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NUMERICAL ANALYSIS OF THE GIRKMANN
PROBLEM WITH FEM/BEM COUPLING
USING DOMAIN DECOMPOSITION

ANDRIY STYAHAR

PE3IOME. Mwu posrisimaemo moemnany mojenb s 3agadi [ipkmana. s
3a7a9a [0JIAra€ B O09HUC/IeHH] II0CKOro 1edOpPMOBAHOTO CTAHY I TijIa, IO
CKJIQJIAETHCS 3 OCHOBHOI YACTWHYW Ta TOHKOI YACTWHU, IO MPUKPIMJIEHA 10
ocHOBHOI dacTuram. s mo0y/10Br HAGIMKEHOTO PO3B’s3Ky ITi€l 3a/adi Mu
BHUKOPUCTOBYEMO MeTof, rpanunanux enementis (MI'E) ta meron cxinuennmx
enementis (MCE), noemnani 3a I0MOMOTOI0 aJTOPUTMY JEKOMIO3HITT 00J1ac-
Teii. HaBesmeno pesynbrartu dmcioBux ekcrepuMeHTiB. IlopiBHsSIHO Hampyxe-
HO-71eDOPMOBAHMI CTAaH KOHCTPYKIIM 1 Pi3HUX HGOPM 0OOJIOHOK.

ABsTrRACT. We consider a coupled model for the Girkmann problem. The
problem involves computation of the plane strain state for the body which
consists of a massive part and a thin part, which is attached to the massive
part. For the numerical solution of this problem we use boundary element
method (BEM) and finite element method (FEM) for different parts of the
body, which are coupled using domain decomposition. We provide the re-
sults of some numerical simulations. The stress-strain state for the structures
having shells of different shapes are compared.

1. INTRODUCTION

A lot of structures, that occur in engineering, are inhomogeneous and contain
thin parts and massive parts. Therefore, it is important to develop both ana-
lytical methods and numerical algorithms for the analysis of the stress-strain
state of such structures. Different aspects of such problems were discussed in
[3, 6, 8, 2| (in [8] the case of the bodies with thin inclusions is considered; in
[2] the bodies with thin covers are considered). Papers [3] and [6] are devoted
to the numerical solution of the Girkmann problem.

In this article, we solve numerically the Girkmann problem which involves
computation of a plane strain state for the body consisting of a massive part
and a thin part, which is attached to the massive part. The thin part is modeled
using Timoshenko shell theory equations and its stress-strain state is numer-
ically computed using FEM with bubble shape functions. The massive part
is modeled using the theory of linear elasticity and the numerical solution is
obtained using boundary element method (BEM). The approximate solutions
in both parts are connected using domain decomposition algorithm.

The application of domain decomposition method allows us to decouple prob-
lems in both parts and solve the problems independently in each part. As a
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result, it is possible to compute the stress-strain state accurately even for small
shell thicknesses without having problems with stability issues of the coupled
problem.

We compare the stress-strain state for different shapes of the middle line of
the shells: circular, parabolic and of the form of chain curve. Although the
curves lie close to each other, the stress-strain states in these cases are very
different from each other.

2. PROBLEM STATEMENT
Let us consider a problem of plane strain of an elastic body which consists
of a massive part €21 with the thin part in 9 attached to €21 by its end face
(Fig. 1). Let us denote by I'; the outer boundary of the bodies in €;, i = 1,2
and by I'y the common boundary between bodies in €21 and Qs.

X1

e

X9 Xf
A c
* %9

Fic. 1. Elastic Body

The plane strain stress of the body in ; can be described by

Ooi11 0012 _f
81‘1 8%’2 -

dog1 | Ooga f
o0x1 Ors 2
that holds for x € Q1, © = (1, z2).

Here f = (f1, f2) denotes the volume forces that act on the body in €.
From the Hook’s law it follows that the components of the stress tensor can

be written as
Uz] 2 1 (axj + 8CU1,> 1) 1,] <y
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where u(xz) = (u1(x),uz(x)) is the displacement vector with u; being the dis-
placements in the directions z; for ¢« = 1,2; Fj is the Young’s modulus of the
body in ;. In the following we assume that no volume forces act on the body
in Q4.

Let us denote by n the outer normal vector to €21, and by 7 — the tangent
vector.

Equations (1) are considered together with the boundary conditions

up =0,ur =0,z €'p

and

Onn = 0,0nr =0,z € 'y,

where I'y = Tp Uy, Tp NIy = 0; u, and u, are the components of the
displacement vector in the coordinate system n, 7. Similarly, o,, and o, are
the components of the stress tensor in the n, 7 coordinate system.

For the description of the thin part in 29 we use the equations of Timoshenko
shell theory of the form [4]

1 dT1,
et L U
A, &, 1113 = p1,
1 dTis
_ 3 LT — 2
A, e, + k1T = ps, (2)
1 dMy;

_ Tha = o< <1
A, de, +T13=m1,0 <& <1,

where vi, w, 71 are the displacements and angle of revolution in the shell; 771,
T3, Mi; are the forces and momentum in the shell; A1 = Ay (&), k1 = k1 (&1)
correspond to Lame parameter and middle line curvature parameter; py, ps,
my are given functions; it holds

Esh Esh3
Ty = T 511, Ti3 = k'G'hers, My = lela
1 dvy 1 dw L dm
k k = A de
T g TR ST g TR XS g e

pi=(1+k%)ofy— (1-kb)op,
b3 = (1 + k1 %) ‘733 (1 - kl%) 033,

my =5 ((1+k5)ofy — (1 - k%) o).
Here Ej5 is the Young’s modulus for the shell, vs is the Poisson’s ratio; ajj', i_j,
i,7 = 1,3 are the components of the stress tensor on the outer ({3 = %) and
inner ({3 = —%) boundaries of the shell It is known, that in the case of

isotropic bodies we have k' = 5 , G =

(1+vz)
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At the free end of the thin part we impose boundary conditions either on the
displacements vy, w and 7; or on the forces 771, T13 and momentum M;; in
the shell (if the end is subjected to load or free). At the top and bottom outer
boundaries of the shell we prescribe to afg and U;)% sonie given stresses.

Remark. The choice of 2D curvilinear coordinate system for the shell as
€1, &3 (instead of &1, &2) is based on the fact, that 2D problem is obtained from
the 3D case by assuming the body being infinite in the direction of &;.

On the boundary I';, common to both € and €5 we prescribe the following
coupling conditions:

Up = V1 +&371, Ur = W,

: : ®)
/ N O'nndf?) =Ti1, / N O'an&S = T3, / O'nn€3d£3 = M.
—h —h _

[N

3. NUMERICAL APPROXIMATION OF THE MODEL
For the numerical solution of the model domain decomposition algorithm
is used. Inside the main part we construct the approximate solution using
boundary element method (BEM) applied to the integral equations based on
the Green’s representation formula for the solution of the following form [1]

1
iu]'(l’o) /F(tz(a?)G”(CC, 1?0) — Fij(:L', mo)uz(x))dl“(x), (4)
where I' =T UT'y, 29 € T '

Gij(x,() = C1(Cadijlogr — ¥41) is the matrix Green’s function;

Fij(z,¢) = %(04(5ikyj + Oryi — Oijyk) + ZL%M) is a co-normal derivative
of the matrix Green’s function;

= yiyi;

Yi = xi — G

1= 2(1%”) is a shear modulus of the body in €y;
— 1

Cr = —gt=my

02 =3- 41/17
— 1

Cs = —ma=n)

C4 =1- 21/17

In order to apply BEM we divide the boundary I'y U I'; of €1 into the
elements and then choose the appropriate shape functions ¢;(§), 7 = 1,2,...,m,
to construct the approximation.

The approximate solution can be written in the form

ui(§) =27 uige(§), =12,

ti(&) = 20t ti¢(8), i=1,2,£ €1 UTy,

where u;; and t;; are the unknown coefficients that are found by applying
Galerkin method to the integral equation (4) (see [1]).
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The approximate solution of the boundary value problem inside 25 is found
using finite element method with bubble shape functions. On each element the
shape functions are given by

2

2j—1 (¢ ,
(&) =1/ 5 /1Pj_1(t)dt, i=23,..,

where £ € [—1,1] is the local coordinate, obtained by mapping each element
onto the inverval [-1,1]; Pj(t) are the Legendre polynomials.

In order to find the approximate solution of the boundary-value problem (2),
we apply to the system (2) Galerkin approach.

The approximate solutions in both domains are connected using domain
decomposition algorithm (Dirichlet-Neumann scheme) [5]. The domain decom-
position algorithm has the following form:

1) set an initial guess A\ for the unknown displacements on the interface 'y,
set € > 0;

2) for k=0,1,... solve the boundary value problem in s with the displace-
ments equal to A* to obtain the apporimation for the loads in €21 using (3);

3) solve the corresponding integral equations in €21 to find the displacements
u} and ul on T'y;

4) update the displacements \* on T'j:

AT = Ak + ful,
ML= \E 4 oul,

where 6 > 0 is a relaxation parameter;

5) if |A*+1 — A¥|| > € then go to step 2, otherwise the algorithm ends.

It is known, that the Steklov-Poincare equation that corresponds to our
problem, possesses a unique solution [7]. Moreover, domain decomposition al-
gorithm converges for appropriately chosen (empirically) relaxation parameter
0 (0 <0 <0ma) |7]-

4. NUMERICAL EXPERIMENTS

Let ©; be a polygon with x? = -1, xg = —1,z{ =1, 2§ = 1. To the main
part in 1 a thin body in s is attached on its edge. The thickness of the body
in Qs is h =0.01 (Fig. 1).

On the boundaries AC and AB the structure is fixed (the displacements are
equal to zero); we prescribe a load of p = 1Pa/m on the outer boundary of the
body in Q9 (Fig. 1); on the edge with the point E the symmetry conditions are
set; all the other parts of the outer boundary are traction-free.

We consider the following physical parameters of the bodies: Young’s mod-
ulus of the main part in €y is equal to E7; = 25000 MPa, which corresponds to
concrete; the Young’s modulus of the thin part in s is equal to Fy = 20580
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MPa, which corresponds to cork. Poisson’s ratio of the body in 21 is equal to
vy = 0.33, n QQ — V9 = 0.

For the numerical solution we use FEM in the shell with bubble shape func-
tions. For the main part we use boundary element method with quadratic shape
functions. Problems in both parts are connected using domain decomposition
algorithm (Dirichlet-Neumann scheme) [5].

In all the cases under consideration the convergence is obtained in around 5
iterations. The results correspond to a case of 202 boundary elements, 32 finite
elements of the fourth order. We find, that the mesh refinement or the change
of the order of the shape functions don’t change the solution significantly.

Let us consider different cases of the curve shapes, that describe middle line of
the body in s: circle arc, parabola and chain curve. The unknown coefficients
of the parametric representation of the curves are chosen in such a way, that
all the curves have the same endpoints D and E. Moreover, all the curves are
symmetric with respect to the axis, which passes through the point E and is
colinear to AB.

In the case of the circle arc the parametric representation has the form

z1(a) = Rsina,

ra(a) = Reosa, § <a<

Let us choose R = 5.005.
In the case of parabola parametric representation has the form

B

() = —252a3 + R,

ra(a) = Reosa, 7§ <a<

B

In the case of chain curve parametric representation has the form

21(a) = =247 (exdr 4 ¢~ wibT) 4 9.502,

ra(a) = Reosa, G <a<

vl

The graphs of three curves are shown on Fig. 2

We can conclude from Fig. 2, that the graphs of the curves lie close to each
other.

Formulae for the calculation of Lame parameter A; and curvatures ky of the
middle line of the shells have the form

N 2
Ay =z + 25,

"o ron
ki = Zy x2_3x15'32
Ay

Let us calculate the stress-strain state for the body depicted on the Fig. 1.
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Shape of the curves in the case of diffierent curvatures

25

——=
e

F1G. 2. Middle Line of Different Curves

Fig. 3, 4 show the displacements in the case of different shapes of middle
lines, Fig. 5-7 show the momenta that arise on the middle line of €23 in the
case of different shapes of middle lines.

Curve 1 on Fig. 3 corresponds to the case of the middle line having the shape
of part of the parabola, curve 2 — middle line being the chain curve.

% m'ﬁ Displacements w on the middle line of the circle shell

Fia. 3. Displacements w on the middle line of the shell in the
case of the circle-shaped shell

On the interface 0 < 9 < h, 1 = z{ we have to set the Neumann condition
for the problem in main part, and Dirichlet condition for the problem in the
shell. The displacements on the interface for the shell are found using the
conditions

Up = V1 + 5371)

Ur = W.
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%10 Displacements w on the middle line of the shell

= S

Fia. 4. Displacements w on the middle line of the shell in the
case of parabola and chain curve

7 toment M, , on the middle line of the circle shell

Fic. 5. Momentum mq; on the middle line of the shell in the
case of the circle-shaped shell

Applying the first condition at the points {3 = 0 and £3 = h/2, we find that
v1|51=0 = _un‘€3=07

2
71’5120 = E(un‘&:% - un‘£3=0)‘

Applying the second condition at the point £3 = 0, we find that

Wlg, =0 = Ur|ez=0-

Let us consider the conditions on the loads, that need to be imposed on the
interface for the problem in the main part. In order to express o, we use
conditions
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Fia. 6. Momentum mi; on the middle line of the shell in the
case of parabola

05

05+

Fia. 7. Momentum mi; on the middle line of the shell in the
case of chain curve

2
/ . onrd€s =Thg,  0nr(€3) = 03le=0,  Onr(&3) = —0 56,0

2

In order to express o,, we use conditions

h h
2 2
/ N Onnd&s = Th1, / , Tnné3d§s = M.
—2 —2
Let us assume that on the interface o, = a&? +bé3+c, opnn = ef3+ f, where
a,b,c,e, f are the unknown coefficients. These assumptions are based on the
fact, that we have three conditions for o, and two conditions on o,,,.
The computations yield
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T

12
onn(§3) = Mllﬁf?» + 7

3 6
Inr = (33 (013le1=0 = 3le1=0) — ﬁTw)&%—
1 N 1 1, N
=5 (01slei=0 + oT3le1=0)€s + 7 (T3 — 7 (A(op3le1=0 — o13le1=0) — 2T13).

From Fig. 3-4 we can conclude, that the smallest displacement in the normal
direction is achieved when the middle line of the thin part of the body is a chain
curve. The largest displacement in the normal direction arises when the middle
line of the thin part is a circle segment.

Fig. 5-7 show, that the smallest momentum is achieved when the middle line
of the thin part of the body is a chain curve. The largest momentum arises
when the middle line of the thin part is a circle segment.

Therefore, the stress-strain state of the bodies inside the thin part in the
case of the Girkmann problem heavily depends on the geometrical parameters
of the middle line of the shell (shape, curvature).

5. CONCLUSIONS

We conclude, that the stress-strain state of the bodies inside the shell in the
case of the Girkmann problem heavily depends on the geometrical parameters
of the middle line of the shell (shape, curvature). The elastic body where the
shell has the shape of the chain curve, is the best since almost no momentum
arises in this case.

The convergence of our algorithm is obtained in around 5 iterations. There-
fore, the proposed algorithm can be efficiently applied for the numerical solution
of the Girkmann problem.
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