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A POSTERIORI ERROR ESTIMATIONS
FOR FINITE ELEMENT APPROXIMATIONS
ON QUADRILATERAL MESHES

HEORGIY SHYNKARENKO, OLEXANDR VOVK

PE3IOME. OcHoBHOIO MeToI0 i€l mpari € mofy10Ba MPOCTHX AIOCTEPIOPHUX
OIIHIOBAYIB ITOXMOOK YacTHHAMU OiMHINHMX AaMpPOKCHMAIi MeTOAy CKiHdYeH-
HUX €JIEMEHTIB, 3JaTHUX HAIINHO Ta edEeKTUBHO OOINC/IIOBATH JBOCTODPOHHI
rpaHuni noxnOOK HAOIMKEHHSI PO3B’S3KIB eMNTHYHUX KPAaioBUX 33mad. 3a
JOIIYIIEHHs, 1[0 CXeMa METOY CKIHIYEeHHUX €IEMEHTIB CIIPOMOXKHA OOIUCIUTH
TO'HI 3HAYEHHST PO3B’SI3KY y BY3JIaX CITKM, 3AIIPOTIOHOBAHO TTOEIEMEHTHO BI3-
HadeHi omjrfoBati moxubok ipixse ta Heiimana, siki mocsiioBHO 069HUCTIOI0TH-
cs 9K HaOJIMKeHl PO3B’ 3KHU 33/1a4il PO JIUMIOK AITPOKCUMAII] METOAY CKiHIeH-
HUX ejtleMeHTiB. Ilepimii 3 HIX 3HAXOANTH HIUYKHIO TPAHUINO TOXUOKY AITPOKCH-
Mamii MeTOZLy CKIHYEeHHUX eJIeMeHTIB, a APYIWid — BepXHIO rpaHumo. Mwn
JOIMOBHIOEMO XaPAKTEPHU3AIlio0 INX OIHIOBAYIB [I€TAIbHUMU Pe3y/IbTATAMA
YMCJIOBUX EKCIEPUMEHTIB 3 Ca0KO HeJIHIfHOI Ta CHUHTYISIPHO 30ypeHuMu
3a/[a9aMy 3 TPUMEXKEBUMU 1 BHYTPIIIHIMY IIapaMHU.

ABSTRACT. The main goal of this paper is to construct the simple a poste-
riori error estimators for piecewise bilinear approximations of finite element
method which are able to reliably and efficiently calculate the two-sided con-
fidence interval for the approximation error of the elliptic boundary value
problems. Under assumption that finite element method scheme can calcu-
late the exact values of a solution at mesh nodes, we propose the element-wise
error estimators of Dirihlet and Neuman, which are calculated in succession as
the approximated solutions of the residual problem of finite element method
approximations. The first of them evaluate the lower bound of the finite
element approximation error and second evaluate the upper bound. We sup-
plement the characteristics of this estimators by the detailed results of the
numerical experiments with semi-linear and singularly perturbed problems
with boundary and internal layers.

1. INTRODUCTION

A posteriori error estimations of finite element method (FEM) approxi-
mations is the important component of a modern science calculations. The
Babuska’s and Rheinboldt’s original conception of a posteriori error estimation
(1978) in the last decades generates a large family of various a posteriori error
estimators (AEEs), which are able to qualitatively describe the errors of ob-
tained approximations by FEM and create the foundation for local triangulation
refinement and\or local refinement of approximations rates such that to find

Key words. Semi-linear diffusion-advection-reaction equation, variational problem, finite
element method, Newton’s method, generalized minimum residual method, element-wise a
posteriori error estimator, efficiency index, convergence rate.
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approximative solutions with guaranteed accuracy and minimal computational
cost, see [2], [3], and also [4].

Following the previous work [8] we build element-wise Dirihlet e”¥" and Neu-
man shN €U a posteriori error estimators for piece-wise bilinear finite element
approximations on quadrilateral meshes. These estimators are able to quali-
tatively calculate the lower and upper bounds of exact error in terms of the
following inequality

en <llu—up < ey (1)

This paper is structured in the following manner. In Section 2 we formulate
the variational problem for elliptic diffusion-advection-reaction equation with
semi-linearity and describe its features. The numerical scheme with quadrilat-
eral finite elements is presented in Section 3. The next (Section 4) is devoted
to the problem of the error estimation of FEM approximations. In Sections
5 and 6 we present element-wise solutions of this problem as the polynomial
Dirihlet and Neuman indicator functions. The rest of the paper is devoted to
the analysis of numerical experiments with the boundary value problems which
require some efforts for solving because they are semi-linear or singularly per-
turbed. A comparison of characteristics of the estimators and they analogues,
which are calculated for exact values of errors confirms the possibility of the
calculation of two-sided error estimates (1) and expected convergence rates of
FEM approximations.

2. PROBLEM STATEMENT
To construct the cheap a posteriori error estimators for two-sided error esti-
mates of finite element approximations we consider a singular perturbed and)\ or
semi-linear boundary value problems with second order elliptic equation

—V.(uVu) + B.Vu + ou = flu] in
u=0onTIp, (2)
—(uVu).v =g on I'y = 0Q\I'p.

This semi-linear boundary value problem has the following variational formu-
lation

findueV={veHQ): v=00nTp} such that )
alu,v) = (N[ul,v) Yo eV,

where

o, ) : = /Q (1Y) Vo + 0(3.Vu + ou)dz,

<Nwww=[jmmmAN@m.

Below we assume that the domain Q C R? is a bounded polygon and other prob-
lem data are sufficiently regular functions to guarantee existence and unique-
ness of the solution u = wu(z,y) that satisfies (3). We note here that the
problem (3) becomes singularly perturbed in the case ||3|| (o) — +00 or/and
||| oo () — +00, for the details we refer to [7].
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3. FINITE ELEMENT APPROXIMATIONS
In order to obtain approximations of the solution u of the variational problem
(3) we use the family of quasiuniform meshes {7}, which are composed of
quadrilateral elements @, 7, = {Q}, hg = diam @, h = max hg. Now for each
m € N we can construct the finite element space

1._ Cy — - plad .
vi={vevncw: v= Sy ai'y Vay € R

V(w.y) € Q. VQ €T}
with usual basis functions
Q1o EVIE supp ;= ={UQ: A € Q) ¢i(A) =64 (4

where M is a number of nodes A; = (z;,y;) of the mesh 7, which does not lie
on a boundary patch I'p.

Then, using Galerkin discretization procedure, we reduce (3) to the following
problem

{ find uy, € Vi! such that 5)

a(up,v) = (N[up),v) Vo € V!
or in the algebraic form:

M

find up, = Z qii such that
i=1

the coefficients {q;}11, € RM satisfy (6)

M .

In order to unify computing process of the coefficients ¢; € R, ¢ =1,..., M, we
use the so called 'master element’ Qo = {(a,8) € R? : |al,|B] < 1} with the
mapping ® : Qg — @ as follows

w(0,B) = Y @149 +ia)(1+j0),

ij==+1

yla, B) = Z y%(5+2j7ij)(1 +ia)(1+4708),
i j—t1

where Ay, = (T, Ym), m = 1,...,4 are the vertices of the quadrilateral 3. The
integrals from (6) that defined in the variational problem (3) are calculated
numerically by using Gauss quadratures on master element Q.

To solve the problem (6) we rewrite it in the following matrix form:

find vector q € RM such that Sq = F|q], (7)
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where the matrix S = {Skm},i;\/,]mzl and the vector Flq| = {Fi[q]}iL, are ob-
tained in the following rules

S 1= /Q (U 60) Vb5 + (Vb + 0bm)bnldar, Qe i= Qo 1 e,

Fp[w] == /Qkf [éwid)i

The last one can be solved by Newton’s method which is written as the following
iterative process with the initial guess ¢° € RM and the relaxation parameter
-

ordx —I—/ gordy, km=1, .., M.
Fqﬂaﬂk

given vector ¢" € RM 1 = const > 0;
find vector r € RM such that

A o n (8)
{8 —1Fq"}r = Flq"] — Sq",

" =q"+1r, n=0,1,..,
oF g\ M . . o
where Fy[q] := {T}k the Jacobi matrix with components
'm m=

OFklq] / of

8qm Qi ou

At each iteration of the Newton’s method we solve the system of linearized

equations (8) by the iterative solver, namely the generalized minimal residual

method (GMRES) [14]. A preconditioner for this linear system is constructed
using incomplete LU factorization.

M
Zqiqﬁi] dmbrdz, kom=1,..,M, qeRM,
=1

4. RESIDUAL ELEMENT-BASED ESTIMATOR
We define the error e, = u — up, which is the solution of the following
nonlinear error problem [1, 4, 5]:

find e, € By, CE,V =FE&Vy such that
{ alep,v) = (N[up, + ep],v) — a(up,v) Yv € Ej,.
Applying Taylor’s formula fle, +up] = flup] + fulunlen + O(e2), we obtain
the linear problem
find error estimator ey, € Ey such that
{ b(un; enyv) = (punl,v) Vo € By, ©)
where
b(w; z,v) : = a(z,v) — / fulw]zvdz,
{plw],v) : = (N[w],v) —Qa(w,v) Yw,z,v € V.

In order to obtain the two-sided confidence interval for the approximation
error we introduce both Dirihlet ehD" and Neuman eflv €% element-based residual
error indicator functions that get lower and upper error bounds correspondingly.

They are the approximate solutions of the problem (9) for two different finite
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dimensional subspaces E,?”’ C FEj and E,’?" C FE) and are obtained as the
solutions of the following local problems:

find 68" € E,?"(Q) ={ve H(Q): v=0 on dQ} such that
{ b(un;eo”,v) = (plunl,v) Vv € EY"(Q), YQ €T,
and
find g™ € Ey*(Q) :={v e H(Q) : v(A;) =0VA; € Q} such that
{ b(un; 5, v) = (plup),v) Vv € EYQ), VQ €Ty,

corispondingly. The solutions of the problems (10) and (11) are unique and exist
on each finite element @ € 75, . Also, we can define the single element indicator
ng = |leglli,g VQ € Tp, and the global estimator ||eh|\%Q =D 0eT, 17%2 VT,
for both of them. This a posteriori error estimators come from the original
concept of a posteriori error estimation, which was proposed in [2; 3|, and is
similar to the residual estimators based on a local Dirichlet boundary value
problem, see [4]. The novelty is in the behaviour of interpolation on the edges

of elements: the constructed Dirihlet error estimator 68”’ (10) vanishes at all

Neu

boundary of finite element @ and Neuman estimator €5 (11) vanishes only

at the nodes of @ € 7;,. The similar idea was proposed in [8, 9] for triangular
meshes.

5. COMPUTABLE ESTIMATOR FOR PIECEWISE BILINEAR APPROXIMATIONS
Now we consider the finite element approximation uy € Vhl, which is written
in local coordinates («, 3) of the quadrilateral @ € 7}, as follows

unlg = ug(a, B) = Zm:ﬂ un(As50j_i5)) (1 +ia) (1 + jB).

To compute the solutions of of the problems (10) and (11), in a general case
we define the indicator function €, on each finite element () in the local manner

énlg = €g(a, B) := Ao, B) € En(Q) V(o B) € Qo, Mg €R, (12)

where ¢g(c, 3) is the quadratic function on master element Qg. Then, from
local problem (10) or (11) we can obtain the coefficients Ag on each finite
element of the following general kind

_ <P[Uh], ¢Q>
b(un; 9q, 9q)

and define the element error indicator 7 and the global error estimation ||€ /1,0

2 _ —2
10 = ZQ@L g Y7h.

From the general view of error estimator (12) we construct the following
Dirihlet estimator

& (0, 8) = 2g"0g" (0, ) = Ag" (1 — a®)(1 = B%) € B
(@, 8) € Qo, @: Qo — Q, A" €R, VQ € T,

VQ € T,

nQ = gl = Malllogle VQ € Tn,  [lén

(13)
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and Neuman estimator
€q (0, B) = MGG (o B) = AT — 5(0® + 57)] € B
V(Od,,B) S Q07 D QO - Q7 )\geu S Ra VQ S 7;17

see also Fig.1.

(14)

FiG. 1. Indicator functions: qbg"(a,ﬂ) = (1—-a?)(1—3?) (left),
8. B) = 1 - 0.5(a + 32) (right)

6. CONVERGENCE ANALYSIS OF NUMERICAL RESULTS
To investigate abilities and features of the constructed Dirihlet €D (13)
and Neuman € (14) AEEs, we solve the model problems with known exact
solutions. We present results of the numerical experiments for bilinear finite
elements approximations on uniform quadrilateral meshes.

Example 1. Problem with Helmholtz equation

—Au—10% = fin Q = (0,1)?,
u =0 on 0f),

that has the exact solution u(z) = sin(37z) sin(37y).

At first we solve this problem using bilinear approximation on 10 x 10 quadri-
lateral mesh to illustrate the exact solution, it’s approximation, error magnitude
and distribution, see Fig. 2.

0.5

F1a. 2. Plot of the exact solution u (left), it’s approximation up,
(middle) and the error |u — up| (right) on 10 x 10 quadrilateral
mesh for Example 1
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Fig. 2 shows that even coarse 10 x 10 quadrilateral mesh gives the approxi-
mation with a good precision. But what about a posteriori estimation of this
solving precision? To explore the bilinear approximations error and it’s esti-
mation more precisely, hereinafter we construct the convergence tables which
include numerical results for uniform meshes with the variable mesh size h
by rows. The columns of this tables correspond to the following character-
istics: k denotes the refinement step of the solution process with estimation,
Nod 7j, is the number of nodes in the mesh, Card 73 is the number of finite

elements in the mesh, ¢ := ||u — UhHLQHU”]:%ZlOO% is the exact relative error,
ebir .= ||ebir| LQHU;LHZ%ZlOO% is the relative error estimate by Dirihlet AEE,
gleu .= HehNe“HLQHuhHiSl)lOO% is the relative error estimate by Neuman AEE,
KD = ||eD||) oju— uh||1_§2 is the efficiency index of the Dirihlet error estima-
tor, KN = [[eN |1 of|u — uthSl2 is the efficiency index of the Neuman error
estimator,

pir Jmledylle —nlle)inllhe  ye  SInlei e — nflefit e

N In Mj,11 — In My, U In Mj,11 — In My,

denote the convergence rate of the Dirihlet and Neuman error estimators norms
correspondingly.

TaBL. 1. Convergence of bilinear approximations, it’s errors
and a posteriori error estimators (13), (14) for Example 1 on
uniform quadrilateral meshes

Nod 771, Card 7;1, 5:hDir c €hNeu HDir HNeu pDi'r pNeu
1 681 1 600 | 8.025 | 6.796 | 66.045 | 1.19 | 1.73 - -
6 561 6400 | 3.268 | 3.393 | 9.336 | 0.96 | 2.77 1.3 3.2

25 921 25600 | 1.568 | 1.696 | 3.638 | 0.93 | 2.16 | 1.1 1.4
103 041 102 400 | 0.776 | 0.848 | 1.725 | 0.92 | 2.04 | 1.0 1.1
410 881 409 600 | 0.387 | 0.424 | 0.851 | 0.91 | 2.01 | 1.0 1.0

1640 961 | 1638 400 | 0.194 | 0.212 | 0424 | 0.91 | 2.00 | 1.0 1.0

S| O | || =

Table 1 shows that the efficiency index xPI is less then 1.0 and <N is
greater then 1.0. It means that Dirihlet (13) and Neuman (14) estimators
provide the lower and upper bounds of exact error correspondingly. The same
result can be observed for the relative errors ¢, EhD  and Eflv ¢ Simultaneously,
the efficiency indices are in a close neighbourhood of 1.0 and, consequently, are
close to each other. So the constructed a posteriori error estimators provide a
narrow interval that contain an exact error. The convergence rates p”? and
pNe are equal to the expected theoretical rate 1.0. Note that, hereinafter,
all conclusions from the convergence tables are true for sufficient fine meshes
and, consequently, small approximation errors. In other words, they are true

starting from certain table row.
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Example 2. Problem with a boundary layer
—107%Au+{2,3}.Vu = f in Q = (0,1)%,
u = 0 on 01,

with the solution u(x,y) = zy? — ¥%9(2,z) + 9(3,9)[9(2,z) — z], g(7,t) =
exp(10%y(t — 1)).

This problem is singularly perturbed with Peclet number Pe = 361. That is
why we solve it on more fine mesh with 40 x 40 quadrilaterals.

1.0 LU

0.5

0.0 0.0

4 @

F1a. 3. Plot of the exact solution u (left), it’s approximation up,
(middle) and the error |u — up| (right) on 40 x 40 quadrilateral
mesh for Example 2

Fig. 3 shows that the largest errors are concentrated in the boundary layer
and a global error still large for such mesh density.

Now we create the following convergence table by the similar way as the
previous

TaBL. 2. Convergence of bilinear approximations, it’s errors
and a posteriori error estimators (13), (14) for Example 2 on
uniform quadrilateral meshes

Nod 771 Card 771 5}?1‘7" c shNeu HDir HNeu pDi'r pNeu
1 681 1600 | 78.972 | 104.717 | 94.245 | 1.2 2.7 - -
6 561 6 400 | 54.332 | 76.446 | 81.712 | 0.8 1.9 1.0 1.0

25921 25 600 | 30.804 | 45.964 | 57.855 | 0.7 1.5 1.0 1.0
103 041 102 400 | 15.981 | 24.446 | 33.427 | 0.7 1.5 1.0 1.0
410 881 409 600 | 8.068 | 12.432 | 17.461 | 0.7 14 1.0 1.0

1640 961 | 1 638 400 | 4.044 6.243 | 8832 | 0.6 14 1.0 1.0

S| O | W N =

Table 2 confirms the conclusions (see. Table 1) about two-sided error estimates
that are obtained by Dirihlet and Neuman AEEs. We also note that this
problem is more difficult to solve and estimate an error than previous (Example

1.).
Example 3. Problem with two internal layers
—puAu — (81, 82).Vu=01in Q = (0,1)?,
u = U on 012,
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with the solution U = U(x,y) = G[mp1(z) +vP2(y)|GImpB2(y) —vP1(z)], where
p =104 Bi(z) = 2 — 0.6, Ba2(y) = y — 0.3, m = cos(n/6), v = sin(7/6),
G(z) = 0.5[1 —erf(z/v2p)].

The solution of this problem include two internal layers. Peclet number for
this singularly perturbed problem is approximately 8062.

Then, as before, we solve Example 1 on 40 x 40 mesh, plot exact solution,
it’s approximation, error and calculate the convergence table.

0.0,

F1a. 4. Plot of the exact solution u (left), it’s approximation up,
(middle) and the error |u — up| (right) on 40 x 40 quadrilateral
mesh for Example 3

Fig. 4 shows that the largest errors are concentrated in the internal layers.
And the internal layers problem is less difficult to solve than the previous prob-
lem with boundary layer despite the fact that Peclet number in the latter is by
one order of magnitude smaller.

TaBL. 3. Convergence of bilinear approximations, it’s errors
and a posteriori error estimators (13), (14) for Example 3 on
uniform quadrilateral meshes

Nod ,Th Card rTh Efir € 5}12/'eu HDir HNeu pDir pNeu
1681 1 600 | 87.528 | 51.380 | 94.319 | 3.4 5.3 - -
6 561 6 400 | 29.316 | 22.044 | 51.412 | 14 2.7 2.5 2.2

25 921 25600 | 8.565 | 10.136 | 17.955 | 0.8 1.8 1.8 1.7
103 041 102 400 | 4.106 | 5.057 | 8.896 | 0.8 1.8 1.1 1.0
410 881 409 600 | 2.055 | 2.529 | 4.489 | 0.8 1.8 1.0 1.0

1640 961 | 1638 400 | 1.028 | 1.264 | 2.251 | 0.8 1.8 1.0 1.0

OO | | W (N[ &

Table 3 confirms the two-sided error estimates for FEM approximations of
the internal layers problem in Example 3.
Example 4. Semi-linear problem [11]

—Au = au® 4+ bu? in Q = (0,1)%,
u=U onsides x =1,y = 1;
Vu.v =0 on sides x =0,y = 0,

with the solution U = (sinr? 4+ 2)~! and the coefficients r? = 1?(2% + y?),
a = —81?r?cos?r?, b = 4l*(cosr? — r?sinr?), | = 3.0.
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Finally, we demonstrate that the devised AEEs and FEM schemes are suit-
able to solve the semi-linear problems, see Fig. 5 and Table 4.

0.4
0.0

1.0 0.0

F1a. 5. Plot of the exact solution u (left), it’s approximation up,
(middle) and the error |u — up| (right) on 40 x 40 quadrilateral
mesh for Example 4

TaBL. 4. Convergence of bilinear approximations, it’s errors
and a posteriori error estimators (13), (14) for Example 4 on
uniform quadrilateral meshes

Nod 771 Card fz'h Z_:’l?ir c Z_:ibVeu HDir KNeu pDiT pNeu
1681 1600 | 10.857 | 18.234 | 23.704 | 0.5 1.2 - -
6 561 6 400 | 5.577 | 7.869 | 12.210 | 0.7 1.5 0.9 0.9

25921 25600 | 2.812 | 3.590 | 6.159 | 0.8 1.7 1.0 1.0
103 041 102 400 | 1.409 | 1.739 | 3.087 | 0.8 1.8 1.0 1.0
410 881 409 600 | 0.705 | 0.862 | 1.544 | 0.8 1.8 1.0 1.0

1640 961 | 1638 400 | 0.353 | 0.430 | 0.772 | 0.8 1.8 1.0 1.0

OO | | W N[ &

7. CONLUSIONS

In this paper we have constructed the Dirihlet and Neuman estimators for
two-sided error estimates of FEM approximations. This estimators are suit-
able for solving of the singularly perturbed and semi-linear diffusion-advection-
reaction problems with a priori set accuracy. We use the classic Galerkin
method with the piecewise linear bases of approximation spaces for uniform
quadrilateral meshes. The calculation of both error indicators requires only
the interior residual in the quadrilateral. The efficiency and reliability of the
proposed Dirihlet and Neuman error estimators are shown by the numerical re-
sults for the boundary value problem with semi-linearity, Helmholtz equation,
a boundary and interior layers.

Finally, the suggested Dirihlet and Neuman error estimators can be nat-
urally extended to 3D case. We assume that the domain Q € R3 is parti-
tioned into finite hexahedral elements {H}. Then, for the 'master element’
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Hy = {(a,8,7) € R?: |al|, |8, 7] < 1} we obtain the local Dirihlet

Dair _ <p[uh]7 (bgir(a’ ﬁv 7)) Dir
e (e f7) = b(un; dR" (at, B,7), 697" (v, B,7)) (@ 6:1)

On" (@ f.7) = 1= 3(* + 57 +17)  V(o.f,7) € Hy,

and Neuman

Neu o <p[’LLh], geu(avﬂ”}/» Neu
€H (aaﬂa’y) - b(uh;¢%6“(a,ﬁ,’y), %eu(a7577)) H (047577)

| 630, ) = (1—a2)(1= )1 —12) V(@ B,7) € Ho,

estimators, where H is the arbitrary finite hexahedral element from the parti-
tion {H} which is obtained from the master element Hy using an appropriate
mapping ¥ : Hy — H.

10.

11.

12.
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