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EXPONENTIALLY CONVERGENT METHOD FOR INTEGRAL
NONLOCAL PROBLEM FOR THE ELLIPTIC EQUATION
IN BANACH SPACE

VITALIY VASYLYK

PE3IOME. Po3risiiaerscst HeOKAIbHA 3334 3 IHTErpaAJIbHOI0 YMOBOIO ISt
eMITUIHOrO AudepeHIialbHOrO PIBHAHHS 3 HEOOMEXKEHUM OIePaTOPHUM KOe-
diniearom B 6anaxoBomy mpoctopi. IlobymoBamo Ta 0OrpyHTOBAHO €KCIIOHEH-
[ifHo 301KHUN YUCETbHUI METOT IS HAOIMKEHOT0 PO3B 3Ky B IIPUITYIIEHHI,
o oneparopauii Koedimient A— cekTopiaabHUN Ta BUKOHAHI yMOBU ICHYBaHHS
Ta equHOCTI po3B’a3Ky. lleil amropurm 6a3yerbea Ha 300parkeHH] OLI€PATOPHIX
dyukiit 3a gomomoroio interpasna Jardopaa-Komri B3m0Bxk rimepbosm, 1o
OXOILTIOE CrIeKTP A Ta BUKOpMCTaHHI BiANOBiIHOT KBaapaTypHOl (bopMysin, mo
MICTUTH HEBEJHKY KiIbKICTh Pe30sbBeHT. EdeKTUBHICTH 3aIIPOIIOHOBAHOIO
AJITOPUTMY JI€MOHCTDPYETHCS HA INCEJIHHOMY IIPUKJIAI.

ABSTRACT. Problem for the elliptic differential equation with an unbounded
operator coefficient in Banach space and integral nonlocal condition is consid-
ered. An exponentially convergent algorithm is proposed and justified for the
numerical solution of this problem under an assumption that operator coeffi-
cient A is strongly positive and some existence and uniqueness conditions are
fulfilled. This algorithm is based on the representation of operator functions
by a Dunford-Cauchy integral along a hyperbola, enveloping the spectrum of
A, and on the proper quadratures involving small number of resolvents. The
efficiency of the proposed algorithm is demonstrated on numerical example.

1. INTRODUCTION

Nonlocal boundary value problems naturally arise in mathematical modelling
of many problems in engineering, physics, chemistry. These problems are inter-
esting also from the point of view of mathematics as generalization of classical
boundary value problems. Despite of a big amount of articles devoted to the
nonlocal problems (see e.g. [1, 2, 7, 11]) and evidentially importance of such
problems, the construction of highly precision and fast algorithms for their
solution is still actual.

In this paper we consider the following nonlocal problem with integral con-
dition:

2
%—Auzo, x € [0, X]

u(0) =0, (1)
1
/0 w(s)u(s)ds +u(l) = uq,

Key words. Nonlocal problem, differential equation with an operator coefficient in Banach
space, exponentially convergent algorithms, nonlocal integral condition, elliptic equation.
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where w(s) > 0 is a given function, u; € X. The operator A with the domain
D(A) in a Banach space X is assumed to be densely defined strongly positive
(sectorial) operator, i.e. its spectrum Y (A) lies in a sector of the right half-plane
with the vertex at the origin. The resolvent of A decays inversely proportional
to |z| at the infinity (see estimate (6) below).

Inhomogeneous problem related to (1) can be reduced to the homogeneous
one by change of function in the following way. If we have

d?u
@—Au:f(m), x € [0, X]
u(0) = o, (2)

1
/0 w(s)u(s)ds +u(l) = uq,

with f(x) being vector-valued function in the Banach space X then by putting
u(z) = v(z) + v1(z), where

1
o1 () = sinh(VA(1 — 2)) sinh~ (v A)ug + / Gz, 5; A) [(s)ds,
0

G(z,s; A) is a Green’s function

o < _, | sinh(zv/A)sinh((1 — s)vV/A) = <s,
Gla, 5 4) = [VAsinh V4] {sinh(S\/Z) sinh((1 —z)VA) z>s

we obtain the following problem for u(x)

d?v
@—AUZO, 1’6(0,1)
v(0) =0,

1
/0 w(s)v(s)ds +v(l) = u; — P,

with
1
o = /w(s)vl(s)ds.
0

Note that an exponentially convergent numerical approximation for v(x)
was developed in [6], [5]. So, one can use this approximation to obtain v;(x)
and then to find ®.

It should be remark that various exponentially convergent methods were de-
veloped recently for problems with unbounded coefficients in Banach space [9],
[6], [10], [12], [14], [17], [18]. These problems can be considered as metamodels
of classical problems for partially differential equations such as parabolic elliptic
and hyperbolic.

The aim of this paper is to construct an exponentially convergent approx-
imation of a solution to problem (1). The paper is organized as follows. In
Section 2 we discuss the existence and uniqueness of the solution as well as
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its representation through input data. A numerical algorithm for problem (1)
is proposed and justified in section 3. The main result of this section is the-
orem 1 about the exponential convergence rate of the proposed discretization.
The next section 4 is devoted to numerical examples which confirms theoretical
results from the previous section.

2. EXISTENCE AND REPRESENTATION OF THE SOLUTION
The solution of (1) can be formally represented as follows (see [5], [6]):

u(z) = E(z, VA)u(l) = E(z, VA) {ul — /0 1 w(s)u(s)ds] . (3)

where
E(z,VA) = sinh(VAz) sinh~}(VA).

From the integral condition in (1) and formula (3) we obtain

/Olw(S)U(S)ds = /01 w(s)E(s,VA)ds [ul — /01 w(s)u(s)ds} ,

or
-1

/01 w(s)u(s)ds = [14- /01 w(S)E(s,\/Z)ds] /01 w(s)E(s,VA)dsuy,

-1
in the case when [I + fol w(s)E(s, \/Z)ds} exists (sufficient conditions for
the existence of this operator will be discussed later). Here I is the identity
operator. So, we have

-1

u(z) =E(z,VA) [I+ /O 1w(s)E(s, \/Z)ds} w1 (4)

Let the operator A from (1) be a densely defined strongly positive (sectorial)
operator in a Banach space X with the domain D(A), i.e. its spectrum X(A)
is situated in a sector X

E:{z:p0+rei9: rE[O,oo),po>O\9]<g0<g}. (5)
Additionally, the following estimate for the resolvent of A is valid
M

Ra(2)|| = ||(zI — A)7Y| < 6
IRAGN = (11 =7 < 1775 (6)
outside the sector and on its boundary I's. The numbers pg, ¢ are called the
spectral characteristics of A.

We call the curve I'y a spectral hyperbola:

Lo = {2(¢) = pocosh ¢ —ibgsinh( : ¢ € (—00,00), bg = potan}.  (7)

It has a vertex at (po,0) and asymptotes that are parallel to the rays of the
spectral angle X.

A convenient representation of operator functions is the one through the
Dunford-Cauchy integral (see e.g. [3, 8]) where the integration path plays an
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important role. Using the Dunford-Cauchy integral representation and (4) the
solution to problem (1) can be written down as

u(z) = — / B, vz) Ra(2)urdz = (8)

2w Jr, 1+ fol w(s)E(s,/2)ds
1
=5 . F(z,2z)Ra(2)u1dz,

if F(z, z) is analytic function inside the integration hyperbola I'; that envelopes
T'g. To obtain uniformly convergent and numerically stable algorithm we shall
modify this integral by changing the resolvent Ra(z) to RY(z) that doesn’t
change the value of integral when ug € D(A%), @ > 0 (for the details see

[4],[6]). ;
RY(2) = (2 — A1 — =
z
Therefore, one can obtain the following representation for the solution to prob-

lem (1):
1
u(r) = 5 . F(z,2)RY(2)u1dz. (9)
We choose the following hyperbola

'y ={2(¢) = aycosh{ —ibrsinh(: ¢ € (—o0,00)}, (10)

for an integration contour that envelopes the spectrum of A, where the values
of ar, by are to be defined later. Using this hyperbola, we obtain from (9)

1 o oo
uw) = 5 [ P sRYNO Qudc = [~ Flaode, ()
T oo oo
with
2'(¢) = aysinh ¢ — iby cosh (.

The next step toward a numerical algorithm is an approximation of (11) by
an efficient quadrature formula. For this purpose we need to estimate the width
of a strip around the real axis where the integrand in (11) admits analytical
extension (with respect to (). The integration hyperbola I'; will be translated
into the parametric set of hyperbolas with respect to v after changing ¢ to (+iv

I'(v) ={z(¢,v) = arcosh ({ + iv) — ibrsinh (¢ + iv) : ( € (—o00,00)}
= {z(¢,v) = a(v) cosh( —ib(v)sinh( : ¢ € (—o0,00)},

with
a(v) = aycosv + bysinv = a%+b%sin(y+¢/2)7
b(v) =brcosv —arsinv = mcos (v+¢/2),
cos?:bif Sin?—ail.

2 Ja242 2 a2

The analyticity of the integrand in the strip
Dg, ={(¢,v) : ¢ € (—00,00), [v| < d1/2},
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with some d; could be violated if the resolvent or the part related to the nonlocal
condition become unbounded. To avoid this we have to choose d; in a way such
that for v € (—d1/2,d;/2) the hyperbola I'(v) remains in the right half-plane
of the complex plane. For v = —d;/2 the corresponding hyperbola is going
through the point (p1,0), for some 0 < p; < po. For v = d;/2 it coincides with
the spectral hyperbola and therefore for all v € (—d1/2,d;/2) the set I'(v) does
not intersect the spectral sector. For v = 0 we have T'(0) =T';.
Such requirements for I'(v) imply the following system of equations

ay cos (d1/2) + brsin (d1/2) = po,
by cos (d1/2) — aysin (dy/2) = by = po tan @,
aycos (—d1/2) + brsin (—d1/2) = p1,

from where we obtain

P1
dy = arccos | —— | — ¢, (12)
<\/ o5+ b%)
£o in bo

withcosgpzm,a SD:\/M’

L[ da
cos | 5 + )
ar = Jph+ Wcos (L + ¢ =po<2 2,

2 cos @

di

/d cos<7+90)
br = \//%erﬁsm (1+4P) =po—— -

2 cos

For a; and by defined as above the resolvent of the operator A is analytic in
the strip Dy, with respect to w = ¢ + v for any ¢t > 0. Note, that for py =0
we have dy = 7/2 — p as in [4].

Taking into account (13) we can similarly write the equations for a(v), b(v)
on the whole interval —%1 <v< %1

(13)

d
a(v) = arcosv + brsinv = 1/ p2 + b cos (21 + (p> cos(v)
. dl . d1
+\/p(2]+bgsln<2+g0)sm(u):\/pg+bgcos<2+g01/>,
d
b(v) = brcosv — arsinv = \/p3 + b sin (21 +<,0> cos(v)
2 2 dl . 2 92 - dl
— 1/ pg + b cos ?—i—ap sin(v) = 1/ pg + b sin ?—i—gp—y,
pr<a(v) < po, b < b(v) < \/BF+ pg — i,

with dj, defined by (12).
Now, let us establish a condition on w(s), that guaranties the existence
of operator related to nonlocal condition from (4). For this to be true the
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o [1—|— /0 1w(s)E(s, \/E)ds}

related to nonlocal condition have to be bounded away from zero inside the
integration hyperbola I'y.

‘14—/0110() (5, \/2(0))ds

cosh(s )
> 1= et [ 186 Vs > 1~ o)l / e -

>1_]/ VAQ)ds| >

lw(s)[lc0,1)

-1— ,
Jai

because (see [16])

sinh(y/z(¢)x) <cosh(x\/a).
sinh(\/2(Q) |~ sinhyar

Similarly to above one can obtain more rough estimate

O

‘1 + /01 w(s)E(s, /2(0))ds

_ Iw(s)licp.
sinh( /at)
Therefore, we have
-1
< Cl:

'1 - () E(s, v/2(0)ds

in the case when

lw(s)llop,y < Var, (14)

or, alternatively

lw(s)lleo,y < Var, (15)
where ay is defined in (13).
So, we can summarize all of the above in the following lemma.

Lemma 1. Let A be a densely defined strongly positive operator. If one of the
conditions (14) or (15) is valid then there exists a unique solution to problem
(1) that can be represented by (9).

Further, let us establish conditions for the existence of the solution to (1)
in the case when the operator A is self-adjoint positive definite. To achieve
that we have to choose d; in a way that for v € (—dy/2,d1/2) the hyperbola
I'(v) remains in the right half-plane of complex plane. For v = —d;/2 the
corresponding hyperbola turns into the line parallel to the imaginary axis. For
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v =dy/2 it coincides with the ray that lies on the real axis having a vertex at
po- These requirements imply the following system of equations

aycos (d1/2) + brsin (d1/2) = po,
by cos (d1/2) —aysin (dy/2) =0,
aycos (—d1/2) 4+ brsin (—d;/2) =0,

which has the solution
ap = by = 22
V2
™
dl = 5
The condition (14) then becomes

P
lw(s)llcp, < 7%7 (16)

that is sufficient condition of existence solution to (1) in the case of self-adjoint
positive operator A.

3. NUMERICAL ALGORITHM

First of all we approximate integral folw(s)E(s, V/z)ds in (8) using expo-
nentially convergent quadrature. For such approximation one can uses Gauss,
Clenshaw-Curtis or Sinc quadrature formulas for integrals over bounded inter-
vals. For analytical integrands these quadratures provide exponential rate of
convergence. The Gauss quadrature is of the order O(p~2") and the Clenshaw-
Curtis quadrature is of the order O(p~") where p is the sum of the semiminor
and semimajor axis lengths of Bernstein ellipse [15]. The Sinc quadrature has
the rate of convergence of the order O(e~V™) [13] and are well suited for inte-
grals over unbounded intervals. Its convergence order may be either O(e=V")
or O(e="/™") depending on the analytical properties of integrands. We use
the Gauss quadrature for the integral

1 n
7= [ B VA OMs ~ 5 Y@ B VA =T (17
j=0

1
§ = 5(9]‘ +1),

where {6;} is a set of n+1 roots of the Legendre polynomial P,41(x) and {w;}
is a set of weights related to the Gauss quadrature rule. Note that 6; and w;
can be precomputed using fast algorithms (see [15]).

Therefore we obtain from (11)

u(e) ~ unle) = o [ R 2O OBy Qe = [ Fuw e, (15)
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For the error estimate we have

1 1| -1,
1+ 147, |0+D)Q+7T1,)|
Due to (14) we have
1
<C.
1+Z| —
1 1
< <
|1 —I—In| L&
1—13 Zoij(&)E(éj, V2(Q))
]:
< ! ! < ¢ = const 19
= S T Talegy < €= st (19)

1 - leleny Zoij(gj, V2(0Q) 1= Smbhyar

J:

in the case when (15) is valid. Consequently we arrive at the estimate
1 1

1+7 1+17,

<c|ZT-1,|.

Normalized hyperbolic sin-function E(x,z) is analytical with respect to z in
all complex plane. So, smoothness of the integrand in Z is governed by w(s).
Using theorem 19.3 from [15] we can deduce that if w(3(s + 1)) is analytic
in [-1,1] and analytically continuable to the open Bernstein ellipse where
{w(%(s +1)E(3(s +1), z)| < M then

144)M p=2"
T-T)|< sl n>2 (20)
35(0% — 1)
If w(s) and its derivatives up to w1 are absolutely continuous and w") has
a bounded variation V' then
32V

T-Tl S o e ML (21)

Supposing u; € D(A%), 0 < a < 1 it was shown in [6] that

B A RO <+ ar o (2)

ar
> e(mfl)\/aj cosh§7a|§\HAaul”7
EeR, ze€(0,1],

where K is a constant that depends on «, M is a constant from resolvent
estimate (6).

The part responsible for the nonlocal condition in (18) is estimated by (19).
Thus, we obtain the following estimate for F,(x,&):

[ Fn (2, Q)| < C(p, )elm=DVarcoshe=alely gog, ||,

(22)

Clpra) = (1+ M)gK — "1 2\ R N
(p,a) = (14 M)q 1= o2var \a; , CeR, ze(0,1].
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Next we approximate integral (18) by the Sinc-quadrature formula [6, 13]:
N
un (@) =h Y Fulx,z(kh)), (24)
k=—N

with the error
[N (Fn, )| = [Jun(z) — up,n ()|

<

un(x) —h Y Fulx,z(kh))

k=—o00

+ |k > Falx, 2(kh))

|k|>N

_ 1 e*ﬂ‘d/h F
= Esinh(wd/h)” nlle (o)

C(So7a)hHAau1” — (z—1)4/ar cosh (kh)—akh
+ o d e .

k=N+1
Here H'(Dy) is a space of all vector-valued functions F analytic in the strip
Dg introduced similarly to [13] in [6]. Due to [6]

1E(z, /2(¢)Z (ORA(Q)ui e (p,,) < |A%ual|[C-(p, @)

+Cilpa)) [ eeMlag = Clp,a) A%

—00

(25)

with
C(p,0) = ~[C1(p,0) + ()],

«

d d 2
Ci(p,a) = ctan <1+g0:|:1) b d
2 2 pocos<%+g0:|:d—21)
d=dy — 4,
for an arbitrary small positive 4.

It is obvious that in the case of (15) the part responsible for the nonlocal
condition is bounded in Dg. It allows us to obtain

[Fn(z, )lm (g < Cle,a,6)[[A%u].
So, we end up with the error for ny(Fy, h)

wdy
c||A%u e Tk (N+1h
I (Fa 1)) < " 2 {Smh(m) + e(”ﬁ‘”ﬁmh(z)‘“(“”h} (26)
h
where the constant ¢ does not depend on h, N, x.
Equalizing both exponentials gives us

d
% =a(N + 1)h,

7Td1

h= | ——
a(N +1)’

(27)
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this leads to the following error estimate

c dio(N+1)
I (Fao )] < SelVTRTED) gy (28)
The first summand in the argument of e(xfl)\/a‘mh((N+21>h)7a(N+1)h from
(26) contributes mainly to the error in the case z < 1. Setting for such case

h = ¢1In N/N with some positive constant ¢; we obtain for a fixed x the
following estimate:

HT]N(fn’ h)H <c |:e*7Td1N/(Cl In N) 4 efcl(wfl)\/aN/chlalnN] HAaulH (29)
Thus, we have proven the following theorem.

Theorem 1. Let A be a densely defined strongly positive operator, u; € D(A%),
a € (0,1) and condition (15) is valid. Then Sinc-quadrature (24) represents
an approzimation to uy(z). It provides the convergence of exponential order
uniformly with respect to x presented by estimate (28) for the step size h defined
n (27). The approzimation has the convergence rate (29) for the case v < 1
and h =c¢1InN/N.

Remark 5. The integration curve I'r is symmetric with respect to the real axis.

Therefore z(—kh) = z(kh) and z'(—kh) = —z'(kh). Approzimation (24) can

be rewritten in the form
Zh (z, 2( k:h )] ,

which reduce the number of resolvent calculatzons by the factor of two.

h
up N(z) = 2m]: n(z, ) + Re

Now we can turn our attention to the full error estimate.

e1 = [lu(@) — un (@) = ’ /_Z[ (@,¢) = Fulz,0) dCH

1 [ , 7
o _OO‘E(:”’ Z(O)Z(O‘ 1+Z 141,

By virtue of (22) it can be transformed to

1+ M)Kbre (2 ' >
£ = ( + ) IC <> HAaulH ‘I—In|/ e(x—l)\/ajcoshg—amdé- <

‘ | R4 (¢)usl] d¢,

1—6_2‘/‘” ay

2(1+ M)Kbre [ 2\ /O" _
<o T R T (2 A% || |T - T, ol ge =
S T o (a1> [A%u [ | — Zn,| o ¢

= Ol A% [T = Zn|-
Then for the full error estimate we have
[u(z) = un,n (2)]| < &1+ [[nn (Fn, )] - (30)
It allows us to formulate the main theorem.
Theorem 2. Let the conditions of theorem 1 be valid. Then (24) represents

an approximation to u(x). It provides the convergence of exponential order in
the case when w(x) is analytically continuable to the Bernstein ellipse.
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4. NUMERICAL EXAMPLES

Example 1. Let us consider the problem (1) with the operator A defined by
D(A) = {v(y) € H*(0,1) : v(0) = v(1) = 0},
Av = —"(y) Yv € D(A),
that generates a homogeneous parabolic equation with boundary conditions
Pu(z,y)  Pu(z,y)
Ox? Oy?
u(z,0) = u(x,1) = 0.
Let us supplement this problem with a boundary condition
u(0,y) =0,

(31)

=0,

and nonlocal integral condition
1
142
u(1,0) + / sin(ms)u(s,y)ds = sinh(m) ;— T
0 s

In this case the exact solution to the problem is u(z,y) = sinh(7z) sin(7y).
We have performed calculations using Maple. The errors are presented in Table
1 for different number of quadrature points n (17) and number of Sinc-points NV
(24). The table clearly demonstrates the exponential decay of error according
to the theoretical estimate (30).

sin(7y).

TABL. 1. The error for z = 0.5, y = 0.5

n
N 4 8 16
4 0.869502080695972
8 0.351883285832682 0.351901023526236257
16 || 0.017266161343386 0.017307693141547764 0.0173076931433691542
32 || 0.000071497193928 0.000038004847747042 0.0000380048260057791
64 || 0.000033550806875 | 6.2833535266435186 * 103 | 4.738853014104683 + 10~ 13
128 1.5442654065186853 10~ | 3.847741101629530 x 10~ >*
256 3.806256157045269 + 10~ >*
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