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Ðåçþìå. Îñíîâíîþ ìåòîþ öi¹¨ ïðàöi ¹ ïîáóäîâà ïðîñòèõ àïîñòåðiîðíèõ
îöiíþâà÷iâ ïîõèáîê ÷àñòèíàìè áiëiíiéíèõ àïðîêñèìàöié ìåòîäó ñêií÷åí-
íèõ åëåìåíòiâ, çäàòíèõ íàäiéíî òà åôåêòèâíî îá÷èñëþâàòè äâîñòîðîííi
ãðàíèöi ïîõèáîê íàáëèæåííÿ ðîçâ'ÿçêiâ åëiïòè÷íèõ êðàéîâèõ çàäà÷. Çà
äîïóùåííÿ, ùî ñõåìà ìåòîäó ñêií÷åííèõ åëåìåíòiâ ñïðîìîæíà îá÷èñëèòè
òî÷íi çíà÷åííÿ ðîçâ'ÿçêó ó âóçëàõ ñiòêè, çàïðîïîíîâàíî ïîåëåìåíòíî âèç-
íà÷åíi îöiíþâà÷i ïîõèáîê Äiðiõëå òà Íåéìàíà, ÿêi ïîñëiäîâíî îá÷èñëþþòü-
ñÿ ÿê íàáëèæåíi ðîçâ'ÿçêè çàäà÷i ïðî ëèøîê àïðîêñèìàöi¨ ìåòîäó ñêií÷åí-
íèõ åëåìåíòiâ. Ïåðøèé ç íèõ çíàõîäèòü íèæíþ ãðàíèöþ ïîõèáêè àïðîêñè-
ìàöi¨ ìåòîäó ñêií÷åííèõ åëåìåíòiâ, à äðóãèé � âåðõíþ ãðàíèöþ. Ìè
äîïîâíþ¹ìî õàðàêòåðèçàöiþ öèõ îöiíþâà÷iâ äåòàëüíèìè ðåçóëüòàòàìè
÷èñëîâèõ åêñïåðèìåíòiâ ç ñëàáêî íåëiíiéíîþ òà ñèíãóëÿðíî çáóðåíèìè
çàäà÷àìè ç ïðèìåæåâèìè i âíóòðiøíiìè øàðàìè.
Abstract. The main goal of this paper is to construct the simple a poste-
riori error estimators for piecewise bilinear approximations of �nite element
method which are able to reliably and e�ciently calculate the two-sided con-
�dence interval for the approximation error of the elliptic boundary value
problems. Under assumption that �nite element method scheme can calcu-
late the exact values of a solution at mesh nodes, we propose the element-wise
error estimators of Dirihlet and Neuman, which are calculated in succession as
the approximated solutions of the residual problem of �nite element method
approximations. The �rst of them evaluate the lower bound of the �nite
element approximation error and second evaluate the upper bound. We sup-
plement the characteristics of this estimators by the detailed results of the
numerical experiments with semi-linear and singularly perturbed problems
with boundary and internal layers.

1. Introduction
A posteriori error estimations of �nite element method (FEM) approxi-

mations is the important component of a modern science calculations. The
Babuška's and Rheinboldt's original conception of a posteriori error estimation
(1978) in the last decades generates a large family of various a posteriori error
estimators (AEEs), which are able to qualitatively describe the errors of ob-
tained approximations by FEM and create the foundation for local triangulation
re�nement and\or local re�nement of approximations rates such that to �nd

Key words. Semi-linear di�usion-advection-reaction equation, variational problem, �nite
element method, Newton's method, generalized minimum residual method, element-wise a
posteriori error estimator, e�ciency index, convergence rate.
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approximative solutions with guaranteed accuracy and minimal computational
cost, see [2], [3], and also [4].

Following the previous work [8] we build element-wise Dirihlet εDir
h and Neu-

man εNeu
h a posteriori error estimators for piece-wise bilinear �nite element

approximations on quadrilateral meshes. These estimators are able to quali-
tatively calculate the lower and upper bounds of exact error in terms of the
following inequality

εDir
h ≤‖ u− uh ‖≤ εNeu

h . (1)
This paper is structured in the following manner. In Section 2 we formulate

the variational problem for elliptic di�usion-advection-reaction equation with
semi-linearity and describe its features. The numerical scheme with quadrilat-
eral �nite elements is presented in Section 3. The next (Section 4) is devoted
to the problem of the error estimation of FEM approximations. In Sections
5 and 6 we present element-wise solutions of this problem as the polynomial
Dirihlet and Neuman indicator functions. The rest of the paper is devoted to
the analysis of numerical experiments with the boundary value problems which
require some e�orts for solving because they are semi-linear or singularly per-
turbed. A comparison of characteristics of the estimators and they analogues,
which are calculated for exact values of errors con�rms the possibility of the
calculation of two-sided error estimates (1) and expected convergence rates of
FEM approximations.

2. Problem statement
To construct the cheap a posteriori error estimators for two-sided error esti-

mates of �nite element approximations we consider a singular perturbed and\or
semi-linear boundary value problems with second order elliptic equation





−∇.(µ∇u) + β.∇u + σu = f [u] in Ω
u = 0 on ΓD,

−(µ∇u).ν = q̄ on ΓN = ∂Ω\ΓD.

(2)

This semi-linear boundary value problem has the following variational formu-
lation {

�nd u ∈ V = {v ∈ H1(Ω) : v = 0 on ΓD} such that
a(u, v) = 〈N [u], v〉 ∀v ∈ V,

(3)

where 



a(u, v) : =
∫

Ω
[(µ∇u).∇v + v(β.∇u + σu)]dx,

〈N [w], v〉 : =
∫

Ω
f [w]vdx−

∫

ΓN

q̄vdγ.

Below we assume that the domain Ω ⊂ R2 is a bounded polygon and other prob-
lem data are su�ciently regular functions to guarantee existence and unique-
ness of the solution u = u(x, y) that satis�es (3). We note here that the
problem (3) becomes singularly perturbed in the case ‖β‖L∞(Ω) → +∞ or/and
‖σ‖L∞(Ω) → +∞, for the details we refer to [7].
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3. Finite element approximations
In order to obtain approximations of the solution u of the variational problem

(3) we use the family of quasiuniform meshes {Th}, which are composed of
quadrilateral elements Q, Th = {Q}, hQ = diam Q, h = max hQ. Now for each
m ∈ N we can construct the �nite element space

V 1
h :=

{
v ∈ V ∩ C(Ω) : v =

∑
i,j=0,1

aijx
iyj ∀aij ∈ R,

∀(x, y) ∈ Q, ∀Q ∈ Th

}

with usual basis functions

ϕ1, ..., ϕM ∈ V 1
h , supp ϕi := Ωi = {∪Q : Ai ∈ Q̄}, ϕj(Ai) = δij , (4)

where M is a number of nodes Ai = (xi, yi) of the mesh Th, which does not lie
on a boundary patch ΓD.

Then, using Galerkin discretization procedure, we reduce (3) to the following
problem

{
�nd uh ∈ V 1

h such that
a(uh, v) = 〈N [uh], v〉 ∀v ∈ V 1

h

(5)

or in the algebraic form:




�nd uh =
M∑

i=1

qiϕi such that

the coe�cients {qi}M
i=1 ∈ RM satisfy

∑M

j=1
a(ϕj , ϕi)qj = 〈N [uh], ϕi〉, i = 1, ...,M.

(6)

In order to unify computing process of the coe�cients qi ∈ R, i = 1, ...,M , we
use the so called 'master element' Q0 = {(α, β) ∈ R2 : |α|, |β| ≤ 1} with the
mapping Φ : Q0 → Q as follows





x(α, β) =
∑

i,j=±1

x 1
2
(5+2j−ij)(1 + iα)(1 + jβ),

y(α, β) =
∑

i,j=±1

y 1
2
(5+2j−ij)(1 + iα)(1 + jβ),

where Am = (xm, ym), m = 1, ..., 4 are the vertices of the quadrilateral Q. The
integrals from (6) that de�ned in the variational problem (3) are calculated
numerically by using Gauss quadratures on master element Q0.

To solve the problem (6) we rewrite it in the following matrix form:

�nd vector q ∈ RM such that Sq = F [q], (7)



110 HEORGIY SHYNKARENKO, OLEXANDR VOVK

where the matrix S = {Skm}M
k,m=1 and the vector F [q] = {Fk[q]}M

k=1 are ob-
tained in the following rules



Skm :=
∫

Ωmk

[(µ∇φm).∇φk + (β.∇φm + σφm)φk]dx, Ωmk := Ωm ∩ Ωk,

Fk[w] :=
∫

Ωk

f

[
N∑

i=1

wiφi

]
φkdx +

∫

Γq∩∂Ωk

gφkdγ, k,m = 1, ..., M.

The last one can be solved by Newton's method which is written as the following
iterative process with the initial guess q0 ∈ RM and the relaxation parameter
τ 




given vector qn ∈ RM , τ = const > 0;

�nd vector r ∈ RM such that
{S − τFq[qn]}r = F [qn]− Sqn,

qn+1 = qn + τr, n = 0, 1, ...,

(8)

where Fq[q] :=
{

∂Fk[q]
∂qm

}M

k,m=1
is the Jacobi matrix with components

∂Fk[q]
∂qm

=
∫

Ωmk

∂f

∂u

[
M∑

i=1

qiφi

]
φmφkdx, k,m = 1, ...,M, q ∈ RM .

At each iteration of the Newton's method we solve the system of linearized
equations (8) by the iterative solver, namely the generalized minimal residual
method (GMRES) [14]. A preconditioner for this linear system is constructed
using incomplete LU factorization.

4. Residual element-based estimator
We de�ne the error eh = u − uh, which is the solution of the following

nonlinear error problem [1, 4, 5]:
{ �nd eh ∈ Eh ⊂ E, V = E ⊕ Vh such that

a(eh, v) = 〈N [uh + eh], v〉 − a(uh, v) ∀v ∈ Eh.

Applying Taylor's formula f [eh + uh] = f [uh] + fu[uh]eh + O(e2
h), we obtain

the linear problem
{�nd error estimator eh ∈ Eh such that

b(uh; eh, v) = 〈ρ[uh], v〉 ∀v ∈ Eh,
(9)

where 



b(w; z, v) : = a(z, v)−
∫

Ω
fu[w]zvdx,

〈ρ[w], v〉 : = 〈N [w], v〉 − a(w, v) ∀w, z, v ∈ V.

In order to obtain the two-sided con�dence interval for the approximation
error we introduce both Dirihlet εDir

h and Neuman εNeu
h element-based residual

error indicator functions that get lower and upper error bounds correspondingly.
They are the approximate solutions of the problem (9) for two di�erent �nite
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dimensional subspaces EDir
h ⊆ Eh and EDir

h ⊆ Eh and are obtained as the
solutions of the following local problems:

{
�nd εDir

Q ∈ EDir
h (Q) := {v ∈ H1(Q) : v = 0 on ∂Q̄} such that

b(uh; εDir
Q , v) = 〈ρ[uh], v〉 ∀v ∈ EDir

h (Q), ∀Q ∈ Th,
(10)

and{
�nd εNeu

Q ∈ ENeu
h (Q) := {v ∈ H1(Q) : v(Ai) = 0 ∀Ai ∈ Q̄} such that

b(uh; εNeu
Q , v) = 〈ρ[uh], v〉 ∀v ∈ ENeu

h (Q), ∀Q ∈ Th,
(11)

corispondingly. The solutions of the problems (10) and (11) are unique and exist
on each �nite element Q ∈ Th . Also, we can de�ne the single element indicator
ηQ := ‖εQ‖1,Q ∀Q ∈ Th and the global estimator ‖εh‖2

1,Ω :=
∑

Q∈Th
η2

Q ∀Th

for both of them. This a posteriori error estimators come from the original
concept of a posteriori error estimation, which was proposed in [2, 3], and is
similar to the residual estimators based on a local Dirichlet boundary value
problem, see [4]. The novelty is in the behaviour of interpolation on the edges
of elements: the constructed Dirihlet error estimator εDir

Q (10) vanishes at all
boundary of �nite element Q and Neuman estimator εNeu

Q (11) vanishes only
at the nodes of Q ∈ Th. The similar idea was proposed in [8, 9] for triangular
meshes.

5. Computable estimator for piecewise bilinear approximations
Now we consider the �nite element approximation uh ∈ V 1

h , which is written
in local coordinates (α, β) of the quadrilateral Q ∈ Th as follows

uh|Q = uQ(α, β) =
∑

i,j=±1
uh(A 1

2
(5+2j−ij))(1 + iα)(1 + jβ).

To compute the solutions of of the problems (10) and (11), in a general case
we de�ne the indicator function ε̄h on each �nite element Q in the local manner

ε̄h|Q = ε̄Q(α, β) := λQφQ(α, β) ∈ Eh(Q) ∀(α, β) ∈ Q0, λQ ∈ R, (12)
where φQ(α, β) is the quadratic function on master element Q0. Then, from
local problem (10) or (11) we can obtain the coe�cients λQ on each �nite
element of the following general kind

λQ =
〈ρ[uh], φQ〉

b(uh; φQ, φQ)
∀Q ∈ Th,

and de�ne the element error indicator η̄Q and the global error estimation ‖ε̄h‖1,Ω

η̄Q = ‖ε̄Q‖1,Q = |λQ| ‖φQ‖1,Q ∀Q ∈ Th, ‖ε̄h‖2
1,Ω =

∑
Q∈Th

η̄2
Q ∀Th.

From the general view of error estimator (12) we construct the following
Dirihlet estimator{

ε̄Dir
Q (α, β) = λDir

Q φDir
Q (α, β) = λDir

Q (1− α2)(1− β2) ∈ EDir
h

∀(α, β) ∈ Q0, Φ : Q0 → Q, λDir
Q ∈ R, ∀Q ∈ Th,

(13)
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and Neuman estimator{
ε̄Neu
Q (α, β) = λNeu

Q φNeu
Q (α, β) = λNeu

Q [1− 1
2(α2 + β2)] ∈ ENeu

h

∀(α, β) ∈ Q0, Φ : Q0 → Q, λNeu
Q ∈ R, ∀Q ∈ Th,

(14)

see also Fig.1.

Fig. 1. Indicator functions: φDir
Q (α, β) = (1−α2)(1−β2) (left),

φNeu
Q (α, β) = 1− 0.5(α2 + β2) (right)

6. Convergence analysis of numerical results
To investigate abilities and features of the constructed Dirihlet εDir

h (13)
and Neuman εNeu

h (14) AEEs, we solve the model problems with known exact
solutions. We present results of the numerical experiments for bilinear �nite
elements approximations on uniform quadrilateral meshes.
Example 1. Problem with Helmholtz equation

{
−∆u− 104u = f in Ω = (0, 1)2,

u = 0 on ∂Ω,

that has the exact solution u(x) = sin(3πx) sin(3πy).
At �rst we solve this problem using bilinear approximation on 10×10 quadri-

lateral mesh to illustrate the exact solution, it's approximation, error magnitude
and distribution, see Fig. 2.

Fig. 2. Plot of the exact solution u (left), it's approximation uh

(middle) and the error |u− uh| (right) on 10× 10 quadrilateral
mesh for Example 1
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Fig. 2 shows that even coarse 10× 10 quadrilateral mesh gives the approxi-
mation with a good precision. But what about a posteriori estimation of this
solving precision? To explore the bilinear approximations error and it's esti-
mation more precisely, hereinafter we construct the convergence tables which
include numerical results for uniform meshes with the variable mesh size h
by rows. The columns of this tables correspond to the following character-
istics: k denotes the re�nement step of the solution process with estimation,
Nod Th is the number of nodes in the mesh, Card Th is the number of �nite
elements in the mesh, ε := ‖u − uh‖1,Ω‖u‖−1

1,Ω100% is the exact relative error,
εDir
h := ‖εDir

h ‖1,Ω‖uh‖−1
1,Ω100% is the relative error estimate by Dirihlet AEE,

εNeu
h := ‖εNeu

h ‖1,Ω‖uh‖−1
1,Ω100% is the relative error estimate by Neuman AEE,

κDir := ‖εDir
h ‖1,Ω‖u−uh‖−1

1,Ω is the e�ciency index of the Dirihlet error estima-
tor, κNeu := ‖εNeu

h ‖1,Ω‖u− uh‖−1
1,Ω is the e�ciency index of the Neuman error

estimator,

pDir := 2
ln ‖εDir

h,k ‖1,Ω − ln ‖εDir
h,k+1‖1,Ω

ln Mk+1 − lnMk
, pNeu := 2

ln ‖εNeu
h,k ‖1,Ω − ln ‖εNeu

h,k+1‖1,Ω

ln Mk+1 − lnMk

denote the convergence rate of the Dirihlet and Neuman error estimators norms
correspondingly.

Tabl. 1. Convergence of bilinear approximations, it's errors
and a posteriori error estimators (13), (14) for Example 1 on
uniform quadrilateral meshes

k Nod Th Card Th εDir
h ε εNeu

h κDir κNeu pDir pNeu

1 1 681 1 600 8.025 6.796 66.045 1.19 1.73 - -
2 6 561 6 400 3.268 3.393 9.336 0.96 2.77 1.3 3.2
3 25 921 25 600 1.568 1.696 3.638 0.93 2.16 1.1 1.4
4 103 041 102 400 0.776 0.848 1.725 0.92 2.04 1.0 1.1
5 410 881 409 600 0.387 0.424 0.851 0.91 2.01 1.0 1.0
6 1 640 961 1 638 400 0.194 0.212 0.424 0.91 2.00 1.0 1.0

Table 1 shows that the e�ciency index κDir is less then 1.0 and κNeu is
greater then 1.0. It means that Dirihlet (13) and Neuman (14) estimators
provide the lower and upper bounds of exact error correspondingly. The same
result can be observed for the relative errors ε, εDir

h and εNeu
h . Simultaneously,

the e�ciency indices are in a close neighbourhood of 1.0 and, consequently, are
close to each other. So the constructed a posteriori error estimators provide a
narrow interval that contain an exact error. The convergence rates pDir and
pNeu are equal to the expected theoretical rate 1.0. Note that, hereinafter,
all conclusions from the convergence tables are true for su�cient �ne meshes
and, consequently, small approximation errors. In other words, they are true
starting from certain table row.
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Example 2. Problem with a boundary layer{
−10−2∆u + {2, 3}.∇u = f in Ω = (0, 1)2,

u = 0 on ∂Ω,

with the solution u(x, y) = xy2 − y2g(2, x) + g(3, y)[g(2, x) − x], g(γ, t) :=
exp(102γ(t− 1)).

This problem is singularly perturbed with Peclet number Pe = 361. That is
why we solve it on more �ne mesh with 40× 40 quadrilaterals.

Fig. 3. Plot of the exact solution u (left), it's approximation uh

(middle) and the error |u− uh| (right) on 40× 40 quadrilateral
mesh for Example 2

Fig. 3 shows that the largest errors are concentrated in the boundary layer
and a global error still large for such mesh density.

Now we create the following convergence table by the similar way as the
previous

Tabl. 2. Convergence of bilinear approximations, it's errors
and a posteriori error estimators (13), (14) for Example 2 on
uniform quadrilateral meshes

k Nod Th Card Th εDir
h ε εNeu

h κDir κNeu pDir pNeu

1 1 681 1 600 78.972 104.717 94.245 1.2 2.7 - -
2 6 561 6 400 54.332 76.446 81.712 0.8 1.9 1.0 1.0
3 25 921 25 600 30.804 45.964 57.855 0.7 1.5 1.0 1.0
4 103 041 102 400 15.981 24.446 33.427 0.7 1.5 1.0 1.0
5 410 881 409 600 8.068 12.432 17.461 0.7 1.4 1.0 1.0
6 1 640 961 1 638 400 4.044 6.243 8.832 0.6 1.4 1.0 1.0

Table 2 con�rms the conclusions (see. Table 1) about two-sided error estimates
that are obtained by Dirihlet and Neuman AEEs. We also note that this
problem is more di�cult to solve and estimate an error than previous (Example
1.).
Example 3. Problem with two internal layers{

−µ∆u− (β1, β2).∇u = 0 in Ω = (0, 1)2,
u ≡ U on ∂Ω,
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with the solution U = U(x, y) = G[mβ1(x)+vβ2(y)]G[mβ2(y)−vβ1(x)], where
µ = 10−4, β1(x) = x − 0.6, β2(y) = y − 0.3, m = cos(π/6), v = sin(π/6),
G(z) = 0.5[1− erf(z/

√
2µ)].

The solution of this problem include two internal layers. Peclet number for
this singularly perturbed problem is approximately 8062.

Then, as before, we solve Example 1 on 40 × 40 mesh, plot exact solution,
it's approximation, error and calculate the convergence table.

Fig. 4. Plot of the exact solution u (left), it's approximation uh

(middle) and the error |u− uh| (right) on 40× 40 quadrilateral
mesh for Example 3

Fig. 4 shows that the largest errors are concentrated in the internal layers.
And the internal layers problem is less di�cult to solve than the previous prob-
lem with boundary layer despite the fact that Peclet number in the latter is by
one order of magnitude smaller.

Tabl. 3. Convergence of bilinear approximations, it's errors
and a posteriori error estimators (13), (14) for Example 3 on
uniform quadrilateral meshes

k Nod Th Card Th εDir
h ε εNeu

h κDir κNeu pDir pNeu

1 1 681 1 600 87.528 51.380 94.319 3.4 5.3 - -
2 6 561 6 400 29.316 22.044 51.412 1.4 2.7 2.5 2.2
3 25 921 25 600 8.565 10.136 17.955 0.8 1.8 1.8 1.7
4 103 041 102 400 4.106 5.057 8.896 0.8 1.8 1.1 1.0
5 410 881 409 600 2.055 2.529 4.489 0.8 1.8 1.0 1.0
6 1 640 961 1 638 400 1.028 1.264 2.251 0.8 1.8 1.0 1.0

Table 3 con�rms the two-sided error estimates for FEM approximations of
the internal layers problem in Example 3.
Example 4. Semi-linear problem [11]




−∆u = au3 + bu2 in Ω = (0, 1)2,
u ≡ U on sides x = 1, y = 1;

∇u.ν ≡ 0 on sides x = 0, y = 0,

with the solution U = (sin r2 + 2)−1 and the coe�cients r2 = l2(x2 + y2),
a = −8l2r2 cos2 r2, b = 4l2(cos r2 − r2 sin r2), l = 3.0.
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Finally, we demonstrate that the devised AEEs and FEM schemes are suit-
able to solve the semi-linear problems, see Fig. 5 and Table 4.

Fig. 5. Plot of the exact solution u (left), it's approximation uh

(middle) and the error |u− uh| (right) on 40× 40 quadrilateral
mesh for Example 4

Tabl. 4. Convergence of bilinear approximations, it's errors
and a posteriori error estimators (13), (14) for Example 4 on
uniform quadrilateral meshes

k Nod Th Card Th εDir
h ε εNeu

h κDir κNeu pDir pNeu

1 1 681 1 600 10.857 18.234 23.704 0.5 1.2 - -
2 6 561 6 400 5.577 7.869 12.210 0.7 1.5 0.9 0.9
3 25 921 25 600 2.812 3.590 6.159 0.8 1.7 1.0 1.0
4 103 041 102 400 1.409 1.739 3.087 0.8 1.8 1.0 1.0
5 410 881 409 600 0.705 0.862 1.544 0.8 1.8 1.0 1.0
6 1 640 961 1 638 400 0.353 0.430 0.772 0.8 1.8 1.0 1.0

7. Conlusions
In this paper we have constructed the Dirihlet and Neuman estimators for

two-sided error estimates of FEM approximations. This estimators are suit-
able for solving of the singularly perturbed and semi-linear di�usion-advection-
reaction problems with a priori set accuracy. We use the classic Galerkin
method with the piecewise linear bases of approximation spaces for uniform
quadrilateral meshes. The calculation of both error indicators requires only
the interior residual in the quadrilateral. The e�ciency and reliability of the
proposed Dirihlet and Neuman error estimators are shown by the numerical re-
sults for the boundary value problem with semi-linearity, Helmholtz equation,
a boundary and interior layers.

Finally, the suggested Dirihlet and Neuman error estimators can be nat-
urally extended to 3D case. We assume that the domain Ω ∈ R3 is parti-
tioned into �nite hexahedral elements {H}. Then, for the 'master element'
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H0 = {(α, β, γ) ∈ R3 : |α|, |β|, |γ| ≤ 1} we obtain the local Dirihlet




eDir
H (α, β, γ) =

〈ρ[uh], φDir
H (α, β, γ)〉

b(uh;φDir
H (α, β, γ), φDir

H (α, β, γ))
φDir

H (α, β, γ),

φDir
H (α, β, γ) = 1− 1

2(α2 + β2 + γ2) ∀(α, β, γ) ∈ H0,

and Neuman



eNeu
H (α, β, γ) =

〈ρ[uh], φNeu
H (α, β, γ)〉

b(uh; φNeu
H (α, β, γ), φNeu

H (α, β, γ))
φNeu

H (α, β, γ),

φNeu
H (α, β, γ) = (1− α2)(1− β2)(1− γ2) ∀(α, β, γ) ∈ H0,

estimators, where H is the arbitrary �nite hexahedral element from the parti-
tion {H} which is obtained from the master element H0 using an appropriate
mapping Ψ : H0 → H.
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