem 2. Under the conditions of Theorem 1 there takes place the limit
relation (in probability):

√
N [SN (k + 1)− C(SN (k)] ⇒ σW (k + 1) , N →∞ (13)

for each �nite k ≥ 0.
The sequence of independent, normally distributed random variables W (k),

k ≥ 1 satis�es the normalization conditions :
EW (k) = 0 , DW (k) = 1 , k ≥ 1 , σ2 = 1− ρ2. (14)

Proposition 1. The limit relation (13) is the basis to use the normal process
of autoregression

S̃N (k + 1) = C(S̃N (k)) +
σ√
N

W (k + 1) , k ≥ 0,

= S̃N (k) + C0(S̃N (k)) +
σ√
N

W (k + 1) , k ≥ 0,
(15)

as an approximation of the original SE (2)�(3) with nonlinear regression func-
tion (3).
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Remark 2. It is clear that the stochastic approximation in (15) is considerably
simpler than the original model (2)�(5) and at the same time, preserves the
condition of persistent regression:

E[S̃N (k + 1) | S̃N (k)] = C(S̃N (k)), k ≥ 0. (16)
Proof of Theorem 2. We introduce a martingale as the sum of martingale dif-
ferences:

µN (n) :=
√

N

n∑

k=0

[SN (k + 1)− C(SN (k))], n ≥ 0. (17)

Using the equilibrium state ρ (ñì. Òåîðåìó 1), and the relations (2), (3) and
(5), we get the following result.
Lemma 1. The martingale (17) has the following asymptotic representation:

µN (n) =
n∑

k=0

[ζN (k + 1)− b0ζN (k)] +
1√
N

n∑

k=0

ζ2
N (k)R(SN (k)) , n ≥ 0. (18)

Here
ζN (k) :=

√
N [SN (k)− ρ], k ≥ 0,

R(s) = g(s + ρ) , b0 := 1− gσ2 , σ2 = 1− ρ2.
(19)

According to Theorem 1 and relation (19), the nonlinear term in (19) con-
verges (in probability) to zero as N →∞ for each �nite n ≥ 0. Now the normal
approximation of martingale (17) - (19) is realized in the same manner as in
[1]. First, we compute the quadratic characteristic of martingale (17)

〈µN 〉n =
n∑

k=0

B(SN (k)) , B(S) := 1− C2(s) , n ≥ 0. (20)

Then, according to Theorem 1, there is a limit (with probability 1)
〈µN 〉n ⇒ (n + 1)σ2 , N →∞ , n ≥ 0. (21)

However, according to the central limit theorem, the primary (linear) martin-
gale portion (18) converges (in probability) to the sum of normally distributed
random variables.

The convergence of the quadratic characteristics (21) implies the convergence
in probability of martingale-di�erences

µ0
N (n) :=

n∑

k=0

[ζN (k + 1)− (1− gσ2)ζN (k)] ⇒ σ
n∑

k=0

W (k + 1). (22)

The limit normally distributed random variables W (k) , k ≥ 1 are mutually
independent with

EW (k) = 0 , EW 2(k) = 1 , k ≥ 1

because the limit dispersion of martingale (21) is equal too sum of dispersions
of martingale-di�erences.
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The convergence of the original martingale (17) means that there is the
convergence (in probability) :

√
N [SN (k + 1)− C(SN (k))] ⇒ σW (k + 1), N →∞ (23)

for each �nite k ≥ 0. The proof of Theorem 2 in complete. ¤

Corollary 1. The convergence of the linear component of the martingale (18)
implies the convergence (in probability)

ζN (k + 1)− (1− gσ2)ζN (k) ⇒ σW (k + 1) , N →∞. (24)
Proposition 2. The convergence (24) serves as the basis to use approximation,
in the neighborhood of the equilibrium point ρ, of the original statistical experi-
ments with persistent regression (2) by the new process of normal autoregression
with linear regression function:

S̃0
N (k + 1)− ρ = (1− gσ2)[S̃0

N (k)− ρ] +
σ√
N

W (k + 1), (25)

so that
S̃0

N (k + 1) = (1− gσ2)S̃0
N (k) + gσ2ρ +

σ√
N

W (k + 1). (26)

The stochastic approximation by the normal process of autoregression (25)
- (26) (Proposition 2) for the linear regression function

C̃(s) = s− gσ2(s− ρ) (27)
has a stationary distribution, which is given by the density of the normal dis-
tribution (see [2, item 5])

ρ(s) =
1

(σ̃2/N)
√

2π
exp[−(s− ρ)2/2σ̃2/N ]. (28)

σ̃2 = σ2/(1− gσ2). (29)

4. Exponential statistical experiments: steady-state behavior
In many applications in biology [2, 6] and economics [7] important role is

played symmetric exponential statistics

ΠN (λ, k) :=
N∏

r=1

[1 + λδr(k)] , k ≥ 0. (30)

For example, if the sample values δr(k) , 1 ≤ r ≤ N , k ≥ 0 de�ne
success rates δr(k)) = +1 or failure ones δr(k)) = −1 , then (31) sets the total
value of the interest rate in the k-th experiment. The parameter λ > 0 can be
considered as a discount factor.

We consider exponential statistical experiments (ESE) (30) in the series
scheme with increasing sample size N →∞.

The property of persistent regression (3) is converted to the following form:
E[ΠN (λ, k + 1)|SN (k)] = [1 + λC(SN (k))]N . (31)



THE DYNAMICS OF RECURRENT STATISTICAL EXPERIMENTS ... 31

Now we introduce the exponential martingale
µe

N (λ, k + 1) = ΠN (λ, k + 1)/ΠN (λ, k) , k ≥ 0. (32)

ΠN (λ, k) := [1 + λC(SN (k))]N , k ≥ 0. (33)
Its martingale property is obvious:

E[µe
N (λ, k + 1)|SN (k)] = 1 , k ≥ 0.

Steady state of SE is established by the following
Theorem 3. By the condition of convergence with probability 1 of the SE initial
values

SN (0) ⇒ ρ = p/(1− a) , N →∞, (34)
there is the convergence in probability of ESE (31)

P · lim
N→∞

ΠN (λ/N, k) = exp(λρ) , k ≥ 0, (35)

and also the convergence in probability of conditional expectations (32), (34)
P · lim

N→∞
ΠN (λ/N, k) = exp(λρ) , k ≥ 0. (36)

Corollary 2. Under the condition (35) the following convergence takes place:

P · lim
N→∞

µe
N (λ/N, k) = 1. (37)

Proof of Theorem 3. We use the approximation formula of Le Cam in the
following form:
Lemma 2. (ñð. [5, Lemma 6.3.1]) Assume that the convergence in probability
takes place:

max
1≤r≤N

|δr(k + 1)| ⇒ 0 , N →∞ , k ≥ 0. (38)

Then there takes place the convergence in probability

P · lim
N→∞

{
N∑

r=1

ln[1 + λδr(k + 1)/N ]− λSN (k + 1)} = 0. (39)

The condition (38) is obviously satis�ed for binary random variables δr(k +
1), 1 ≤ r ≤ N, k ≥ 0, taking two values ±1. In addition, by Theorem 1

SN (k + 1) ⇒ ρ , N →∞.

Hence the convergence (40) is equivalent to the convergence:

P · lim
N→∞

{
N∑

r=1

ln[1 + λδr(k + 1)/N ] = λρ. (40)

We now use the obvious identity
∏

= exp ln
∏

.
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The convergence (36) is equivalent to the convergence in (40). Even easier to
establish the convergence (37) using the relation

C(SN (k)) ⇒ ρ , N →∞, k ≥ 0.

Theorem 3 is proved. The Corollary 1 is obvious.

5. Exponential statistical experiments: approximation by the
normal process of autoregression

The exponential statistical experiments (ESE) (31) with conditional ex-
pectation (32) are considered in the scheme of series with series parameter
λN = λ/

√
N :

ΠN (λ/
√

N, k + 1) =
N∏

r=1

[1 + λδr(k + 1)/
√

N ] , k ≥ 0. (41)

However, the averaging of ESE in given by the relation:
ΠN (λ/

√
N, k) = [1 + λC(SN (k))/

√
N ]N , k ≥ 0. (42)

So that the corresponding exponential martingale has the form:
µe

N (λN , k + 1) := ΠN (λN , k + 1)/ΠN (λN , k) , k ≥ 0. (43)
The fundamental importance for the of ESE approximation has the following

Theorem 4. (ESE approximation) Under the conditions of Theorem 3 we have
the convergence in probability

P · lim
N→∞

µe
N (λ/

√
N, k + 1) = exp[λσW (k + 1)− λ2σ2/2] , k ≥ 0, (44)

Remark 3. The exponential martingale in the series scheme (44), given by
ESE (41), converges (as N → ∞) to exponential normal martingale. It is
obvious that

E exp[λσW (k + 1)− λ2σ2/2] = 1 , k ≥ 0. (45)

Proof of Theorem 4. As in the proof of Theorem 3, we use Lemma approxi-
mation of Le Cam and the obvious identity Π = exp ln Π.

Lemma 3. (Le Cam approximation [5, Lemma 6.3.1]) Assume that the con-
vergence in probability takes place

max
1≤r≤N

|δr(k + 1)/N | ⇒ 0 , N →∞,

and also the sums

VN (k) :=
1
N

N∑

r=1

(δr(k))2

are bounded in probability. Then there takes place the convergence in probability

P · lim
N→∞

N∑

r=1

ln[1 + λδr(k)/
√

N ]− λ
√

NSN (k) + λ2VN (k)/2 = 0. (46)
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Note that in our case VN (k) = 1. So the convergence in Lemma 3 has the
following form:

P · lim
N→∞

N∑

r=1

ln[1 + λδr(k)/
√

N ]− λ
√

NSN (k) = −λ2/2. (47)

Note that ESE (42) is represented in the form:

ΠN (λ/
√

N, k + 1) = exp
N∑

r=1

ln[1 + λδr(k + 1)/
√

N ] , k ≥ 0. (48)

So that the convergence (48) means

P · lim
N→∞

ΠN (λ/
√

N, k +1) exp[−λ
√

NSN (k +1)] = exp[−λ2/2] , k ≥ 0. (49)

Similarly, the conditions of Lemma 3 provide the convergence in probability
(by N →∞) of the averaged ESE:

P · lim
N→∞

ΠN (λ/
√

N, k) exp[−λ
√

NC(SN (k))] = exp[−λ2ρ2/2] , k ≥ 0. (50)

We should use the Theorem 1, according to which
C(SN (k)) ⇒ C(ρ) = ρ = p/(1− a) , N →∞ , k ≥ 0.

Now we introduced the centered ESE:
Π0

N (λ/
√

N, k + 1) := ΠN (λ/
√

N, k + 1) exp[−λ
√

NSN (k + 1)] , k ≥ 0, (51)

Π0
N (λ/

√
N, k) := ΠN (λ/

√
N, k) exp[−λ

√
NC(SN (k))] , k ≥ 0. (52)

By Theorem 2, there is convergence (in probability):
√

N [SN (k + 1)− C(SN (k))] ⇒ σW (k + 1), N →∞ , k ≥ 0. (53)
So that the exponential martingale (44) is represented in the following form:

µe
N (λ/

√
N,k + 1) =

[
Π0

N (λ/
√

N, k + 1) / Π0
N (λ/

√
N, k)

]
×

× exp{λ
√

N [SN (k + 1)− C(SN (k))]} , k ≥ 0.
(54)

Using the the relations (50) - (53), taking into account the relations σ2 = 1−ρ2,
we get the assertion (45).

Theorem 4 is proved. 2

We now rewrite the approximations (51) and (45) in the original series scheme
with the series parameter λN = λ/N :

ΠN (λ/N, k) exp[−λC(SN (k))] = exp(λ2ρ2/2N)eRN , k ≥ 0, (55)

µe
N (λ/N, k + 1) = exp[λ(σ/

√
N)W (k + 1)− λ2σ2/2N ]eRN . (56)

Here the residual term RN = o(1/N), n →∞.
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Hence the normalized ESE (31) admit the following approximation:
ΠN (λ/N, k + 1) = exp[λC(SN (k))− λ2ρ2/2N ]×

× exp[λ(σ/
√

N)W (k + 1)− λ2σ2/2N ]eRN .
(57)

The approximation of the ESE (57) serves as a basis the following statement.
Proposition 3. The exponential statistical experiments (31) can be approxi-
mated by an exponential process of autoregression

Π̃N (λ/N, k + 1) :=
N∏

r=1

[1 + λδ̃r(k + 1)/N ] =

= exp[λC(S̃N (k))− λ2ρ2/2N ] · exp[λ(σ/
√

N)W (k + 1)− λ2σ2/2N ],

(58)

Here by de�nition

S̃N (k) :=
1
N

N∑

r=1

δ̃r(k), k ≥ 0.

Remark 4. An important basis for the application of approximation (58) is the
fact that the conditional expectations asymptotically coincides with the regres-
sion function (conditional expectation) of the original ESE (30), namely (cf.
(58)):

E

[
N∏

r=1

[1 + λδ̃r(k + 1)/N ]|S̃N (k)

]
= exp[λC(S̃N (k))− λ2ρ2/2N ]eRN . (59)
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