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ON THE BOUNDARY INTEGRAL EQUATIONS METHOD
FOR EXTERIOR BOUNDARY VALUE PROBLEMS
FOR INFINITE SYSTEMS OF ELLIPTIC
EQUATIONS OF SPECIAL KIND

YURIY MUZYCHUK

PE3IOME. B rpuBuMipHux obmekeHuXx 00/1aCTAX 3 JHINIUIEBOIO MEXKE POo3-
TJISHYTO 30BHINTHI TPAHWYHI 3a7a49l JJIs HECKIHYEHHUX CUCTEM eJIITUIHUX
PIBHSIHb CHeMiaJIbHOIO TPHUKYTHOTO BUIVISLAY 3i 3MiHHUME KoedimieHTaMu.
CdopmynboBano Bapiamniiiai nocranosku 3ana4 Jdipixae, Heiimana ta Pobina
Ta BCTAHOBJIEHO TXHIO KOPEKTHICTH y Bigmosimmnmx mpocropax Cobosesa. 3a
J0IIOMOTOIO BBEIEHOI'0 IIOHATTS ¢-3rOPTKY OTPUMAHO AHAJIOTH IepIIol Ta Apy-
roi dopwmyn I'pina ta mobynosano inTerpasibii 300parkeHHs PO3B’A3KiB PO3IJIs-
HYTHX 33129 y BUMIQJIKY cTamX KoedimienTis. [JocmimkeHo BIacTUBOCTI iHTer-
PaTBbHUX OIMEPATOPIB Ta KOPEKTHICTH OTPUMAHWX CHUCTEM TDAHWUIHUX iHTEr-
PaJIbHUX PIBHAHD.

ABSTRACT. Boundary value problems for infinite triangular systems of ellip-
tic equations with variable coefficients are considered in exterior 3d Lipschitz
domains. Variational formulations of Dirichlet, Neumann and Robin prob-
lems are received and their well-posedness in corresponding Sobolev spaces
is established. Via the introduced g-convolution the analogues of the first
and the second Green’s formulae are obtained and integral representations
of the generalized solutions for formulated problems in the case of constant
coefficients are built. We investigate the properties of integral operators and
well-posedness of received systems of boundary integral equations.

1. INTRODUCTION

The method of boundary integral equations (BIEs) can be applied to a wide
class of boundary value problems (BVPs) for elliptic partial differential equa-
tions (PDEs). Theoretical aspects of this method have been well investigated in
the literature, see, e.g.,[1, 2|, and the references therein. The main advantage
of the BIEs method is the reduction by one of the dimension of the prob-
lem by switching to unknown functions that are defined only on the domain’s
boundary. It is particularly suited for exterior problems in unbounded domains.
Numerous engineering applications confirm the efficiency of this method.

In the case of initial-boundary value problems for evolution equations, the
BlIEs method can be used both for the BVP investigations and for their ef-
fective numerical solution, see, e.g.,[3, 4, 5, 6]. But since the time and space
variables are intertwined in the kernel of boundary integral operators it makes
the application of this method more complicated. Therefore when solving the
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96



ON THE BOUNDARY INTEGRAL EQUATIONS METHOD FOR ...

BIEs that depend on the time and space variables, besides the Galerkin or col-
location methods, specialized approaches for consideration of the time variable
are used. Such composite methods have been studied in the works cited above.
They have certain characteristics that define the features of the algorithm im-
plementation. For instance, usage of the so-called Convolution Quadrature
method [5] or the Laguerre transform of the time variable |7, 8] leads to solving
sequences of BIEs.

In [9] the BIEs method was used for finding solutions of interior BVPs for
infinite triangular systems which one could obtain from evolution equations by
the Laguerre transform in the time domain. The idea of this method lies in the
generalization of the concept of the potential on infinite sequences of functions
that depend only on the space variables. Herewith the convolutions of the
Cauchy data of the unknown solution with fundamental solution of the infinite
system and its normal derivative are used. Application of such convolution of
the infinite sequences to the particular problem leads to a sequence of BIEs
that has he same operator of the left-hand side and the expression in the right-
hand side contains solutions of the previous BIEs. In this paper we extend this
approach for exterior problems.

Traditionally the BIEs method is used for BVPs with constant coefficients,
since in case of variable coefficients PDE’s fundamental solutions are generally
not explicitly available. Still on the stage of investigation of the well-posedness
of BVPs we will consider a system with variable coefficients. Note that such
problems can be treated as some generalization of BVPs that arise as a result
of the application of the Laguerre transform to the non-stationary problems.

The paper is organized as follows. In Section 2 we formulate the Dirichlet,
Neumann and Robin BVPs for some kind of infinite triangular system consist-
ing of elliptic PDEs with variable coefficients. We consider these problems in
appropriate Sobolev spaces and show their well-posedness. Then we introduce
the notion of sequences and a new operation on them - the g-convolution of
sequences. In this section we also consider variational formulations of the cor-
responding BVPs and arrive at the analogues of the first and the second Green’s
formulae. In Section 4 we obtain the integral representation of the solution of
the BVPs with constant coefficients and establish a relationship between the
Cauchy data of some generalized solution and corresponding BIEs which we
study in the following Section 5.

2. FORMULATION OF THE BVPS AND BASIC RELATIONS
Let © C R? be a bounded and simply connected domain with Lipschitz
boundary I and QF := R3\ Q be an exterior domain. We consider an infinite
system in QF

PuO = fO 5
c1oug + Pup = fi,
c2,0u0 + c2,1u1 + Pus = fo, (1)

Ck,0UO + Cr UL + oo+ Cpp—1Uk—1 + Pug, = fi,
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where ug, u1, ..., ug, ... are unknown functions, ¢;; (i,j € No := N U {0}) are
some given measurable and bounded in QT functions with ¢; ; = 0 when j > i;
fi (i € Np) are given in QT functions (functionals). In a formal second order
differential operator
9
(Poe) == 3 o a0

o0x;
igj=1_""7

ou(x)
69@

] + ag(z)u(z), z€Q, (2)

the functions a; j (4,7 = 1,2, 3) and ag are measurable and bounded and satisfy
the conditions:

ai j(r) = aji(z) (i,j =1,2,3) for almost all z € QT

3 3
Z a; j(x)&& > 0‘251'2 for arbitrary &1, &2,&3 € R and almost all 2 € QF,

i,j=1 i=1
(3)
with some constant o > 0 and

ap(x) > 0 for almost all z € Q7. (4)

Let the unit normal vector v(z) = (v1(x),v2(x),v3(x)) to T’ be directed out-
wards of QF. We investigate BVPs for system (1) that consist in finding its
solutions that satisfy one of the following conditions on the boundary I'

(i) Dirichlet condition:
u|r = hi, k € N, (5)
(ii) Neumann condition:
Ipuk|r = gk, k € No, (6)
(iii) Robin condition:
(Opur, — (bgouo + bpaur + ... + b p—1ur—1 + by gur)) |r = Gk, k € No,  (7)

where h;, §; (i € Np) are given functions (functionals) on T', b; ; € L=(T) (i, €
Np) are given functions on I' with b; ; = 0 when j > > 0, b;; > Ei > 0, IN)i -
constants. In other words, we will consider the Dirichlet problem (1), (5), the
Neumann problem (1), (6) and the Robin problem (1), (7).

Note that the triangular form of system (1) allows us to consequently find the
unknown functions ug, k € Ng. This way when solving the k-th equation (k >
1) we assume that all solutions u;, 0 < i < k — 1, have been found on previous
steps and move them to the right hand side of the equation. For instance, we will
use this approach for the investigation of the well-posedness of the previously
mentioned BVPs. But it isn’t suitable for their numerical solution with usage
of potentials since it requires additional calculation of volume potentials for
combinations of functions u;, 0 < ¢ < k — 1, found on previous steps. The
method introduced in [9] regarding the interior problems for system (1) allows
us to avoid this and build an efficient algorithm for their numerical solution.

We will use the Lebesgue space L2(Q7) and Sobolev spaces H(QT) and

H} () of real-valued scalar functions and dual to them H'(QF):=
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(Hl(QJF))/ and H~ Q1) = (H&(Q“‘)),, correspondingly. Under D(Q") and
D' (1) we will understand the spaces of all test functions and distributions on
them.

The following bilinear form

5 Ou(x) Ov(x)

ag+(u,v) := a; j(x + ap(z)u(z)v(z) | dz 8
o (0,0) /QZU(% e ool | e (3
is well defined for any functions u,v € H'(QT). It is known, see, e.g.,[10] and
[3, 6] for the case of constant coefficients, one can consider ag+(+,-) as an inner
product and introduce in H'(Q2) a new norm ||Jul|| := (ag+ (u,u))*?, which
is equivalent to the usual one under the conditions (3) and (4). It is obvious

that this form is H!(QT)-elliptic.

In HY(QT) we will consider the following subspace

H' (T, P):={ ue H(QF) | Pue Ly(Q") }, (9)
equipped with the norm

1/2
lullzn@rpy = (lulBse + 1Pl @) ) - (10)

Let vd : H'(Q1) — HY2(T) be the trace operator and v, : H'(Q+, P) —
H~'/2(I") be the conormal derivative operator, which coincides with the conor-
mal derivative

3
Ou(x
Opu(x) = Z ai’j(x)(‘)a(c-)yj(x)’ zel
ij=1 v

in case of functions from H?(Q"), a sufficiently smooth boundary I' and con-
tinuous on QF coefficients a; j (4,7 = 1,2,3). It is known ([1], Theorem 4.4),
that for functions u € HY(QF, P) and v € HY(QT) the first Green’s formula
holds

(Pu,v)g+ = ag+ (u,v) + (v u, v v)r. (11)
where (-, -)q+ and (-, -)r denote the Lo(Q1) the inner product and the duality
between H~1/2(T") and HY?(T'), correspondingly. If u € H'(Q") then the form
ag+ (-, ) can also be used for the definition of Pu € Hy'(QV)

(Pu,v)q+ 10 = ag+(u,v), Yo € Hy(QT). (12)

Here (-, ")+ 1 denotes the duality between H'(Q") and Hg ().

Let X be an arbitrary linear space over the field of real numbers, Z — the set
of integers. By X we denote a linear space of mappings u : Z — X satisfying
u(k) = 0 when k < 0. For any element u € X* we have u;, = (u), = u(k), k €
7., and will write it as u := (ug, u1, ..., ug, )T Henceforth we will call elements
of X sequences.

We will use triangular matrix operators C : (La(Q27))* — (L2(27)) and
B : (La(T)™ — (Lo(T))™ that act as (Cu), = Z?:o ¢k, - (u);, k € Ny, and
(Bu), = Zfzo by - (u);, k € No, where ¢ and by are the coefficients of the
system (1) and of the Robin boundary condition (7), correspondingly.
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The following denotations of sequences are used
ag+ (u,v) := (ag+ (uo,v0), ag+(u1,v1), )", w,ve (H(QM)>,
and
(u,v)x := ((uo,v0)x, (u1,v1)x, ...)T, u,v € (X)>,

where X is some Hilbert space. In the same manner we will denote sequences
for duality pairing. For example, if u € H-Y2(I') and v € HY2(I') we will
use the notation (u,v)p := ((u, vo)r, (u1, v1)r, ...) . Analogously, linear func-
tionals on sequences will be treated as component-wise. For the sequence
u € (H(Q21))> we introduce the definition of an exterior trace as a sequence
of traces of its components, i.e. 'ya“u = ('yaruo,%*ul, ..)T will be called an
exterior trace of the sequence u on the surface I'. If u € (HY(QT, P))> the
sequence ’yf u:= (vf UuQ, yfr uq,...)" will denote an exterior conormal derivative
of the sequence u on the domain’s boundary.

Taking into account previous definitions, generalized solutions of the Dirich-
let, Neumann and Robin BVPs for system (1) can be defined in the following
way.

Definition 1. Let f € (H~'(Q))>® and h € (HY2(I))®. Sequence u €
(HY(2%))> is called a generalized solution of the Dirichlet problem (1), (5)
if it satisfies the variational equality

ag+ (u,v) =+ (CU,V)Q+ = <f> V>Q+,1,07 Vv € (Hé (Q+))Oov (13)
and the boundary condition

yyu=h onT. (14)

Definition 2. Let f € (H 1(Q))® and g € (H '/2(I"))*®. Sequence u €
(H' (%)) is called a generalized solution of the Neumann problem (1), (6) if
it satisfies the variational equality

ag+(u,v) + (Cu,v)or = (£ v)a+ 1 — (& V)r, Ve (H'(QF)*.  (15)
Here (-, )+ 1 denotes the duality between H—1(Q*+) and H!(QF).

Definition 3. Let f € (H1(Q))® and g € (H Y/2(I'))™. Sequence u €
(HY(Q7))*® is called a generalized solution of the Robin problem (1), (7) if it
satisfies the variational equality

an+ (u,v) + (CU,V)Q+ + <BVJU’VJV>F =

— EVoea — @iV, wem@yE. O

Theorem 1. The Dirichlet boundary value problem (1), (5) has a unique gen-
eralized solution.

Proof. The triangular form of the system (13) gives us opportunity to con-
sider its equations one after another and apply the same standard procedure for
investigation of variational equations (see, e.g. [2]) on each step of the proof.
Let’s start with the first equation:

an+ (UO,U) = <f0aU>Q+,1,O7 Vv € HOl(Q+)
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According to the trace theorem for each function hy € HY 2(T) there exists a
(non-unique) element iy, € H'(Q) that 77 @ = hi. Therefore, we can obtain
the following variational equation for the difference ug — iy =: w € H}(QT)

CLQ+(’U),’U) = <f~OaU>Q+,1,O = <f07U>Q+,1,O — aqg+ (’ELQ,U), Vv e H&(Q+) (17)

Due to the H'(QT)-ellipticity of the bilinear form and the boundedness of the
functional fo on H () according to the Lax-Milgram theorem this equation
has a unique solution w € Hg(QT). This proves existence of the unique function
ug € H'(QF) that is a generalized solution of the first problem.

When considering the second variational equation we move the function wug
into the right hand side of the corresponding equation and for the difference
up — i =: w € H}(Q) we arrive at the variational equation that differs from
(17) only by the right hand side. Therefore, by using the previous considerations
we prove the assertion of the theorem for the solution w;. Obviously, acting
this way on each succeeding step we will obtain the variational equation (17)
with the following right hand side

k—1
(frv)ar 10 = (fos Vv 1.0 — D (Chilli, v)o+ — ag+ (i, v),
i=0
Vo € HY(QY), ke N.
Here u; (i = 0,k — 1) are generalized solutions of the problems considered on
the previous steps. As can be seen f € H=Y(Q"). Hence, there exists a
unique generalized solution of the current BVP. Therefore, for each BVP with

an arbitrary index k € N the generalized solution u € H(QT) exists and is
unique. O

Theorem 2. The Robin boundary value problem (1), (7) has a unique gener-
alized solution.

Proof. Let’s consider the first equation of system (16):
ag+ (ug,v) + bro(uo, v) = (fo, v)a+1 — (Go, 1 v)r, Yo € HI(QF).  (18)

Here the bilinear form br (-, ) (k € No) is expressed through traces of elements
of space H'(2%) on the boundary I':

br i (u,v) = / bre i (2)7g w(2) v v(2)dSe, u,v € HH(QT).
r

As long as by x € L>®(T') and you,yov € HY/2(T') C Ly(T), such integral exists.
Expression
ag+ (u,v) := ag+ (u,v) +bro(u,v), u,ve H(QT), (19)

can be treated as some bilinear form for u,v € H'(QF). Obviously, it is
H'(QF)-elliptic.
On the other hand, taking into account the estimate

1(G0: %5 vl < ol g—120y 176 vl zr172(ry < Clldoll 12y |0l 112 0
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the functional
(fo,v)a+ 1 := (fo,v)a+1 — (90,70 V)T

is an element of H~!(Q%). Then, according to the Lax-Milgram theorem there
exists a unique solution ug € H'(QF) of the equation (18).

Next we follow the scheme, used in the proof of the previous theorem. Let’s
consider the equation with an arbitrary index & € N. After moving all items
that contain functions u; (i = 0,k — 1) into the right hand side, this equation
takes the form:

aq+ (uk,v) + bnk(uk,v) = <fk,v>g+71, Yo € HI(QJF), ke N, (20)

where

E'lT‘
—_
?lT‘
—

(fe, 0o+ 1 = (frs )+ 1 — (Ge g 0)r — Y (Criuasv)ar — Y (brivg i, g v)r-
7

Il
=)
~.
Il
o

Clearly, fr € H1(Q"). Since the obtained variational equation differs from

(18) only in the right hand side, we arrive at the conclusion that there exists

its unique solution u;, € H'(QF). Thus we’ve shown the existence and the

uniqueness of each component of the solution of variational system (16). ad
As a conclusion of the previous theorem we obtain

Theorem 3. The Neumann boundary value problem (1), (6) has a unique
generalized solution.

Note that condition (4) is a characteristic feature of PDEs obtained from the
evolution equations by means of the Laguerre transform. Without such con-
straint the bilinear form will be just coercive. In this case the existence and the
uniqueness of the solutions of BVPs for system (1) can be investigated accord-
ing to the Fredholm theory, see, e.g., [1, 2|, or by considering the variational
formulations in corresponding weighted Sobolev spaces [11].

We shall now use the well known procedure (see, e.g. |[12], chapter 7) to
transform variational problems to the equivalent ones in the operator form.
We first consider the variational equation (13) and suppose that the sequence
u € (H'(2%))> is its solution. Bearing in mind (12), we can rewrite it in the
following way:

<Pu7V>Q+,1,O + (CU,V)Q+ = <f7 V>Q+,1,07 Vv e (H(% (Q+))OO7 (21)
where the matrix operator P acts on Yu € (H(Q%))> by the rule:
(Pu)k = Pui, k€ Ng.

Taking into account the embedding of spaces Hg(Q) C Lo(QT) ¢ H~1(Q1),
the equality (21) may be presented as

(Pu,v)g+ 10+ (Cu,Vig+ 10 = (£ V)gr 10, Vv E (Hy(QM))™.
After introducing the notation

G =P+C, (22)
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the previous equality can be given in the form of the operator equation
Gu=f in (H'Y(QM)>. (23)

Thus, the generalized solution of the Dirichlet problem (1), (5) is the solution
of the operator equation (23) and satisfies the same boundary condition (5) or
its sequence analogue (14). And vice versa, it is easy to see, that the solution
of (23), (14) is a generalized solution of the Dirichlet problem (1), (5).

In order to get the operator equation for the Neumann and the Robin prob-
lems we will use the Green’s formula in the form of (11) instead of (12).
We will consider the generalized solutions in space (H'(Q*, P))* and assume
f € (La(2F))>. Thus, let the sequence u € (H*(QF, P))*® be the generalized
solution of the Robin problem (1), (7) i.e. it satisfies the variational equation
(16). If we apply the formula (11) to this equation, we get

(Pu7 V)Q+ - <7ii_u7 7(—)~_V>F+ (Cu7 V)Q+ +
+(Bg u, 7 vir = (£,v)g+ — (8,7 V)1
or
(Gu—f£,v)gs + (Byju—~u+gvir=0, vve (H Q)™ (24)

After substitution of an arbitrary element v € (D(27))> into (24) we come to
the following equality

(Gu—f,v)g+ =0,

where (-, )+ is based on the duality between D'(Q27) and D(Q1). Thus,

Gu="f in (D'(Q))>.
Since f € (L2(27))%, the previous equation can be understood as

Gu =T in (Ly(Q7))>. (25)
Therefore, after substitution of any sequence v € (H(21))* into (24) we
arrive at the relation

(Bygu—1fu+grgvir=0 vve (H ()™,

that, by taking into account that values of the trace operator ’yar cHY(QT) —
H'Y2(T) fill in the whole space HY/2(I'), is an equivalent form of the Robin
boundary condition

vfu-Byfu=g in (HV¥D))>. (26)

Thus, we have shown that the generalized solution of the Robin problem can
be characterized by the operator equation (25) and the boundary condition
(26). Analogously it can be shown that the generalized solution of the Neu-
mann problem can be characterized by the same operator equation (25) and
the Neumann boundary condition

u=g in (H V(D). (27)

Conversely, it is obvious that every solution of the problem (25), (26) (resp.
(27)) satisfies the variational problem (16) (resp. (15)).
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Note that boundary conditions (26) and (27), as in the theory of elliptic
equations, will be referred to as the natural boundary conditions.

3. BVPS IN CONVOLUTION TERMS

As we have outlined in the introduction, all theoretical and practical aspects
of the BIEs method are well known in case of its application to the BVPs for
the first equation of the system (1) considered separately as well as for this
system as a whole but with a finite number of equations. Henceforth our goal
will be to obtain a formula for the solutions of BVPs and appropriate BIEs for
the infinite system. Similarly to the previous section, we will use the fact that
system (1) is triangular and will develop a recurrent process of the calculation
of the components of the solution. To avoid additional volume potentials in the
solution representation we will move the components that were found on the
previous steps to the right-hand side of the current equation. For this purpose
we introduce the following convolution operation on sequences.

Let X, Y and Z be arbitrary linear spaces and ¢ : X XY — Z — some

mapping.
Definition 4. By the g-convolution of sequences u € X* and v € Y we
understand a sequence w € Z°° that is defined according to the following rule

W =uov, (28)
q

where w, = (uov), :=>.7" ;¢ (tup—i,v;), when n > 0, and w,, = 0 when n < 0.
q

We will simplify the notation of the g-convolution for some mappings. For

instance, in case of g¢(u,v) := (u,v)q+ 1 we will write u o Vvi=uov.
o Qt,1,0 q

Consider a sequence u € (H'(Q1))™ that satisfies the equation (23). Let’s
substitute it into this equation and, treating the result as equality of elements
from (H~1(Q%))* and taking

Q(wvv) = <w’U>Q+,l,Ov (S H&(Q+)v w e H_I(Q+)a

we apply the ¢g-convolution with an arbitrary sequence v € (H&(Q“‘))OO to both
sides of this equality. After that we arrive at the following variational equation
Gu) o v=f o v, We (HjQ))™. 29
(Gu) o v=F o v, Vv (H(h) (29)
Thus, the generalized solution of the Dirichlet problem (1), (5) can be charac-
terized by the variational equality (29) and the boundary condition (14).

Now we assume that sequence u € (Hl(QjL,P))OO satisfies the operator
equation (25). We apply the g-convolution with some arbitrary sequence v €
(HY(Q27))™ to both of its sides as elements of (La(QF))™, taking g(w,v) =
(w,v)g+, v € HY(QT), w € Ly(QF). As a result we get

_ 1))
(Gu) S V= fQO+ v, VYve (H'(QM). (30)
Thus, the generalized solution of the Robin boundary value problem can be
characterized by the variational equality (30) and the boundary condition (26).
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Obviously, this property also holds for the generalized solution of the Neumann
boundary value problem.

Let’s obtain for operator G the analogue of the first Green’s formula using
the g-convolution of sequences. At first note that the component of the ¢-
convolution in the left hand side of (30) with an arbitrary index k € INg after
application of the first Green’s formula (11) can be written as

( (Gu) oV )k = ;agﬁ (g, vp—s) +

ko fi-1
+ g g CijUj, Vk—i

i=1 \ j=0 O+

k
<’Yfruiy ’Y{)kafﬁr +
=0

(31)

Henceforth we assume that the sum expressions are equal to zero if their last
index is less than the first one i.e. in case of k = 0 the last item in the previous
formula is absent.
: + + + T
Consider a sequence (@ (u,v), ®{(u,v), ..., ®{(u,v), ...) , components
of which are such expressions:

P (u,v) = ag+ (uo, vo),

k k i—1
(32)
q)z'(u,v) = ZCLQ+ (ui, kai) + Z Zci,juj, Vk—i , k € Ny.
i=0 i=1 \ j=0 ot

Definition 5. Sequence
2t (u,v) = (¢f (u,v), ®(u,v), ..., &} (u,v), ...)T, u,v e (Hl((ﬁ))oo,
defined by the formula (32) is called a bilinear form associated with operator G.

Such notation of the bilinear form gives us ability to present the relation (31)
in the following way

(Gu) o v==a"(u,v)+ vuoyjv,
o s L (33)
Vue (H'(QF,P)™, ve (H(QM)™,

and treat it as the first Green’s formula for the operator G. Note that for
the left part of the variational equality (29) we can analogously obtain the
expression
(Gu) o v==@"(uyv), Vue (HY(QM)™, ve (HQN))™, (34)

when using the equality (12).

In general, due to the triangular structure of operator C, definition of the
second Green’s formula may be complicated. In order to apply the classical
approach, see, e.g. |2], we need an additional condition on the operator C

(Cu) ov= (Cv) o Yu,v e (Ly(2h))™, (35)
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which provides the symmetry of the operator G with regard to the operation
of g-convolution. Then applying (33) twice to the couple of sequences u,v €
(HY(QF, P))™ we arrive at the following variational equality.

Theorem 4. For sequences u, v € (Hl(Q+, P))OO the following equality holds:
_ _ At +o. At +
(Gu) o0 (Gv) O U= MUY v WU U (36)

We treat it as the second Green’s formula for the operator G. Further in
this paper we suppose the operator C satisfies (35).

4. INTEGRAL REPRESENTATION OF THE SOLUTION
Green’s formulae and fundamental solutions of the operator G are the key
ingredients of the integral representation of the solutions of the BVPs. As
~ ~ - T
usual we call the sequence E(x,y) = (Eo(x,y), Eq(x,y), ) ,z,y € R3, a
fundamental solution of the operator G, if it satisfies the equation

GE =4, in (D'(R?)™,
where 0,(z) = (0y(z), 0y(z), .)" and dy() = 6(- — y) is Dirac’s delta-

function. Henceforth we also assume this operator has constant coefficients
and particularly

P:=—A+k° (37)
The condition (35) can be rewritten in the form
n k—1 n k—1
YO ckibitk =) chimibnk, YnEN, VEnER™.  (38)
k=1 i=0 k=1 i=0

The last feature is natural for system (1) which is obtained as a result of the
Laguerre transformation with parameter o > 0 of the heat (k = /o) or the
wave (k = o) equation [8]. Note that 7;" now denotes a normal derivative
operator. We also recall the well-known fundamental solution of the operator
P:

e—hklz—yl

Eo(z,y) = e pe—k z,y € R, (39)

In [13] and references therein the construction of such solutions for the operator
G with constant coefficients has been considered. For instance, if system (1)
corresponds to the wave equation, then the fundamental solution’s components
for the operator G have the following presentation
~ e hlz—yl » 5

where £; denotes the Laguerre polynomial [16].

By using the g-convolution we build sequences that in analogy to the theory
of elliptic equations can be also called potentials. For that we use a sequence

T

E(l’,y) = (EO(‘:Cay)? El(%,y), ) ) where

El(xvy) = El(xvy) - Ei—l(m7y)? i €N, Eo(x,y) = Eo(l’,y), T,y € RS? (41)
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It was shown in [9] that E is the solution of the equation
GE =4, in (D'(R?))™, (42)
where 8, (z) = (8,(z), 0, 0, ...)".
Definition 6. Let A € (HI/Q(F))OO and p € (H_I/Q(F))OO. Sequences
Vi) = (Vi) () = u() o Blw — ), x € QF, (43)

and
WA(z) := (WA)(z) = 05 E(x — )lg)\(), reQt, (44)

are called the single and the double layer potentials of the operator G on the
surface I', correspondingly.

Lemma 1. For arbitrary sequences X € (Hl/Q(F))OO and p € (H_1/2(F))OO
the layer potentials u= Vp and u = WX are the solutions of the homogeneous
equalion

Gu=0 (in R®\T). (45)

Proof. Proof of the lemma regarding the domain {2 can be found in lemma
5.3 |7] and in case of the domain Q" can be done analogously. O

Similarly to the layer potentials V and W, by means of the g-convolution
we can define the volume potential for the domain QT and use it to obtain a
partial solution of the system (1). Since in this case the difference from the
interior problems discussed in [9] is minor we will consider only problems for
the homogeneous system (45).

Let vy : H'(Q) — H'Y2(T') be a trace operator, v, : H'(Q, P) — H~'/2(T)
be a normal derivative operator and [you] := vgu — vy u, [y1u] == 77 u — v u
are their jumps across the boundary I'.

Theorem 5. For the sequence u € (H'(R3\ T, P))* which satisfies the equa-
tion (45) in R3\ T the following representation takes place

u(zr) = WA(z) — Vu(z), z € R3\T, (46)
where A := [you] and p := [y14].
Proof. As we can see, the layer potentials consist of the components
(Viw) (2) = (u(), Bj(x —-) )r, p€ HVA(D);
(WA () := (0p)Ej(x — ), M))r, A€ HY2(T), j € No.

Let some function ug € H'(R3\ T, P) satisfy the equation Pu = 0 in R3\T.
Then the third Green’s formula holds

uo(w) = (Woko) (z) — (Vopo) (z), = € RP\ T, (48)

where Ao := [Youo] and po := [y1uo]. Note that this formula can be derived
from the first equality in (36) if we take vo(-) = Ep(z,-). For the explanation
of the corresponding procedure and some aspects of usage of this formula see,
e.g. [1, 14] and [3, 4] for the case of operator (37).

(47)
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We can use this approach for the following components of the sequence u
as well. Let us assume we also have a function vy € HY(R3 \ T, P) provided
the pair up and u, satisfies the second equation in (45). Then from the second
equality in (36) we obtain:

— (c1,0v0 + Pvi,ug)gr — (Pvo,u1)gr =
= (M w1, Y9 v )r + (7 wo, g o1 )t — (i vns 5w )r— (49)
— (71 o, Y9 w1 )1

If we take vo(-) = Eo(z,-) and vi(-) = E1(z,-) and keep in mind the first two
equalities of (42) we obtain for Vz € Q7:

—ui(z) = (v ur, 7§ Eo )r + (v wo, g E1 )r—
— (v E1, v uo )r — (7 Eo, 5w )r.

If we use the second Green’s formula for the interior domain € [9] we will have

0=—{(v; u1, 7§ Eo )r — (7 wo, 7 E1 )r + (1 Er, 7o wo )r + (i Eo, 7o w1 )r.

Therefore, by adding the last two formulae we obtain the representation formula
for the component u; for Vo € QF:

ui () = (Woki) (z) + (Wio) () — (Vop) () = (Vipo) (). (50)

It is straightforward to see that there is the same representation formula for
Vo € Q.

Now we consider the equality in (36) with index £ > 1. After the substitution
vo() = Eo(x,-), v1() = E1(x, ), ..., and vg(-) = Eg(z,-) all components in it’s
left hand side will disappear except (Pvg,uy)q+. As in previous cases from
(Puo, ug) o+ we get ug(z) for Vo € QF and 0 for Vo € Q. The rest of the proof
repeats the same operations as for k = 1. O

Main properties of the potentials V and W have been studied in the afore-
mentioned work [9]. Here we recall some of them. Let us consider the boundary
operators

Vi (HTVAD)® — (HYPD)®, K (HVP0)* — (1),
K: (H'2D)™ — (H'2I)>*,  D:(HD)™ — (HA(D))>,

defined by means of g-convolution in the following way:
(Vi) =Y Vipiojs  (KX); =Y Kjhiy,
Jj=0 j=0

% A
(K'p), :=> Kjpij, (DX);:=> D\, i € Ny,
§=0 j=0
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for arbitrary sequences A € (H1/2(F))OO and p € (H‘1/2(F))OO. Components
of these operators are defined as follows:

Vin =y Vip, Dih == WX, j € No,

1 .
Ko = 7" Vo = 5 Kjpi=~"Vip, jEN,

1

Hence, according to the theorem 5 the generalized solution of the homoge-
neous system (45) can be given by its trace and the normal derivative on the
boundary — the Cauchy data. As it can be seen from the boundary conditions
(5) and (7), in each of the boundary problems these data are incomplete. To
get the complete Cauchy data we need to consider corresponding BIEs that can
be obtained by means of the presentation (46). Note that this is the so-called
direct approach [2]| to replacement of BVPs by BIEs and in our case it could
be implemented taking into account the results obtained in [14, 8]. As a result,
the following theorem defines the relation between the Cauchy data of some
generalized solution of the homogeneous system and BlEs.

Theorem 6. (i) If a pair of sequences (A, ) € (HI/Q(F))OO X (H_I/Q(F))OO
are the Cauchy data of some generalized solution of the equation (45), then they
satisfy both equations

<;I— K) A+ V=0 in (H/2I)> (51)

and
1
DX + (21+ K’> pw=0 in (H Y2(I))>. (52)
(ii) If a pair of sequences (A, p) € (1'-1'1/2(F))oo X (H’l/z(l"))oo satisfy one of
the equations (51) or (52), then they satisfy the second one and are the Cauchy
data of some generalized solution of the equation (45).

Note that for the integral representation of the solution of the PDEs with
variable coefficients it is possible to use a parametrix (Levi function) associ-
ated with a fundamental solution of corresponding operator with frozen coeffi-
cients [11].

5. BOUNDARY INTEGRAL EQUATIONS

Theorem 6 gives us reason for the replacement of boundary value problems
with corresponding boundary integral equations in regards to the Cauchy da-
tum that is not given explicitly in the formulation of the problem. Due to the
similarity of the boundary integral equations that are obtained for interior and
exterior problems we will demonstrate this procedure for the Dirichlet problem
(1), (5) only. In this case the boundary condition contains the given sequence
X =h e (H'2(T"))*®. Then, taking into account the equation (51), after sub-
stitution of the given trace into it we will obtain the following boundary integral

109



YURIY MUZYCHUK

equation of the first kind in regards to the sequence pu:
1 -
Vi = <—2I + K) h in (HY?T))>. (53)

If we substitute the known trace into the equation (52), we will come to the
following boundary integral equation of the second kind

<;1 N K> p=-Dh in (HY2T)>, (54)

Theorem 7. The normal derivative of the generalized solution u €
(HY(Q, P))>® of the Dirichlet problem (1), (5) satisfies both boundary integral
equations (53) and (54). Conversely, if a sequence pu € (H-Y2(I)> is a
solution of one of the boundary integral equations (53) or (54) then it will
satisfy the other one and the function built by formula (46) with X = h will be
the generalized solution of the Dirichlet problem (1), (5).

Proof. Since boundary integral equations (53) and (54) are only modifications
of the relations (51) and (52), then the validity of the direct and the inverse
statements of this theorem is granted by the theorem 6. O

Obtained sequences of BIEs have some important recurrent properties. Con-
sider the BIEs (53). It can be reduced to a sequence of equations

k k—1
1- . .
Vor = —5hi + § OK,Hh,» - E’ 0: Vi_ipi in HY2(I), ke No.
1= 1=

Applying the same approach for equations (54) we get the following sequences
of BIEs of the second kind

k k—1

1 - A

Hk + Kopk = — > Dy_ihi — > Kj_ui in HVA(T), ke N,
i=0 =0

As we see, after the application of g-convolution to the BVPs in the opera-
tor form, all of the obtained sequences of BIEs will have the same important
property. It consists in the fact that their boundary operators in the left hand
sides remain the same for each k € Ng. Solvability of such integral equations
and numerical methods for their solution are well studied in the literature. At
the other point of view, the structure of the obtained BIEs allows us to build
efficient algorithms for their numerical solution. The same applies for BIEs
that correspond to other BVPs. Such equations are discussed in details in [13].

Thus, variational problems for infinite triangular systems, which consist of
elliptic equations with variable coefficients, have been formulated and their
well-posedness has been shown. By using the g-convolution of sequences, in
the case of constant coefficients the representation of generalized solutions in
the form of potentials has been obtained, with which variational problems have
been reduced to triangular systems of BIEs. Components of the solution of the
system of BIEs can consistently be found from the relevant equations which
differ only in the right hand side. In this case the right hand side consists
of the components of the solutions, found on previous steps, besides of the
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given Cauchy data. A numerical method for the solution of such systems,
developed on the basis of the boundary elements method in [15], gives us ability
to efficiently solve the considered boundary problems.
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