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Ðåçþìå. Àëüòåðíóþ÷èé iòåðàöiéíèé ìåòîä Êîçëîâà-Ìàçü¨, ùî áóâ çàïðî-
ïîíîâàíèé äëÿ îáåðíåíèõ êðàéîâèõ çàäà÷ äëÿ ðiâíÿíü â ÷àñòèííèõ ïîõiä-
íèõ, çàñòîñîâàíî äî äâî-òî÷êîâî¨ êðàéîâî¨ çàäà÷i äëÿ çâè÷àéíîãî äèôåðåí-
öiàëüíîãî ðiâíÿííÿ äðóãîãî ïîðÿäêó. Äîñëiäæåíî âèïàäîê ëiíiéíîãî äè-
ôåðåíöiàëüíîãî îïåðàòîðà äðóãîãî ïîðÿäêó. Çîêðåìà, ïîäàíî êðèòåðié
çáiæíîñòi ÿê çâ'ÿçîê ìiæ êîåôiöi¹íòàìè äèôåðåíöiàëüíîãî îïåðàòîðà i
êiíöåâèì ìîìåíòîì ÷àñó iíòåðâàëó. Äëÿ íåëiíiéíîãî äèôåðåíöiàëüíîãî
îïåðàòîðà âèâåäåíî äåÿêi ôîðìóëè, çà äîïîìîãîþ ÿêèõ ìîæíà äîâåñòè
çáiæíiñòü. Îäíàê, ÿê ïîêàçàëè ÷èñåëüíi åêñïåðèìåíòè, çíàõîäæåííÿ êðè-
òåðiþ çáiæíîñòi â íåëiíiéíîìó âèïàäêó ¹ íåòðèâiàëüíîþ çàäà÷åþ.
Abstract. The alternating iterative method of Kozlov and Maz'ya, originally
proposed for inverse boundary value problems for partial di�erential opera-
tors, is applied to a two-point boundary value problem for a second-order
ordinary di�erential operator. The case of a linear second-order operator is
investigated in detail. In particular, a criteria for convergence expressing a
relationship between the coe�cients of this operator and the �nal time of the
interval is given. For nonlinear operators some formulas are derived on which
a proof of convergence can be obtained. However, as is highlighted by a nu-
merical example, �nding criteria on the problem to guarantee convergence of
the alternating method in the nonlinear case is nontrivial.

1. Introduction
The alternating iterative method was proposed in 1989 by V. A. Kozlov and

V. G. Maz'ya [33] to solve some inverse ill-posed problems such as the Cauchy
problem for a self-adjoint and strongly elliptic operator and data reconstruction
for hyperbolic operators. An advantage with the alternating method is that one
solves well-posed problems for the same type of governing partial di�erential
operator in the solution domain as in the ill-posed problem and there is no pa-
rameter involved in the procedure. These properties have made the alternating
method a popular choice in engineering applications and we give a brief survey
on some of these results and applications before introducing the problem to be
studied.

For general applications and implementation of the alternating method for
Cauchy problems for time-independent operators (typically the Laplace oper-
ator), see [35, 23, 8, 16, 42, 40, 29, 24]. Relaxation to speed up the conver-
gence has been introduced and examined in [29, 30, 25, 27]. Generalization
of the alternating method to the Stokes system was undertaken in [7] and to

Key words. Heat equation, mixed problem, Rothe's method, boundary integral equation
method, trigonometrical quadrature method.
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the Helmholtz operator in [26], see also [10]. The alternating method for the
Laplace equation was extended to unbounded domains in [13]. Convergence for
some nonlinear operators was shown in [41, 4]. The various numerical imple-
mentations have mainly been performed using the boundary element method
or integral equations, which is natural when only boundary data is updated.
Implementation using the �nite element method and error estimates suitable
for adaptive methods were given in [5]. In that work it was also shown that the
alternating method for elliptic problems can be interpreted as the minimization
of a certain functional.

The aim of the present study is to show that the alternating method can
be applied also to some two-point boundary value problems for a second-order
operator. Speci�cally, we study





u′′(t) + f(t, u) = 0, in I,

u(0) = ϕ,

u(T ) = ψ.

(1)

Here, I = [0, T ], where T > 0 is a real number, and f : I × X → X. We
do not strive after the most general situation nor to have a method that can
be compared with the many advanced numerical methods already presented in
the literature for ordinary di�erential operators of the form (1). Instead, as
pointed out above, we are interested solely in the alternating method and to
add some more knowledge around this procedure, in particular, to give some
classes of functions f for which the iterative method converges and to give some
f for which there is no convergence. Thus, for simplicity, we concentrate on (1)
when f is a continuous function, and where the space X is Rn or a Hilbert
space; potentially X can be a Banach space. In fact, the main part of this
study is devoted to the linear case when f = Q(t)u with Q(t) = A + B(t)
being a smooth positive self-adjoint operator on X, and to show convergence
of the alternating method in this case thereby generalizing the similar situation
in [33] to time-dependent operators. One can of course have a higher order
di�erential operator as well as di�erent type of boundary conditions but we do
not investigate that further here.

There are many applications leading to a model of the form (1), for example,
de�ection of cantilever beams under certain load [11], plate de�ection theory [2],
con�nement of a plasma column using radiation pressure [47], heat transfer in
�ns [32], the study of tumour growth [1, 52], cell oxygen uptake [36, 39] and in
modelling the distribution of heat sources in the human head [19, 44] to only
mention a few.

Partly due to its many applications, there is an overwhelming literature on
two-point boundary value problems and it is not within the scope of this study
to give a general overview; instead below we point towards some references
for (1) and within these the reader can �nd further references.

Existence and uniqueness of a solution to (1) is nontrivial. In the case X =
Rn, existence of a solution was settled in [48, 49]. For existence of a solution
when X is a Banach space, see [12, 51, 43]. General references for second-order
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di�erential equations in Banach spaces are [18, Chapter 2], [21, Chapter 2
Section 7] and [46, Chapter 5 Section 3].

For general ideas on the numerical solution of (1), see [3, Chapter 11] and [31].
An excellent overview of both theoretical and numerical �ndings for (1), starting
with the seminal paper of E. Picard [45], is given in the introduction in [14].

Let us then describe the method that we shall use to obtain a numerical ap-
proximation to (1). Following the original paper on the alternating method [33],
the algorithm is:

(i) Make an initial guess η0 of u′(0). Then the �rst approximation u0 is
obtained by solving





u′′0(t) + f(t, u0) = 0, in I,

u0(0) = ϕ,

u′0(0) = η0.

(2)

(ii) Having obtained u2k, the approximation u2k+1 for k ≥ 0, is obtained by
solving 




u′′2k+1(t) + f(t, u2k+1) = 0, in I,

u2k+1(T ) = ψ,

u′2k+1(T ) = u′2k(T ).
(3)

(iii) Then u2k+2 is obtained by solving




u′′2k+2(t) + f(t, u2k+2) = 0, in I,

u2k+2(0) = ψ,

u′2k+2(0) = u′2k+1(0).
(4)

The procedure then continues by iterating in the last two steps. Clearly, the
initial value problems solved in each step are well-posed.

As mentioned above, we shall mainly concentrate on the linear case and
in Section 2, we investigate the situation when f(t, u) = Q(t)u, with Q(t) =
A + B(t) being a self-adjoint linear smooth operator generating a (vector) sine
and cosine function. Convergence of the alternating procedure is shown under a
restriction on the �nal time T , see Theorem 2.2. We remark that the conditions
on Q(t) can be relaxed such that Q can be a di�erential operator on the space X,
thus the results obtained can be applied to time-dependent hyperbolic problems
as well. The results in Section 2 builds on Chapter 5 in [6], where the setting
was Rn.

To gain more insight and to be able to state a condition that is more easy
to check for convergence of the alternating method, in Section 3 a linear and
scalar equation is examined when X = R and f(t, u) = q(t)u. It is shown
that provided that the smallest eigenvalue for some two-point boundary value
problems in the interval I is greater than one then the method converges for
0 < T1 < T , see Theorem 3.4. In Section 3.1, we describe a class of functions f
for which the alternating method diverges. In Section 4, we brie�y investigate
the nonlinear case. We derive some formulas for the iterates on which a proof of
convergence can be based. However, this needs some monotonicity results for
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the solution and the function f . As is highlighted by a numerical example in
Section 4.1, the alternating method can converge in the nonlinear case without
the iterates being monotonically increasing (decreasing) towards the analytical
solution. Thus, a full proof of the convergence in the nonlinear case seems
intricate and beyond the scope of this study. In Section 4.1, we also suggest and
brie�y investigate a modi�cation in the sense of linearization in the alternating
procedure. This modi�cation appears to converge for classes of functions where
the original alternating method diverges. This merit further investigations of
this linearization but it is not pursued here but deferred to future work.

2. The alternating procedure for second order linear equations
We start by �rst introducing some notation. The space C(I;X) is the set

of all continuous functions v : I → X and endowed with the usual supremum
norm

‖v‖∞ = max
0≤t≤T

|v(t)|.

Similarly, Ck(I; X) is the space of k-times di�erentiable functions with the k-
th derivative being continuous (supremum norm) and k ≥ 1 an integer. The
spectral radius of an operator Q is de�ned as usual,

r(Q) = sup{|λ|; λ ∈ σ(Q)}.
We are interested in solving (1) in the case when f(t, u) = Q(t)u. We assume

that
Q(t) = A + B(t), (5)

where A is a linear operator generating a cosine function, i.e. a function c(t)
mapping into the space of bounded operators on X and satisfying c(t + s) +
c(t− s) = c(t)c(s), where t, s ≥ 0, and c(0) = I, see further [18, Section 2] for
criteria on A to guarantee existence of such a function c(t). Moreover, B(t)
maps into the space of bounded linear operators on X and is twice strongly
continuously di�erentiable and the domain of B(t) has to contain the domain
of A. Furthermore, Q(t) is assumed to be self-adjoint and positive. This latter
condition will in particular guarantee that in the case of Rn, the initial value
problems used in the alternating method will not be sti�.

We study the linear second-order di�erential equation with two-point bound-
ary value conditions:





u′′ + Q(t)u = 0, in I,
u(0) = ϕ,
u(T ) = ψ,

(6)

where u ∈ C2([0, T ]; X) and Q as above; for the boundary data ϕ, ψ ∈ X.
It is known, see [38], that for problem (6) there exists functions S(t) and

C(t), commonly denoted the (vector) sine and cosine function respectively,
that satisfy

S(0) = C ′(0) = 0, S′(0) = C(0) = I.
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Provided that the spectral radius r(C∗(T )S′(T )) < 1, then S(T ) has an inverse
and the solution to (6) can be given as

u(t) = S(t)S(T )−1(ψ − C(T )ϕ) + C(t)ϕ. (7)
This will be veri�ed in the next section.

For simplicity, we shall assume that X is a Hilbert space mainly to simplify
the use of adjoint operators; most of the derivations can be justi�ed also in a
Banach space.

1. Properties of the sine and cosine functions. The solutions S(t) and
C(t) need not be self-adjoint although Q(t) is. By C∗ and S∗ we mean the
adjoint of C and S respectively, i.e. the adjoint of C(t) and S(t) for t ∈ I. For
the sake of completeness we include a proof of the following.

Lemma 1. The solutions S(t) and C(t) to problem (6) satisfy the identities:
S′∗(t)C(t)− S∗(t)C ′(t) = I, (8)

and
S′(t)C∗(t)− C ′(t)S∗(t) = I. (9)

The elements S∗(t) and C∗(t) are the adjoint operators of S(t) and C(t), and
I is the identity.

Proof. Due to the smoothness assumption on Q, we can di�erentiate the left-
hand side of equality (8) to formally obtain

d

dt
(S′∗(t)C(t)− S∗(t)C ′(t)) =

= S′′∗(t)C(t) + S′∗(t)C ′(t)− S′∗(t)C ′(t)− S∗(t)C ′′(t) =
= S′′∗(t)C(t)− S∗(t)C ′′(t) =
= −(Q(t)S(t))∗C(t) + S∗(t)Q(t)C(t) =
= −S∗(t)Q(t)C(t) + S∗(t)Q(t)C(t) = 0.

The equality (8) then follows by formally integrating this using the initial con-
ditions for the S(t) and C(t) and their derivatives.

To prove (9), we �rst show that S∗S′ and C∗C ′ are self-adjoint We have
d

dt
(S∗S′ − S′∗S) = S∗S′′ − S′′∗S = S∗QS − S∗QS = 0.

Again, formally integrating using that S(0) = 0, it follows that S∗S′ = S′∗S.
Similarly, one can show that C∗C ′ = C ′∗C.

De�ne the following operator matrix

B =
(−C ′∗(t) C∗(t)

S′∗(t) −S∗(t)

)
. (10)

This matrix is a left inverse of
A =

(
S(t) C(t)
S′(t) C ′(t)

)
,
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that is BA = I, and this is straightforward to check by formal matrix multipli-
cation using (8) together with S∗S′ = S′∗S and C∗C ′ = C ′∗C. Thus, B is the
inverse of A and using that therefore BA = I, i.e.

(
S(t) C(t)
S′(t) C ′(t)

)(−C ′∗(t) C∗(t)
S′∗(t) −S∗(t)

)
=

(
I 0
0 I

)
(11)

gives (9). 2

We note that from (11) follows immediately that also SC∗ and S′C ′∗ are
self-adjoint, which we state as a separate result.

Lemma 2. The operators SC∗ and S′C ′∗ are self-adjoint.

We then verify that provided r(C∗(T )S′(T )) < 1 then (7) is a well-de�ned
solution to (6).

Lemma 3. Assume that r(C∗(T )S′(T )) < 1. Then the inverse of S(T ) exists.

Proof. This is a standard application of the Neumann series in combination
with the relation (8). Indeed,

(I − C∗(T )S′(T ))
k−1∑

j=0

(C∗(T )S′(T ))j = (I − (C∗(T )S′(T ))k). (12)

Letting k tend to in�nity one can conclude, since r(C∗(T )S′(T )) < 1, that
(I − C∗(T )S′(T )) has an inverse. Applying (8) the result follows. 2

2. Convergence of the alternating procedure for (6). The alternating
procedure for problem (6) was given in the introduction. For clarity, we state
the steps again. The element u2k satis�es the initial value problem





u′′2k + Q(t)u2k = 0, in I,
u2k(0) = ϕ,
u′2k(0) = u′2k−1(0),

(13)

where u′0(0) = η is arbitrary. The solution to this problem is given by
u2k(t) = S(t)u′2k−1(0) + C(t)ϕ. (14)

The element u2k+1 is constructed as the solution to




u′′2k+1 + Q(t)u2k+1 = 0, in I,
u2k+1(T ) = ψ,
u′2k+1(T ) = u′2k(T ),

(15)

with solution
u2k+1(t) = (S(t)C∗(T )−C(t)S∗(T ))u′2k(T )+(C(t)S′∗(T )−S(t)C ′∗(T ))ψ. (16)

To verify that this indeed is a solution one can use that SC∗ and S′C ′∗ are
self-adjoint according to Lemma 2 together with (8)-(9).

We shall then establish convergence of the alternating algorithm (convergence
was shown in [33] for time-independent operators).
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Theorem 1. Let u be a solution to problem (6) and let C(t) and S(t) be the fun-
damental cosine and sine solutions to this problem. Let uk be the k-th approx-
imate solution generated by the alternating procedure. If r(C∗(T )S′(T )) < 1,
where r is the spectral radius, then

‖u2k − u‖∞ ≤ C1δ
k

and
‖u2k+1 − u‖∞ ≤ C2δ

k,

where C1 and C2 are positive constants and δ ∈ (r(C∗(T )S′(T )), 1).
Proof. The solution u2k+1 to (15) is given by (16) and this gives

u2k+1(t) = (S(t)C∗(T )− C(t)S∗(T ))u′2k(T ) +
+(C(t)S′∗(T )− S(t)C ′∗(T ))ψ = (17)

= Z1(t)u′2k(T ) + Z2(t)ψ.

In particular, calculating u′2k−1(0) and using that the solution to (13) is given
by (14) tedious but straightforward calculations show that

u2k(t) = S(t)
k−1∑

j=0

(C∗(T )S′(T ))j C ′∗(T )(C(T )ϕ− ψ) +

(18)
+S(t)(C∗(T )S′(T ))kη + C(t)ϕ.

Using this expression in (17) one derives
u2k+1(t) = Z1(t)S′∗(T )(C∗(T )S′(T ))kη +

+Z1(t)S′∗(T )
k−1∑

j=0

(C∗(T )S′(T ))jC ′∗(T )(C(T )ϕ− ψ) +

+Z1(t)C ′∗(T )ϕ + Z2(t)ψ.

Similar to the proof of Lemma 3 it follows from identity (8) that
k−1∑

j=0

(C∗(T )S′(T ))j = (I − C∗(T )S′(T ))−1(I − (C∗(T )S′(T ))k) =

(19)
= S−1(T )C ′∗(T )−1(I − (C∗(T )S′(T ))k).

Employing this in (18) one obtains
u2k(t) = S(t)(I − (C∗(T )S′(T ))k)S−1(T )C ′∗(T )−1C ′∗(T )(C(T )ϕ− ψ) +

+S(t)(C∗(T )S′(T ))kη + C(t)ϕ =

= S(t)(C∗(T )S′(T ))k(η − S−1(T )(C(T )ϕ− ψ)) +
+S(t)S−1(T )(C(T )ϕ− ψ) + C(t)ϕ.

Similarly, using (19) in (17)
u2k+1(t) = Z1(t)S′∗1 (T )(C∗(T )S′(T ))k(η − S−1(T )(C(T )ϕ− ψ)) +

+S(t)S−1(T )(C(T )ϕ− ψ) + C(t)ϕ.
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Next, from Lemma 3 the element S−1(T ) exists and thus the solution to prob-
lem (6) is given by (7). Using this, we �nally have

u2k(t)− u(t) = S(t)(C∗(T )S′(T ))k(η − u′(0))

and similarly
u2k+1(t)− u(t) = Z1(t)S′∗1 (T )(C∗(T )S′(T ))k(η − u′(0)).

Taking norms and making use of the identity
r(Q) = lim sup

k→∞
‖Qk‖1/k, (20)

we get
‖u2k − u‖∞ ≤ ‖S‖∞‖(C∗(T )S′(T ))k‖‖η − u′(0)‖ ≤ C1δ

k

and
‖u2k+1 − u‖∞ ≤ ‖Z1‖∞‖S′∗1 (T )‖‖(C∗(T )S′(T ))k‖‖η − u′(0)‖ ≤ C2δ

k,

where δ ∈ (r(C∗(T )S′(T )), 1). Thus, the result follows. 2

Remark 1. One can relax the conditions on the operator Q = A + B(t). In
fact, one can impose conditions such that B(t) can be a di�erential operator
and thus the problem studied can model for example the Dirichlet problem for
a hyperbolic equation, see [37]. This then generalizes the results in [33] for
the Dirichlet problem for hyperbolic operators to include time-dependent co-
e�cients. Note though that the Dirichlet problem for the hyperbolic problem
has only a unique solution when T is irrational, see [20]. Note also that gener-
alizing to include equations with a term V (t)u′ is considerable more di�cult in
the Banach space setting, see [18, Chapter 8].

Remark 2. Consider the partial di�erential operator
∆u + f(u) = 0 in Ω

supplied with Dirichlet boundary conditions, where Ω is an annular smooth
domain in Rn. Searching for a radial solution, u(r), leads to the equation

u′′(r) +
n− 1

r
u′(r) + f(u(r)) = 0.

Substituting s = r2−n gives
u′′(s) + ρ(s)f(u(s)) = 0,

with boundary conditions u(s1) = ϕ and u(s2) = ψ, see further [34]. Thus,
with f of the above form, the results also apply to problems for the Laplace
equation. Nonlinear functions f will be discussed in Section 4, thus the al-
ternating method could potentially be applied to semi-linear problems for the
Laplace operator.

3. A scalar equation
The results in the previous section are in an abstract setting and as remarked

at the end of the previous section the operator Q(t) could even in fact be a
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partial di�erential operator. Since the present study has as one of its aims to
study the alternating method for ordinary di�erential equations, we simplify in
this section and replace Q(t) by q2(t), where q(t) is a scalar real-valued function
and X = R, and study a classical scalar second-order two point boundary value
problem,





u′′ + q2(t)u = 0, in I,
u(0) = ϕ,
u(T ) = ψ,

(21)

where q ∈ C(0, T ). The condition for convergence of the alternating method
stated in Lemma 1 is in the case of (21) reduced to |c(T )s′(T )| <1, where c and
s are the usual fundamental solutions. To give conditions on the function q and
�nal time T for which this condition is satis�ed, we shall need the following two
lemmas below. These essentially follow from classical comparison theorems for
Sturm-Liouville operators; for completeness we give the proofs. For an overview
of history and results on Sturm-Liouville comparison theory, see [15, 17, 50].

Lemma 4. Let a, b ∈ C[0, T ], and let y be a nontrivial solution of
{

y′′ + a2(t)y = 0,
y′(0) = 0.

Suppose that y has its �rst positive zero at t = T , and let z be a nontrivial
solution of the equation

{
z′′ + b2(t)z = 0,
z′(0) = 0,

with b2(t) > a2(t) on (0, T ). Then there exists τ with 0 < τ < T , such that
z(τ) = 0.

Proof. Without loss of generality we can assume that y(0) = 1. Therefore, by
the assumption that y has no zeros in 0 < t < T , we �nd that y is positive
on this interval. Using the governing equation, it follows that y′ is decreasing
on (0, T ). Assume then that z has no zeros in (0, T ), for instance, that z is
positive on (0, T ). Let w = y′z − yz′; then w(0) = 0 and using y(T ) = 0 gives
w(T ) = y′(T )z(T ) ≤ 0 since y′ is decreasing and z is positive. However,

w′ = y′′z + y′z′ − y′z′ − yz′′ = yz(b2 − a2) > 0,

which is a contradiction. 2

Similarly, one can show a result about zeros of the derivative.

Lemma 5. Let a, b ∈ C[0, T ], and let y be a nontrivial solution of
{

y′′ + a2(t)y = 0,
y(0) = 0.

Suppose that y′ has its �rst positive zero at t = T , and let z be a solution of
{

z′′ + b2(t)z = 0,
z(0) = 0,
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with b2(t) > a2(t) on (0, T ). Then there exists τ with 0 < τ < T , such that
z′(τ) = 0.

Proof. We can assume that y′(0) = 1, and since by assumption y′ does not have
any zero on (0, T ) one can conclude that y is positive on (0, T ). Assume that
z′ has no zeros in (0, T ), for instance, that z′ is positive on (0, T ). This gives
that z is positive on (0, T ) since z(0) = 0. Let w = y′z − yz′, then w(0) = 0
and using that y′(T ) = 0 together with the positiveness of y and z′ imply
w(T ) = −y(T )z′(T ) ≤ 0. However,

w′ = y′′z + y′z′ − y′z′ − yz′′ = yz(b2 − a2) > 0,

which is a contradiction. 2

To derive properties of the fundamental solutions c and s, we shall use the
above lemmas together with the following two eigenvalue problems to compare
zeros of the solutions. Let λDN be the �rst eigenvalue of the following problem∗





u′′ + λq2(t)u = 0, in I,
u(0) = 0,
u′(T ) = 0,

(22)

and let λND be the �rst eigenvalue of the problem†




u′′ + λq2(t)u = 0, in I,
u′(0) = 0,
u(T ) = 0.

(23)

Lemma 6. Let λDN andλND be de�ned as above. If 1 < min{λDN , λND},
then the alternating procedure converges on every interval [0, T1], 0 < T1 <T.

Proof. The fundamental solution c(t) satis�es c(0) = 1 and c′(0) = 0. Clearly,
from the governing equation for this function, c′(t) is non-positive on the in-
terval (0, T ) implying that c(t) is decreasing on this interval. Suppose that
c(T1) = 0 for some 0 < T1 < T . Then, from Lemma 4 with T = T1 and a2 = q2

and b2 = λNDq2, we conclude that the solution to (23) is zero for t = τ with
0 < τ < T1. However, then the eigenfunction solution to (23) would be identi-
cally zero, which is a contradiction. Therefore, we �nd that c(t) do no change
sign on [0, T1] and we can conclude that 0 < c(t) < 1 on [0, T1]. A similar con-
clusion can be made using Lemma 5 for s′(t), and therefore 0 < c(t)s′(t) < 1
on [0, T1]. Thus, the condition for convergence in Theorem 1 is satis�ed. 2

It is then possible to state a convergence result for the alternating method
involving a condition on the coe�cient q and the �nal time T .

Theorem 2. If T ≤ (2max0≤t≤T |q(t)|)−1π, then the alternating procedure
converges as a geometric progression on the interval (0, T ).

∗The subscript DN refers to a Dirichlet condition at t = 0 and a Neumann condition at
t = T .

†The subscript ND refers to a Neumann condition at t = 0 and a Dirichlet condition at
t = T .
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Proof. Put a2(t) = q2(t) and b2(t) = max0≤t≤T q2(t) = M2. Once can check
that 1 < min{λDN , λND} in the interval [0, T1], where T1 ≤ π/2M . Thus, the
conclusion follows from Lemma 6. 2

3. Non-convergence for the alternating method. As mentioned in the
introduction, we are interested in a class of equations for which the alternating
method do not converge. Guided by the results in the previous section, we can
then give such a class of equations.

Consider the following problem:




u′′ − q2(t)u = 0, in I,
u(0) = ϕ,
u(T ) = ψ,

(24)

where q ∈ C[0, T ]. Let c and s be the fundamental solutions corresponding to
this equation. Examining the proof of Theorem 1 it is clear that the alternating
method do not converge if |s′(T )c(T )| > 1. We adjust T , if necessary, such that
c and s do not have any zeros for 0 < t < T . We shall then show that
|s′(T )c(T )| > 1 holds for the fundamental solutions to (24).

Proposition 1. Let c and t be the fundamental solutions corresponding to the
equation (24). Then |s′(T )c(T )| > 1.

Proof. Since T is chosen such that c and s do not have any zeros in 0 < t < T and
since c(0) = 1 we conclude that c is positive on (0, T ). Hence, it follows from the
equation (24) that c′′ is positive, which implies that c′ is increasing on (0, T ).
Thus, c(T ) > c(0) = 1. In similar way, one can show that s′(T ) > s′(0) = 1.
2

Therefore, since |s′(T )c(T )| > 1, we can conclude that the alternating method
applied to (24) will not converge.

4. Nonlinear operators
In this section we shall investigate the nonlinear case





u′′(t) + f(u(t)) = 0, in I,
u(0) = ϕ,
u(T ) = ψ.

(25)

For simplicity, we assume that u takes values in R. We shall further assume that
there exists a unique solution to problem (25). The existence and uniqueness of
a solution is a nontrivial matter, and there are plenty of results and conditions
in the literature. A good place to start is Chapter 1 in [9]. From that chapter
it follows that under a Lipschitz condition on f there exists a time-interval
where existence and uniqueness of a solution to (25) holds. Note that only
assuming that f is continuous and positive will not guarantee uniqueness, for
counterexamples, see [22].

We shall write down the solution to each of the �rst four steps in the alter-
nating method to be able to derive some general expressions for the generated
elements ηk and ζk.
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To generate an initial guess for the alternating method, let



v′′(t) = 0, in I,
v(0) = ϕ,
v(T ) = ψ,

(26)

that is
v(t) =

T − t

T
ϕ +

t

T
ψ.

Then de�ne η0 = v′(0) = 1
T (ψ − ϕ). With this initial guess, the �rst approxi-

mation u0 in the alternating procedure is given by



u′′0(t) + f(u0(t)) = 0, in I,
u0(0) = ϕ,
u′0(0) = η0,

(27)

with formal solution

u0(t) = ϕ+ tη0−
∫ t

0
(t− τ)f(u0(τ)) dτ =

T − t

T
ϕ+

t

T
ψ−

∫ t

0
(t− τ)f(u0(τ)) dτ,

where in the last equality the expression for the element η0 was used. The
derivative of u0 at t = T is calculated from this as

u′0(t) =
1
T

(ψ − ϕ)−
∫ t

0
f(u0(τ)) dτ,

giving

ζ1 = u′0(T ) =
1
T

(ψ − ϕ)−
∫ T

0
f(u0(τ)) dτ.

The next approximation u1 is found from



u′′1(t) + f(u1(t)) = 0, in I,
u1(T ) = ψ,
u′1(T ) = ζ1,

(28)

with solution

u1(t) = ψ + (t− T )ζ1 +
∫ T

t
(t− τ)f(u1(τ)) dτ.

Inserting the expression for ζ1,

u1(t) = ψ +
t− T

T
(ψ − ϕ)− (t− T )

∫ T

0
f(u0(τ)) dτ +

∫ T

t
(t− τ)f(u1(τ)) dτ.

From this, the derivative of u1 at zero is

η2 = u′1(0) =
1
T

(ψ − ϕ)−
∫ T

0
(f(u0(τ))− f(u1(τ))) dτ.

Then u2 is constructed as the solution to



u′′2(t) + f(u2(t)) = 0, in I,
u2(0) = ϕ,
u′2(0) = η2,

(29)
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and formally

u2(t) = ϕ + tη2 −
∫ t

0
(t− τ)f(u2(τ)) dτ =

= ϕ +
t

T
(ψ − ϕ)− t

∫ T

0
(f(u0(τ))− f(u1(τ))) dτ −

−
∫ t

0
(t− τ)f(u2(τ)) dτ.

Calculating the derivative at t = T we obtain

ζ3 = u′2(T ) =
1
T

(ψ − ϕ)−
∫ T

0
(f(u0(τ))− f(u1(τ)) + f(u2(τ))) dτ. (30)

Then u3 is constructed,




u′′3(t) + f(u3(t)) = 0, in I,
u3(T ) = ψ,
u′3(T ) = ζ3,

(31)

having the solution

u3(t) = ψ + (t− T )ζ3 +
∫ T

t
(t− τ)f(u3(τ)) dτ

or by using the expression for ζ3,
u3(t) = ψ+

+ (t− T )
(

1
T

(ψ − ϕ)−
∫ T

0
(f(u0(τ))− f(u1(τ)) + f(u2(τ))) dτ

)
+

+
∫ T

t
(t− τ)f(u3(τ)) dτ.

From this expression, we have the derivative

η4 = u′3(0) =
1
T

(ψ − ϕ)−

−
∫ T

0
(f(u0(τ))− f(u1(τ)) + f(u2(τ))− f(u3(τ))) dτ

)
.

(32)

Note that (30) and (32) justi�es the term alternating method, since the sign
appear to alternate with each iteration.

We further observe that

ζ3 − ζ1 =
∫ T

0
(f(u1(τ))− f(u2(τ))) dτ

and
η4 − η2 =

∫ T

0
(f(u3(τ))− f(u2(τ))) dτ.

Continuing by iterating in the last two steps, a simple induction step reveals,
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Proposition 2. Let {η2k}∞k=0 and {ζ2k+1}∞k=0 be generated from the alternating
procedure. Then

η2k+2 − η2k =
∫ T

0
(f(u2k+1(τ))− f(u2k(τ))) dτ

and
ζ2k+3 − ζ2k+1 =

∫ T

0
(f(u2k+1(τ))− f(u2k+2(τ))) dτ.

Now, note that if f was a positive increasing function and if the approxi-
mations uk generated by the alternating method sats�ed uk+1 ≥ uk, then one
can conclude that {η2k} will be an increasing sequence and {ζ2k} a decreas-
ing sequence. Thus, provided these could be bounded from above and below,
one could establish a convergence proof. Another possibility is that the odd
approximations {u2k+1} are all above each of the even approximations {u2k}.

However, it appears rather di�cult to �nd conditions on the function f and
the �nal time T to have such conditions satis�ed. In fact, in the next section, we
shall take a rather simple function f and show numerically that the sequences
{η2k} and {ζ2k} do not need to be monotone, and still there appears to be
convergence.
4. A numerical example for a nonlinear problem. Let




u′′(t) + 1
2 sin(2u(t)) = 0, in I,

u(0) = 0,
u(T ) = ψ.

(33)

Here, f(u) = 1
2 sin(2u(t)) is Lipschitz with constant L = 1. Hence, from [9, p.

5] there is a unique solution to (33) for T < 2
√

2. In fact, we assume that psi
is chosen such that we have the following explicit expression for the solution,

u(t) = arcsin
e2t − 1
e2t + 1

. (34)

The initial guess is constructed as in the previous section. The initial value
problems needed to be solved in each iteration step of the alternating proce-
dure are solved with the Matlab function ODE45 (Matlab version R2013b on a
computer with Windows 8.2 and an Intel(R) Core(TM) i3-3217U Central Unit
Processor (CPU) at 1.8GHz).

In Fig. 1(a) we present the results obtained after 8 iterations (that is u7

is the �nal approximation; the corresponding value for k for the solution u2k

and u2k+1, respectively, is marked out on each approximation) obtained with
T = 1.6 and ψ generated from (34). As can be seen from this �gure there is
convergence towards the solution to (33). Moreover, a monotone behaviour of
the approximations, expected due to Proposition 2, is present. In fact, with
these solutions together with the function f and Proposition 2, the sequences
ηk and ζk should both be positive and decreasing. This has been checked for
and is the case in the numerical simulations.

Increasing T there is convergence of the similar kind up to about T = 1.8,
where the method starts to become slower and eventually does not converge.
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Choosing instead T = 2.8 and taking ψ = 0.5, one can see that monotonicity
is no longer present in the sense that some even iterates u2k intersects some
odd iterates u2m+1; this is shown in Fig. 1(b). In this case, we used the
Matlab function bvpc4 to generate an approximation to the solution to (33) to
test convergence against with ψ = 0.5 formula (34) does not give the sought
solution.

One can also change sign of the function f and run the procedure with −f .
This causes problems with the alternating method and only for small values of
T there seems to be convergence. For example, the method diverges for T = 1
and ψ = 1 as is highlighted in Fig. 2(a). Note that changing sign was shown
in the linear case in Section 3.1 to generate non-convergent sequences in the
alternating procedure.

We remark that we have also tried a linearization in the alternating method
in the sense that f is instead evaluated on the solution from the previous
step. This new linearized procedure does not give any signi�cant improvement
for (33). However, changing to−f this linearized procedure appears to converge
for T = 1 and ψ = 1 as shown in Fig. 2(b).
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Fig. 1. The solutions u2k ( ) and u2k+1 (· · · ), and the analytical
solution u (�) for various T and ψ.

5. Conclusion
The alternating method [33] was investigated for two-point boundary value

problems for second order time-dependent di�erential operators. Convergence
was established in the linear case extending [33] to the time-dependent case
with the operators taking values in a Hilbert space (potentially the similar
analysis can be carried over to the Banach space setting). In the scalar case, a
criteria involving the coe�cients of the operator and the �nal time were given
to guarantee convergence. It was also shown that changing sign of a term in
the di�erential operator generates equations for which the alternating method
does not converge. Moreover, for nonlinear operators, expressions were derived
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Fig. 2. The solutions u2k ( ) and u2k+1 (· · · ), and the analytical
solution u (�) for various T and ψ.

on which a proof of convergence can potentially be obtained. However, as was
highlighted by numerical examples, to pin-point precise criteria on the operator
and �nal time to have a proof of convergence also in the nonlinear case seem
di�cult. A linearization was suggested such that linear di�erential equations
were solved at each iteration step and this linearization turned out to converge
in some cases where the orignal alternating method did not converge. This
merits further investigations and is deferred to future work.
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