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EXPONENTIALLY CONVERGENT METHOD FOR INTEGRAL
NONLOCAL PROBLEM FOR THE ELLIPTIC EQUATION

IN BANACH SPACE

Vitaliy Vasylyk

Ðåçþìå. Ðîçãëÿäà¹òüñÿ íåëîêàëüíà çàäà÷à ç iíòåãðàëüíîþ óìîâîþ äëÿ
åëiïòè÷íîãî äèôåðåíöiàëüíîãî ðiâíÿííÿ ç íåîáìåæåíèì îïåðàòîðíèì êîå-
ôiöi¹íòîì â áàíàõîâîìó ïðîñòîði. Ïîáóäîâàíî òà îáãðóíòîâàíî åêñïîíåí-
öiéíî çáiæíèé ÷èñåëüíèé ìåòîä äëÿ íàáëèæåíîãî ðîçâ'ÿçêó â ïðèïóùåííi,
ùî îïåðàòîðíèé êîåôiöi¹íò A� ñåêòîðiàëüíèé òà âèêîíàíi óìîâè iñíóâàííÿ
òà ¹äèíîñòi ðîçâ'ÿçêó. Öåé àëãîðèòì áàçó¹òüñÿ íà çîáðàæåííi îïåðàòîðíèõ
ôóíêöié çà äîïîìîãîþ iíòåãðàëà Äàíôîðäà-Êîøi âçäîâæ ãiïåðáîëè, ùî
îõîïëþ¹ ñïåêòð A òà âèêîðèñòàííi âiäïîâiäíî¨ êâàäðàòóðíî¨ ôîðìóëè, ùî
ìiñòèòü íåâåëèêó êiëüêiñòü ðåçîëüâåíò. Åôåêòèâíiñòü çàïðîïîíîâàíîãî
àëãîðèòìó äåìîíñòðó¹òüñÿ íà ÷èñåëüíîìó ïðèêëàäi.
Abstract. Problem for the elliptic di�erential equation with an unbounded
operator coe�cient in Banach space and integral nonlocal condition is consid-
ered. An exponentially convergent algorithm is proposed and justi�ed for the
numerical solution of this problem under an assumption that operator coe�-
cient A is strongly positive and some existence and uniqueness conditions are
ful�lled. This algorithm is based on the representation of operator functions
by a Dunford-Cauchy integral along a hyperbola, enveloping the spectrum of
A, and on the proper quadratures involving small number of resolvents. The
e�ciency of the proposed algorithm is demonstrated on numerical example.

1. Introduction
Nonlocal boundary value problems naturally arise in mathematical modelling

of many problems in engineering, physics, chemistry. These problems are inter-
esting also from the point of view of mathematics as generalization of classical
boundary value problems. Despite of a big amount of articles devoted to the
nonlocal problems (see e.g. [1, 2, 7, 11]) and evidentially importance of such
problems, the construction of highly precision and fast algorithms for their
solution is still actual.

In this paper we consider the following nonlocal problem with integral con-
dition:

d2u

dx2
−Au = 0, x ∈ [0, X]

u(0) = 0,
∫ 1

0
w(s)u(s)ds + u(1) = u1,

(1)

Key words. Nonlocal problem, di�erential equation with an operator coe�cient in Banach
space, exponentially convergent algorithms, nonlocal integral condition, elliptic equation.
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where w(s) ≥ 0 is a given function, u1 ∈ X. The operator A with the domain
D(A) in a Banach space X is assumed to be densely de�ned strongly positive
(sectorial) operator, i.e. its spectrum Σ(A) lies in a sector of the right half-plane
with the vertex at the origin. The resolvent of A decays inversely proportional
to |z| at the in�nity (see estimate (6) below).

Inhomogeneous problem related to (1) can be reduced to the homogeneous
one by change of function in the following way. If we have

d2u

dx2
−Au = f(x), x ∈ [0, X]

u(0) = u0,∫ 1

0
w(s)u(s)ds + u(1) = u1,

(2)

with f(x) being vector-valued function in the Banach space X then by putting
u(x) = v(x) + v1(x), where

v1(x) = sinh(
√

A(1− x)) sinh−1(
√

A)u0 +

1∫

0

G(x, s; A)f(s)ds,

G(x, s;A) is a Green's function

G(x, s; A) = [
√

A sinh
√

A]−1

{
sinh(x

√
A) sinh((1− s)

√
A) x ≤ s,

sinh(s
√

A) sinh((1− x)
√

A) x ≥ s
.

we obtain the following problem for u(x)

d2v

dx2
−Av = 0, x ∈ (0, 1)

v(0) = 0,
∫ 1

0
w(s)v(s)ds + v(1) = u1 − Φ,

with

Φ =

1∫

0

w(s)v1(s)ds.

Note that an exponentially convergent numerical approximation for v1(x)
was developed in [6], [5]. So, one can use this approximation to obtain v1(x)
and then to �nd Φ.

It should be remark that various exponentially convergent methods were de-
veloped recently for problems with unbounded coe�cients in Banach space [9],
[6], [10], [12], [14], [17], [18]. These problems can be considered as metamodels
of classical problems for partially di�erential equations such as parabolic elliptic
and hyperbolic.

The aim of this paper is to construct an exponentially convergent approx-
imation of a solution to problem (1). The paper is organized as follows. In
Section 2 we discuss the existence and uniqueness of the solution as well as
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its representation through input data. A numerical algorithm for problem (1)
is proposed and justi�ed in section 3. The main result of this section is the-
orem 1 about the exponential convergence rate of the proposed discretization.
The next section 4 is devoted to numerical examples which con�rms theoretical
results from the previous section.

2. Existence and representation of the solution
The solution of (1) can be formally represented as follows (see [5], [6]):

u(x) = E(x,
√

A)u(1) = E(x,
√

A)
[
u1 −

∫ 1

0
w(s)u(s)ds

]
. (3)

where
E(x,

√
A) = sinh(

√
Ax) sinh−1(

√
A).

From the integral condition in (1) and formula (3) we obtain
∫ 1

0
w(s)u(s)ds =

∫ 1

0
w(s)E(s,

√
A)ds

[
u1 −

∫ 1

0
w(s)u(s)ds

]
,

or
∫ 1

0
w(s)u(s)ds =

[
I +

∫ 1

0
w(s)E(s,

√
A)ds

]−1 ∫ 1

0
w(s)E(s,

√
A)dsu1,

in the case when
[
I +

∫ 1
0 w(s)E(s,

√
A)ds

]−1
exists (su�cient conditions for

the existence of this operator will be discussed later). Here I is the identity
operator. So, we have

u(x) =E(x,
√

A)
[
I +

∫ 1

0
w(s)E(s,

√
A)ds

]−1

u1 (4)

Let the operator A from (1) be a densely de�ned strongly positive (sectorial)
operator in a Banach space X with the domain D(A), i.e. its spectrum Σ(A)
is situated in a sector Σ

Σ =
{

z = ρ0 + reiθ : r ∈ [0,∞), ρ0 > 0 |θ| < ϕ <
π

2

}
. (5)

Additionally, the following estimate for the resolvent of A is valid

‖RA(z)‖ =
∥∥(zI −A)−1

∥∥ ≤ M

1 + |z| (6)

outside the sector and on its boundary ΓΣ. The numbers ρ0, ϕ are called the
spectral characteristics of A.

We call the curve Γ0 a spectral hyperbola:
Γ0 = {z(ζ) = ρ0 cosh ζ − ib0 sinh ζ : ζ ∈ (−∞,∞), b0 = ρ0 tanϕ}. (7)

It has a vertex at (ρ0, 0) and asymptotes that are parallel to the rays of the
spectral angle Σ.

A convenient representation of operator functions is the one through the
Dunford-Cauchy integral (see e.g. [3, 8]) where the integration path plays an
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important role. Using the Dunford-Cauchy integral representation and (4) the
solution to problem (1) can be written down as

u(x) =
1

2πi

∫

ΓI

E(x,
√

z)

1 +
∫ 1
0 w(s)E(s,

√
z)ds

RA(z)u1dz = (8)

=
1

2πi

∫

ΓI

F (x, z)RA(z)u1dz,

if F (x, z) is analytic function inside the integration hyperbola ΓI that envelopes
Γ0. To obtain uniformly convergent and numerically stable algorithm we shall
modify this integral by changing the resolvent RA(z) to R1

A(z) that doesn't
change the value of integral when u0 ∈ D(Aα), α > 0 (for the details see
[4],[6]).

R1
A(z) = (zI −A)−1 − I

z
.

Therefore, one can obtain the following representation for the solution to prob-
lem (1):

u(x) =
1

2πi

∫

ΓI

F (x, z)R1
A(z)u1dz. (9)

We choose the following hyperbola
ΓI = {z(ζ) = aI cosh ζ − ibI sinh ζ : ζ ∈ (−∞,∞)}, (10)

for an integration contour that envelopes the spectrum of A, where the values
of aI , bI are to be de�ned later. Using this hyperbola, we obtain from (9)

u(x) =
1

2πi

∫ ∞

−∞
F (x, z(ζ))R1

A(ζ)z′(ζ)u1dζ =
∫ ∞

−∞
F(x, ζ)dζ, (11)

with
z′(ζ) = aI sinh ζ − ibI cosh ζ.

The next step toward a numerical algorithm is an approximation of (11) by
an e�cient quadrature formula. For this purpose we need to estimate the width
of a strip around the real axis where the integrand in (11) admits analytical
extension (with respect to ζ). The integration hyperbola ΓI will be translated
into the parametric set of hyperbolas with respect to ν after changing ζ to ζ+iν

Γ(ν) = {z(ζ, ν) = aI cosh (ζ + iν)− ibI sinh (ζ + iν) : ζ ∈ (−∞,∞)}
= {z(ζ, ν) = a(ν) cosh ζ − ib(ν) sinh ζ : ζ ∈ (−∞,∞)},

with
a(ν) = aI cos ν + bI sin ν =

√
a2

I + b2
I sin (ν + φ/2),

b(ν) = bI cos ν − aI sin ν =
√

a2
I + b2

I cos (ν + φ/2),

cos
φ

2
=

bI√
a2

I + b2
I

, sin
φ

2
=

aI√
a2

I + b2
I

.

The analyticity of the integrand in the strip
Dd1 = {(ζ, ν) : ζ ∈ (−∞,∞), |ν| < d1/2},
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with some d1 could be violated if the resolvent or the part related to the nonlocal
condition become unbounded. To avoid this we have to choose d1 in a way such
that for ν ∈ (−d1/2, d1/2) the hyperbola Γ(ν) remains in the right half-plane
of the complex plane. For ν = −d1/2 the corresponding hyperbola is going
through the point (ρ1, 0), for some 0 ≤ ρ1 < ρ0. For ν = d1/2 it coincides with
the spectral hyperbola and therefore for all ν ∈ (−d1/2, d1/2) the set Γ(ν) does
not intersect the spectral sector. For ν = 0 we have Γ(0) = ΓI .

Such requirements for Γ(ν) imply the following system of equations




aI cos (d1/2) + bI sin (d1/2) = ρ0,

bI cos (d1/2)− aI sin (d1/2) = b0 = ρ0 tanϕ,

aI cos (−d1/2) + bI sin (−d1/2) = ρ1,

from where we obtain

d1 = arccos

(
ρ1√

ρ2
0 + b2

0

)
− ϕ, (12)

with cosϕ = ρ0√
ρ2
0+b20

, sinϕ = b0√
ρ2
0+b20

,

aI =
√

ρ2
0 + b2

0 cos
(

d1

2
+ ϕ

)
= ρ0

cos
(

d1
2 + ϕ

)

cosϕ
,

bI =
√

ρ2
0 + b2

0 sin
(

d1

2
+ ϕ

)
= ρ0

cos
(

d1
2 + ϕ

)

cosϕ
.

(13)

For aI and bI de�ned as above the resolvent of the operator A is analytic in
the strip Dd1 with respect to w = ζ + iν for any t ≥ 0. Note, that for ρ1 = 0
we have d1 = π/2− ϕ as in [4].

Taking into account (13) we can similarly write the equations for a(ν), b(ν)
on the whole interval −d1

2 ≤ ν ≤ d1
2

a(ν) = aI cos ν + bI sin ν =
√

ρ2
0 + b2

0 cos
(

d1

2
+ ϕ

)
cos(ν)

+
√

ρ2
0 + b2

0 sin
(

d1

2
+ ϕ

)
sin(ν) =

√
ρ2
0 + b2

0 cos
(

d1

2
+ ϕ− ν

)
,

b(ν) = bI cos ν − aI sin ν =
√

ρ2
0 + b2

0 sin
(

d1

2
+ ϕ

)
cos(ν)

−
√

ρ2
0 + b2

0 cos
(

d1

2
+ ϕ

)
sin(ν) =

√
ρ2
0 + b2

0 sin
(

d1

2
+ ϕ− ν

)
,

ρ1 ≤ a(ν) ≤ ρ0, b0 ≤ b(ν) ≤
√

b2
0 + ρ2

0 − ρ2
1,

with d1, de�ned by (12).
Now, let us establish a condition on w(s), that guaranties the existence

of operator related to nonlocal condition from (4). For this to be true the
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expression [
1 +

∫ 1

0
w(s)E(s,

√
z)ds

]

related to nonlocal condition have to be bounded away from zero inside the
integration hyperbola ΓI .

∣∣∣∣1 +
∫ 1

0
w(s)E(s,

√
z(ζ))ds

∣∣∣∣ ≥ 1−
∣∣∣∣
∫ 1

0
w(s)E(s,

√
z(ζ))ds

∣∣∣∣ ≥

≥ 1− ‖w(s)‖C[0,1]

∫ 1

0
|E(s,

√
z(ζ))|ds ≥ 1− ‖w(s)‖C[0,1]

∫ 1

0

cosh(s
√

aI)
sinh(

√
aI)

ds =

= 1− ‖w(s)‖C[0,1]√
aI

,

because (see [16]) ∣∣∣∣∣
sinh(

√
z(ζ)x)

sinh(
√

z(ζ))

∣∣∣∣∣ ≤
cosh (x

√
aI)

sinh
√

aI
.

Similarly to above one can obtain more rough estimate
∣∣∣∣1 +

∫ 1

0
w(s)E(s,

√
z(ζ))ds

∣∣∣∣ ≥ 1− ‖w(s)‖C[0,1]

∫ 1

0

cosh(s
√

aI)
sinh(

√
aI)

ds ≥

≥ 1− ‖w(s)‖C[0,1]

sinh(
√

aI)

Therefore, we have
∣∣∣∣1 +

∫ 1

0
w(s)E(s,

√
z(ζ))ds

∣∣∣∣
−1

≤ C1,

in the case when
‖w(s)‖C[0,1] <

√
aI , (14)

or, alternatively
‖w(s)‖C[0,1] <

√
aI , (15)

where aI is de�ned in (13).
So, we can summarize all of the above in the following lemma.

Lemma 1. Let A be a densely de�ned strongly positive operator. If one of the
conditions (14) or (15) is valid then there exists a unique solution to problem
(1) that can be represented by (9).

Further, let us establish conditions for the existence of the solution to (1)
in the case when the operator A is self-adjoint positive de�nite. To achieve
that we have to choose d1 in a way that for ν ∈ (−d1/2, d1/2) the hyperbola
Γ(ν) remains in the right half-plane of complex plane. For ν = −d1/2 the
corresponding hyperbola turns into the line parallel to the imaginary axis. For
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ν = d1/2 it coincides with the ray that lies on the real axis having a vertex at
ρ0. These requirements imply the following system of equations





aI cos (d1/2) + bI sin (d1/2) = ρ0,

bI cos (d1/2)− aI sin (d1/2) = 0,

aI cos (−d1/2) + bI sin (−d1/2) = 0,

which has the solution
aI = bI =

ρ0√
2
,

d1 =
π

2
The condition (14) then becomes

‖w(s)‖C[0,1] <

√
ρ0√
2
, (16)

that is su�cient condition of existence solution to (1) in the case of self-adjoint
positive operator A.

3. Numerical algorithm
First of all we approximate integral

∫ 1
0 w(s)E(s,

√
z)ds in (8) using expo-

nentially convergent quadrature. For such approximation one can uses Gauss,
Clenshaw-Curtis or Sinc quadrature formulas for integrals over bounded inter-
vals. For analytical integrands these quadratures provide exponential rate of
convergence. The Gauss quadrature is of the order O(ρ−2n) and the Clenshaw-
Curtis quadrature is of the order O(ρ−n) where ρ is the sum of the semiminor
and semimajor axis lengths of Bernstein ellipse [15]. The Sinc quadrature has
the rate of convergence of the order O(e−

√
n) [13] and are well suited for inte-

grals over unbounded intervals. Its convergence order may be either O(e−
√

n)
or O(e−n/ ln n) depending on the analytical properties of integrands. We use
the Gauss quadrature for the integral

I =
∫ 1

0
w(s)E(s,

√
z(ζ))ds ≈ 1

2

n∑

j=0

ωjw(ξj)E(ξj ,
√

z(ζ)) = In, (17)

ξj =
1
2
(θj + 1),

where {θj} is a set of n+1 roots of the Legendre polynomial Pn+1(x) and {ωj}
is a set of weights related to the Gauss quadrature rule. Note that θj and ωj

can be precomputed using fast algorithms (see [15]).
Therefore we obtain from (11)

u(x) ≈ un(x) =
1

2πi

∫ ∞

−∞
Fn(x, z(ζ))z′(ζ)R1

A(ζ)u1dζ =
∫ ∞

−∞
Fn(x, ζ)dζ, (18)

where

Fn(z(ζ), A) =
E(x,

√
z(ζ))

1 + In
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For the error estimate we have∣∣∣∣
1

1 + I −
1

1 + In

∣∣∣∣ =
∣∣∣∣

I − In

(1 + I)(1 + In)

∣∣∣∣ .

Due to (14) we have
1

|1 + I| ≤ C.

1
|1 + In| ≤

1

1−
∣∣∣∣∣
1
2

n∑
j=0

ωjw(ξj)E(ξj ,
√

z(ζ))

∣∣∣∣∣

≤

≤ 1

1− ‖w(s)‖C[0,1]

2

n∑
j=0

ωjE(ξj ,
√

z(ζ))
≤ 1

1− ‖w(s)‖C[0,1]

sinh
√

aI

≤ c = const, (19)

in the case when (15) is valid. Consequently we arrive at the estimate
∣∣∣∣

1
1 + I −

1
1 + In

∣∣∣∣ ≤ c |I − In| .

Normalized hyperbolic sin-function E(x, z) is analytical with respect to x in
all complex plane. So, smoothness of the integrand in I is governed by w(s).
Using theorem 19.3 from [15] we can deduce that if w(1

2(s + 1)) is analytic
in [−1, 1] and analytically continuable to the open Bernstein ellipse where∣∣w(1

2(s + 1))E(1
2(s + 1), z)

∣∣ ≤ M then

|I − In| ≤ 144Mρ−2n

35(ρ2 − 1)
, n ≥ 2. (20)

If w(s) and its derivatives up to w(ν−1) are absolutely continuous and w(ν) has
a bounded variation V then

|I − In| ≤ 32V
15πν(n− 2ν − 1)2ν+1

, n > 2ν + 1. (21)

Supposing u1 ∈ D(Aα), 0 < α < 1 it was shown in [6] that
∥∥∥E(x,

√
z(ζ))z′(ζ)R1

A(ζ)u1

∥∥∥ ≤ (1 + M)K
bI

1− e−2
√

aI

(
2
aI

)1+α

×

× e(x−1)
√

aI cosh ξ−α|ξ|‖Aαu1‖,
ξ ∈ R, x ∈ (0, 1],

(22)

where K is a constant that depends on α, M is a constant from resolvent
estimate (6).

The part responsible for the nonlocal condition in (18) is estimated by (19).
Thus, we obtain the following estimate for Fn(x, ξ):

‖Fn(x, ζ)‖ ≤ C(ϕ, α)e(x−1)
√

aI cosh ξ−α|ξ|‖Aαu1‖,

C(ϕ, α) = (1 + M)qK
bI

1− e−2
√

aI

(
2
aI

)1+α

, ζ ∈ R, x ∈ (0, 1].
(23)
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Next we approximate integral (18) by the Sinc-quadrature formula [6, 13]:

un,N (x) = h

N∑

k=−N

Fn(x, z(kh)), (24)

with the error
‖ηN (Fn, h)‖ = ‖un(x)− un,N (x)‖

≤
∥∥∥∥∥un(x)− h

∞∑

k=−∞
Fn(x, z(kh))

∥∥∥∥∥ +

∥∥∥∥∥∥
h

∑

|k|>N

Fn(x, z(kh))

∥∥∥∥∥∥

≤ 1
4π

e−πd/h

sinh (πd/h)
‖Fn‖H1(Dd)

+
C(ϕ, α)h‖Aαu1‖

2π

∞∑

k=N+1

e(x−1)
√

aI cosh (kh)−αkh.

Here H1(Dd) is a space of all vector-valued functions F analytic in the strip
Dd introduced similarly to [13] in [6]. Due to [6]

‖E(x,
√

z(ζ))z′(ζ)R1
A(ζ)u1‖H1(Dd1

) ≤ ‖Aαu1‖[C−(ϕ, α)

+ C+(ϕ, α)]
∫ ∞

−∞
e−α|ξ|dξ = C(ϕ, α)‖Aαu1‖

(25)

with
C(ϕ, α) =

2
α

[C+(ϕ, α) + C−(ϕ, α)],

C±(ϕ, α) = c tan
(

d1

2
+ ϕ± d1

2

)
 2 cos ϕ

ρ0 cos
(

d1
2 + ϕ± d1

2

)



α

.

d = d1 − δ,

for an arbitrary small positive δ.
It is obvious that in the case of (15) the part responsible for the nonlocal

condition is bounded in Dd. It allows us to obtain
‖Fn(x, ·)‖H1(Dd) ≤ C(ϕ, α, δ)‖Aαu1‖.

So, we end up with the error for ηN (Fn, h)

‖ηN (Fn, h)‖ ≤ c‖Aαu1‖
α

{
e−

πd1
h

sinh (πd1
h )

+ e(x−1)
√

aI cosh (
(N+1)h

2
)−α(N+1)h

}
(26)

where the constant c does not depend on h, N , x.
Equalizing both exponentials gives us

πd1

h
= α(N + 1)h,

h =

√
πd1

α(N + 1)
, (27)
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this leads to the following error estimate

‖ηN (Fn, h)‖ ≤ c

α
e
(
−
√

πd1α(N+1)
)
‖Aαu1‖ (28)

The �rst summand in the argument of e(x−1)
√

aI cosh (
(N+1)h

2
)−α(N+1)h from

(26) contributes mainly to the error in the case x < 1. Setting for such case
h = c1 lnN/N with some positive constant c1 we obtain for a �xed x the
following estimate:
‖ηN (Fn, h)‖ ≤ c

[
e−πd1N/(c1 ln N) + e−c1(x−1)

√
aIN/2−c1α ln N

]
‖Aαu1‖. (29)

Thus, we have proven the following theorem.
Theorem 1. Let A be a densely de�ned strongly positive operator, u1 ∈ D(Aα),
α ∈ (0, 1) and condition (15) is valid. Then Sinc-quadrature (24) represents
an approximation to un(x). It provides the convergence of exponential order
uniformly with respect to x presented by estimate (28) for the step size h de�ned
in (27). The approximation has the convergence rate (29) for the case x < 1
and h = c1 lnN/N .
Remark 5. The integration curve ΓI is symmetric with respect to the real axis.
Therefore z(−kh) = z(kh) and z′(−kh) = −z′(kh). Approximation (24) can
be rewritten in the form

un,N (x) =
h

2πi
Fn(x, z(0)) + Re

[
N∑

k=1

h
Fn(x, z(kh))

πi

]
,

which reduce the number of resolvent calculations by the factor of two.
Now we can turn our attention to the full error estimate.

ε1 = ‖u(x)− un(x)‖ =
∥∥∥∥
∫ ∞

−∞
[F(x, ζ)−Fn(x, ζ)] dζ

∥∥∥∥ ≤

1
2π

∫ ∞

−∞

∣∣∣E(x,
√

z(ζ))z′(ζ)
∣∣∣
∣∣∣∣
I

1 + I −
In

1 + In

∣∣∣∣
∥∥R1

A(ζ)u1

∥∥ dζ,

By virtue of (22) it can be transformed to

ε1 =
(1 + M)KbIc

1− e−2
√

aI

(
2
aI

)1+α

‖Aαu1‖ |I − In|
∫ ∞

−∞
e(x−1)

√
aI cosh ζ−α|ζ|dζ ≤

≤ 2(1 + M)KbIc

1− e−2
√

aI

(
2
aI

)1+α

‖Aαu1‖ |I − In|
∫ ∞

0
e−α|ζ|dζ =

= C ‖Aαu1‖ |I − In| .
Then for the full error estimate we have

‖u(x)− un,N (x)‖ ≤ ε1 + ‖ηN (Fn, h)‖ . (30)
It allows us to formulate the main theorem.

Theorem 2. Let the conditions of theorem 1 be valid. Then (24) represents
an approximation to u(x). It provides the convergence of exponential order in
the case when w(x) is analytically continuable to the Bernstein ellipse.
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4. Numerical examples
Example 1. Let us consider the problem (1) with the operator A de�ned by

D(A) = {v(y) ∈ H2(0, 1) : v(0) = v(1) = 0},
Av = −v′′(y) ∀v ∈ D(A),

(31)

that generates a homogeneous parabolic equation with boundary conditions
∂2u(x, y)

∂x2
− ∂2u(x, y)

∂y2
= 0,

u(x, 0) = u(x, 1) = 0.

Let us supplement this problem with a boundary condition
u(0, y) = 0,

and nonlocal integral condition

u(1, 0) +
∫ 1

0
sin(πs)u(s, y)ds = sinh(π)

1 + 2π
2π

sin(πy).

In this case the exact solution to the problem is u(x, y) = sinh(πx) sin(πy).
We have performed calculations using Maple. The errors are presented in Table
1 for di�erent number of quadrature points n (17) and number of Sinc-points N
(24). The table clearly demonstrates the exponential decay of error according
to the theoretical estimate (30).

Tabl. 1. The error for x = 0.5, y = 0.5

n
N 4 8 16
4 0.869502080695972
8 0.351883285832682 0.351901023526236257
16 0.017266161343386 0.017307693141547764 0.0173076931433691542
32 0.000071497193928 0.000038004847747042 0.0000380048260057791
64 0.000033550806875 6.2833535266435186 ∗ 10−13 4.738853014104683 ∗ 10−13

128 1.5442654065186853 ∗ 10−13 3.847741101629530 ∗ 10−24

256 3.806256157045269 ∗ 10−34
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