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Ðåçþìå. Ñôîðìóëüîâàíî äâîâèìiðíó ïî÷àòêîâî-êðàéîâó çàäà÷ó ðóõó
âîäè íà òåðèòîði¨ âîäîçáîðó. Äëÿ âèâîäó ðiâíÿíü ðóõó ïðîâîäèëèñÿ óñå-
ðåäíåííÿ äîäàíêiâ çà ãëèáèíîþ ïîòîêó òà âðàõîâóâàëèñÿ óìîâè ìiëêîñòi
ïîòîêiâ. Ïîáóäîâàíî âiäïîâiäíó âàðiàöiéíó çàäà÷ó, äëÿ ÿêî¨ ïðè äèñêðåòè-
çàöi¨ çà ïðîñòîðîâèìè çìiííèìè âèêîðèñòàíî ìåòîä ñêií÷åííèõ åëåìåíòiâ i
çà ÷àñîì � îäíîêðîêîâó ðåêóðåíòíó ñõåìó. Äëÿ âåëèêèõ ÷èñåë Ðåéíîëüäñà
ïîáóäîâàíî ñòàáiëiçàöiéíó ñõåìó, ùî áàçó¹òüñÿ íà ôóíêöiÿõ-áóëüáàøêàõ iç
âèêîðèñòàííÿì ìåòîäó íàéìåíøèõ êâàäðàòiâ.×èñëîâi ðåçóëüòàòè àïðîáî-
âàíî íà òåñòîâèõ ïðèêëàäàõ äëÿ ðiçíèõ ïî÷àòêîâèõ òà êðàéîâèõ óìîâ, ó
ðiçíi ìîìåíòè ÷àñó i ïðè âèáîði âåëèêèõ çíà÷åíü ÷èñåë Ðåéíîëüäñà.

Abstract. Formulated a two-dimensional initial-boundary value problem
of movement of water in the watershed. To derive the equations of motion
were carried averaging summands in the depth �ow and conditions of shallow
�ows were taken into account. The variational problem was built for it in
discretization for spatial variables used �nite element method and time - one-
step recurrent scheme. For large Reynolds numbers built stabilization scheme
based on functional bubbles by the method of least squares. Numerical re-
sults tested on test examples for di�erent initial and boundary conditions, at
di�erent times and in selecting high values of Reynolds numbers.

1. Introduction
One of the most important processes of a hydrological cycle concerns to a

shallow water �ows to which belong rain and channels �ows, water �ow from a
watershed surface, motion of water in ocean, etc. Processes which underlie of
this model have wave nature, with wave length is much greater then the ver-
tical dimensions. To describe these processes is possible outgoing from general
equations of Navier-Stokes or from equations of Reynolds. From supposition,
that the horizontal scales of �uid motion are much more vertical, the average
on vertical component of a �ow is realized. The detailed derivation of average
equations of shallow water from equations of the Reynolds can be found in
works [3],[6]. Equations looks like following:

†Key words. Variational problem, initial-boundary value problem, Galerkin approxima-
tions, shallow-water �ow, Navier-Stokes equations, hydrodynamic approximations.
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,
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∂qj

∂xj
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(1)

where εij - vortex viscosity coe�cient, qi = hui � unknowns of value �ows,
Bi = τi|ξ − τi|η + pa

∂h
∂xi

+ ρgh ∂η
∂xi

(i = 1,2), Np = ρg h2

2 + hpa, pa - atmospheric
pressure, ξ - free surface of �ow, - bottom contour, h - �ow depth, τi|ξ òà τi|η
- stresses on free surface and bottom contour accordingly.

Average equations of shallow water deduced from general Navier-Stokes equa-
tions in the works [1,2],[4],[7]. It looks like





∂ui
∂t +
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j=1

uj
∂ui
∂xj

+ g ∂h
∂xi

+ (ui−u0
i )R−uiI

h = −g ∂η
∂x − Fi

h − ∂(RΛ)
∂xi

,

∂h
∂t + ∂(huj)

∂xj
= R− I, i = 1, 2,

(2)

where ui - unknowns of speed value, h - unknown �ow depth, ui0 - velocity
on a free surface, g - acceleration of gravity, I - speed of �uid in�ltration into
the ground, R - rain in�ow velocity, η - bottom contour, Λ - speed of falling of
rain drops, Fi - items which allow for tangential stresses on the bottom and on
the free surface of a �ow.

In motion equations from viscous terms there are only tangential stresses on
a free surface and at the bottom, others are rejected in conditions of shallow
water. In a result of averaging system of equations set by depth of a �ow
and allowing conditions of shallow water, the third equation of motion will be
converted to the hydrostatic law of pressure, which is characteristic for shallow
water equations

p (z) = p (ξ)− ρf3 (ξ − z) .

For completion of problem formulation equation of shallow-water supplement
by an initial and boundary conditions. The boundary conditions in the litera-
ture partition on two kinds: those which are set on hard boundary of �ow and
on opened boundary. On each of boundaries it is necessary to set two condi-
tions: normal and tangent components of stresses or speeds. For model (2) are
set only normal components [2]:

on hard boundary
qn = 0 or qn = qn;

on opened boundary
Nnn = Nnn.

It is explained to those that in model (1) the terms that take into account votex
viscosity are discarded, therefore tangent components of stresses or �ows are
not set.
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Let's consider one more version of assigning of a boundary conditions. Let
Ω - projection of a �uid �ow on a two-dimension plane. The boundary of area
Ω is partitioned on following parts: ΓB - �xed boundary of a watershed, ΓR-
boundary of a channel (the �uid in�ows), ΓS - opened sea border (the �uid can
both in�ow and out�ow, see Fig. 1).

Fig. 1. Projection of a �uid �ow on a two-dimension plane

More often boundary conditions for two-dimension problem of shallow water
write down [2,4,9-13]:

− on �xed boundary ΓB of a �ow set
U · ν = 0, ∇Uτ · ν = 0,

where ν and τ - units normal and tangent to bound of domain,Uτ -
tangential components of velocity;

− on boundary of �uid in�ow:

U · ν = Û · ν, µ
∂U

∂ν
· τ = 0,

where µ - coe�cient of viscosity;
− on opened sea border the boundary conditions it is possible to set as

∂U

∂ν
= 0.

In considered above shallow water models all items which contain component
of stresses are skipped. Component of stresses are saved only on a free surface
and on the bottom of �ow. Scienti�c approach, which is submitted in this work
saves all components of stresses in motion equations. For solving of shallow
water problem the �nite element method was selected.

2. Formulation of initial-boundary problem
Suppose that �ow of viscous incompressible �uid in each point of time t ∈

[0, T ], 0 < T < +∞, forms on an immovable surface x3 = η(x1, x2) of watershed
some �uid layer D = D(t) (Fig.2).

Let's designate through ξ(x, t) a free surface of this �ow, which contacts to
atmosphere, where x = (x1, x2, x3) ∈ R3, ν - unit outward normal of domain
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Fig. 2. Model of shallow water �ow

D = D(t). Lateral (vertical) surface of this �ow, if such exists we shall designate
through S. Let's mark, that the part of a surface S can be degenerated in
boundary Γ of watershed river. So ∂D(t) = η ∪ ξ(t) ∪ S.

Projection of a �uid layer D(t) on a horizontal plane we will denote as Ω.
Assume, that boundary γ of domain continuous by Lipschitz.

Let's guess, that a �uid state under the in�uence of mass forces F = {fi(x)3i=1
in each point of time t ∈ [0, T ], 0 < t < +∞ is described by of the Navier-Stokes
equations 




ρ

(
∂ui
∂t +

3∑
k=1

∂
∂xk

(uiuk)− fi

)
−

3∑
k=1

∂σik
∂xk

= 0,

σij = −pδij + τij ,
τij = 2µeij ,

eij = 1
2

(
∂ui
∂xj

+ ∂uj

∂xi

)
,

div ~u = 0, i, j = 1, 2, 3,

(3)

where div ~u =
3∑

k=1

∂uk
∂xk

, ~u = {ui (x, t)}3
i=1 and p = p(x, t) - velocity vector

and hydrostatic pressure accordingly, F = fi(x, t)3i=1 - vector of mass forces,
ρ = const > 0 and µ = const > 0- density and viscosity, {eij}3

i,j=1, {σij}3
i,j=1 -

velocity and stresses tensors, δij - Kroneker symbol.
Let in an initial time water �ow described by conditions

ui|t=0 = u0
i in D(0), i = 1, 2, 3. (4)

Except of initial conditions, the equations are necessary supplement by the
applicable boundary conditions, which determine interaction of �ow water with

155



PETRO VENHERSKYI, VALERII TRUSHEVSKYI

atmosphere, surface of ground, groundwater etc.The main factors which in�u-
ence on a �uid state:

− intensive rain precipitations, evaporation of water;
− replenishing of water from channel;
− in�ltration of water in soil(groundwater replenishment);
− atmospheric wind, etc.
Attempts to describe characteristic modes of shallow-water �ows result in

simpli�cation of equations (3) and respective to them boundary conditions and
will be reviewed later. At the given stage we will limit by a typical boundary
conditions for this equations [2,5,7,9-13]:

u = _
u on Bu × (0, T ],mes(Bu) > 0, Bu ⊂ ∂D(t), (5)

τijνj = _
τ i on Bτ × (0, T ], Bτ ⊂ ∂D(t)\Bu, i, j = 1, 2, 3, (6)

where u = {ui}3
j=1, ν = {νi}3

j=1 - unit outward normal of bound ∂D(t), νi =
cos(ν, xi).

Generally free surface of a �ow ξ(x, t) is unknown, therefore it is necessary
to set conditions for de�nition of its position in space in each point time. For
�nding of a free surface x3 = ξ(x1, x2, t) we shall use a kinematic condition [16]:

u3 + R =
∂ξ

∂t
+ u0

1

∂ξ

∂x1
+ u0

2

∂ξ

∂x2
, (7)

where R � rain velocity, u0
1, u

0
2 - horizontal components of velocity on a free

surface and initial condition
ξ|t=0 = ξ0 in Ω. (8)

On the bottom of �ow the �uid can �ow in a soil in a direction of an axis x3

u3 = −I on [0, T ], (9)
where I - velocity of seepage water in soil. If I = 0 does it mean that surface is
impermeable ; I > 0 - �uid particles seepage in a soil with a preset speed; I <
0 - the groundwaters rise on a back surface of ground.

On a base surface for velocity we shall allow for a condition of adhesion
u1 = u2 = 0. (10)

The initial-boundary problem (3)-(10) is di�cult to applying for a nature wa-
tersheds and requires simpli�cations. At the �rst stage (3) we will reduce equa-
tion to a undimensional kind. Such form will give a chance to receive numbers,
which characterize motion of water (Reynold's number), and also the parame-
ters of equations are such normalized that their values will change in de�nite
limits. At the second stage, allowing conditions of shallow water, neglect terms
order of smallness ε = δ/L (the maximum thickness of a �ow does not exceed
the size δ, and characteristic horizontal dimensions value L, and(δ/L << 1)).

All components of stresses in two �rst equations of motion remain saved after
simpli�cation. The following step of simpli�cations is reduction of a problem
dimension at the expense of a depth averaging of equations. After an average
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is received a two-dimension problem of a water �ow in hydrodynamic approxi-
mation concerning three unknowns - two components of �ow and depth:




∂qi
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∂
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(
∂h
∂xi
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− 1

ρRe

2∑
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∂h
∂t +

2∑
j=1
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∂xj
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τij = µ
(

∂(qi/h)
∂xj

+ ∂(qj/h)
∂xi

)
, i, j = 1, 2,

(11)
where h - unknown depth, q = (q1, q2) - unknown vector of �ow, η - bottom
contour,ρ - density of water, Re - Reynolds number, τij - stresses tensor, µ -
viscosity of water, C - Shezi factor,g - gravitational acceleration, G = gL

V 2∞
, L -

typical spatial size, V∞ - typical velocity, R - rain in�ow, I - water seepage in
a soil.

The �rst two equations of system are averaged equations of motion, which are
parabolic type. Their novelty consists in preservation of addend with internal
stresses of a �ow, which are essential on surfaces with considerably change
gradients. In the literature the hyperbolic equations of a shallow water �ow
are considered where the stresses only on the bottom and on a free surface of
a �ow are taking into consideration. In this case it is supposed that the wind
stresses are negligible. The third equation of a system is an averaged equation
of continuity, which describes a free surface of a �ow.

Let's consider a water �ow from a surface watershed in a projection on a
horizontal plane. Here Ω - two-dimension domain which restricted by curve ΓB

(watershed line) and ΓP (out�ow line), n, ζ - normal and tangent to boundary
of area accordingly.

Fig. 3. Water �ow projection on a horizontal plane

Equations of system (11) are added by boundary conditions
τζ |ΓB

= 0, q · n|ΓB
= 0, q · ζ|ΓP

= 0, q · n|ΓP
= q̂ (12)

and initial conditions
h|t=0 = h0, q|t=0 = q0â in Ω, (13)
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where q̂ � known water out�ow.
In outcome we received a system of three equations (11) for searching com-

ponents of vector of a �ow and depth with boundary (12) and initial (13)
conditions. We will decide a problem (11)-(13) by a �nite element method
(FEM)[8,12-13].

3. Applying of a FEM to the problem solution
According to a procedure of a FEM it is necessary to make a variational

formulation. For formulation of variational initial-boundary target setting (11)
� (13) we will enter set of allowed functions for �ows

Q (q̂) :=
{

q = {qi}2
i=1 ∈ H1 (Ω)2

∣∣∣q · n|ΓP
= q̂, q · n|ΓB

= 0, q · ζ|ΓP
= 0

}

and space Q0 = Q(0). Space of allowed(permissible) functions for depth - Φ :=
L2(Ω). Let's search a �ow as q = q∗ + q̄ with unknown q∗ ∈ Q0, q̄.n = q̂ on Γp.
Further, for simplicity of identi�cations we will use instead of q∗ identi�cation
q.

Let's enter the following forms




a(q, p) =
∫
Ω

q · pdx, b(w; q, p) =
∫
Ω

2∑
i,j=1

pi
∂

∂xj
(qiwj) dx,

c (h;w, p) = 1
ρ

∫
Ω

h
2∑

i,j=1
τij (w) ∂pi

∂xj
dx, d (z;h, p) = 1

2

∫
Ω

Gzh (∇ · p)dx,

l (η;h, p) =
∫
Ω

Gη∇ · (hp) dx, R̄ (h, q, p) =
∫
Ω

g|q|(q·p)
C2h2 dx,

∀p, q, w ∈ Q0,
m (q, θ) =

∫
Ω

(∇ · q) θdx, 〈s, θ〉 =
∫
Ω

(R− I) θdx, ∀θ, z ∈ Φ.

(14)

Then, take into 3, the variational initial-boundary target setting to become




Given q0 ∈ Q0, h0 ∈ Φ;
Find q ∈ Q0, h ∈ Φ such that
a (q′ (t) , p) + b (q (t) /h(t); q (t) , p)−d (h (t) ;h (t) , p)−
−l (η;h (t) , p) + 1

Re

[
c (h (t) ; q/h (t) , p)− R̄ (h (t) ; q (t) , p)

]
+

+a (F (q̂), p) = 0,
a (h′ (t) , θ) + m (q (t) , θ) + a(V (q̂), θ) = 〈s (t) , θ〉∀t ∈ [0, T ] ,
a(q (0)− q0, p) = 0, a (h (0)− h0, θ) = 0 ∀p ∈ Q0, ∀θ ∈ Φ,

(15)

where F (q̂) and V (q̂) � items accordingly of �rst and second equations of a
system, which are formed by a �ow components q̂.

We will decide the variational problem with usage of a projective-net scheme
of FEM. Let's conduct a discretization of a problem in time. Interval of time
[0,T] we will divide into NT + 1 identical parts [tk, tk+1] by length ∆t and we
will select approximations for depth and �ows as

h(x, t) ≈ h∆t(x, t) = hk (x) + Hk+ 1
2 (x)∆tω (t) , (16)

q(x, t) ≈ q∆t(x, t) = qk (x) + Uk+ 1
2 (x)∆tω (t) , (17)
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where

Hk+ 1
2 =

hk+1 − hk

∆ t
, Hk+ 1

2 ∈ Φ, ∀x ∈ Ω, ∀t ∈ [tk, tk+1], k = 0, . . . , NT .

It is known, that if we approximate a function by an interpolation polynomial
of the �rst order, the precision greater than ∆t2 cannot be obtained. Therefore
at the given stage (phase) we can conduct a linearization of a problem by
throwing o� terms of the order. By substituting (16) � (17) in a variational
problem (15) and ignore terms of the order ∆t2, we receive a linearized problem
as the one-step recurrent scheme of integrating in time





Given q0 ∈ Q0, h0 ∈ such that λ ∈ (0, 1] ;
Find Uk+ 1

2 ∈ Q0, Hk+ 1
2 ∈ Phi , such that

a(Uk+ 1
2 , p)+

+λ∆t
[
b(qk/hk; Uk+ 1

2 , p) + b(Uk+ 1
2 ; qk/hk, p)− 2d(Hk+ 1

2 ; hk, p)−
−l(η;Hk+ 1

2 , p) + 1
Re

(
c(Hk+ 1

2 ; qk/hk, p) + c(hk; Uk+ 1
2 /hk, p)

)]
=

= d
(
hk; hk, p

)
+ l

(
η;hk, p

)− b
(
qk/hk; qk, p

)−
− 1

Re

[
c
(
hk; qk/hk, p

)− R̄
(
hk; qk, p

)]− a(Fk+1/2, p),
a(Hk+ 1

2 , θ) + λ∆tm(Uk+ 1
2 , θ) =

=< sk+1/2, θ > −m(qk, θ)− a(Vk+1/2, θ),
qk+1 = qk + ∆tUk+ 1

2 , hk+1 = hk + ∆tHk+ 1
2 , k = 0, ..., NT ,

(18)

where Fk+1/2 = F (tk + ∆t/2), Vk+1/2 = V (tk + ∆t/2), sk+1/2 = s(tk + ∆t/2).
At a discretization of a problem (18) according to space variables are utilised

piecewise linear approximatings on triangular elements for �ows and piecewise
constant approximatings of depthes. Such selection of approximatings allows
to eliminate depth of a �ow and to receive a system of simple equations only
concerning vector of a �ow.

For a discretization of a problem according space variables the domain Ω is
divided into triangular �nite elements. Let's enter the spaces for �ows Qh

0 ⊂
Q0, dim Qh

0 = Np < ∞ and for depthes Φh ⊂ Φ, dim Φh
0 = Ne < ∞. Let's

select piecewise linear approximatings for �ows

ϕi (x1, x2) =
{

Li (x1, x2) , Pi ∈ Ωe,
0, Pi /∈ Ωe

and piecewise constant for depthes

ψe (x1, x2) =
{

1, P ∈ Ωe,
0, P /∈ Ωe.

Further using a procedure of a Galorkin method, we will obtain a system of
simple equations concerning unknowns of vector of a �ow W in nodal values of
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a grid and vector of depths S in center of gravity of triangles:



Given q0 ∈ Q0, h0 ∈ Φ and λ ∈ (0, 1] ;

Find U
k+1

2

h =
Np∑
i=1

W
k+ 1

2
i ϕi ∈ Q0

h, H
k+1

2

h =
Ne∑
e=1

S
k+1

2

e ψe ∈ Φh

such, that a(U
k+1

2

h , p)+

+λ∆t

[
b(qk/hk;U

k+1
2

h , p) + b(U
k+1

2

h ; qk/hk, p)− 2d(H
k+1

2

h , hk, p)−

−l(η, H
k+1

2

h , p) + 1
Re

(
c(H

k+1
2

h ; qk/hk, p) + c(hk; U
k+1

2

h /hk, p)
)]

=

= d
(
hk, hk, p

)
+ l

(
η, hk, p

)− b
(
qk/hk; qk, p

)−
− 1

Re

[
c
(
hk; qk/hk, p

)− R̄
(
hk; qk, p

)]− a(Fk+ 1
2
, p) ∀p ∈ Q0,

a(H
k+1

2

h , θ) + λ∆tm(U
k+1

2

h , θ) =
=< sk+ 1

2
, θ > −m(qk, θ)− a(Vk+ 1

2
, θ) ∀θ ∈ Φ,

qk+1 = qk + ∆tU
k+1

2

h , hk+1 = hk + ∆tH
k+1

2

h , k = 0, ..., NT .

(19)

On a Fig. 4 completely sampled equations are sketched on one �nite element

Fig. 4. Diagrammatic representation of a system of simple equations

A22 � diagonal matrix. At the expense of condensation of internal parameters
we can eliminate depth on one �nite element by using a ratio

S
k+ 1

2
e = Ak−1

22 (F k
0 −Ak

21W
k+ 1

2
e ). (20)

In outcome we will obtain a system of simple equations concerning two un-
knowns � �ow components

(Ak
11 −Ak

12A
k−1

22 Ak
21)W

k+ 1
2

e = F k −Ak
12A

k−1

22 F k
0 .

4. Stabilization scheme FEM
At large values of Reynold's numbers (Re>100) �ows and their gradients

change sharply. As outcome the obtained solution of a shallow water problem
loses the stability and appears oscillations. On this case, stabilization scheme
is obtained, which is based on bubble functions with usage of a least-squares
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method. As the depth of a �uid is considered as a constant on one �nite
element, it does not in�uence behaviour of the solution. In a system (18) the
stabilization addend is added to equations of �ows in the next view

S(Uk+ 1
2 ,Hk+ 1

2 , p) = Me




∫

Ωe

Uk+ 1
2 · pdx+

+ ∆tλ




∫

Ωe

2∑

j=1

(
(

∂

∂xj
((qk

i U
k+ 1

2
j ) + (qk

j U
k+ 1

2
i ))/hk

)
pdx+

+
∫

Ωe


U

k+ 1
2

i +
2∑

j=1

∂

∂xj
(qk

i qk
j )/hk + Ghk ∂η

∂xi
− g

∣∣qk
∣∣qk

i

ReC2 (hk)2


×

×



2∑

j=1

∂

∂xj
((qk

i pj) + (qk
j pi))/hk


 dx+

∫

Ωe

GHk+ 1
2

∂η

∂xi
pdx


−

(21)

−
∫

Ωe

g
∣∣qk

∣∣qk
i pi

ReC2(hk)2
dx +

∫

Ωe

2∑

j=1

∂

∂xj
((qk

i qk
j )/hk)pdx +

∫

Ωe

Ghk ∂η

∂xi
pdx


 ,

where Me -� stabilization factor on each �nite element.
For stabilization factor Me using the upper-bound estimate µ0 obtained in

the work [6] for approximating scheme of Navier-Stokes equations

µ0 =
7
5

(
1

7kd2/∆2 − e

)
, (22)

where ∆ - square of �nite triangle element, d2 = l21+l22+l23, li - length of triangle
side (i=1, 2, 3), e = div w,w - know velocity from previous step, k - kinematic
viscosity of a �uid.

5. Test examples
Example 1. Let's consider a problem of shallow water �ow from a surface

some watershed. All parameters of a problem are set in a dimensionless view.
Let's select a test surface watershed η(x, y) as Fig. 5, where x, y change from 0
to 2. In an initial time we will enable that h0 =0.01, qi=0 (i=1,2). Concerning
boundary conditions, we enable, that the water does not out�ow and normal
component of �ow velocities on boundary of domain is equal zero qṅ=0. We
enable, that constant rain in�ux R=1, in�ltration of a �uid in a ground I=0,
coe�cient factor Shezi C=60, Reynold's number Re=0.1. Quantity of splitting
points of domain 60x60. For the solution of a problem we apply the numeric
scheme (19), in which parameters λ = 0.5, ∆t = 0.005. Let's consider result in
a point of time t = 0.195 (quantity of steps in time tt=40).

In a Fig. 5 the depth of a �ow H (quantity of water is �gured, which collects
at the bottom surface with constant rain in�ux). As the water does not out�ow,
cavities are �lled by the water. From results apparently, that the maximum
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value of depth is reached in the middle of a bottom surface, where there is a
greatest cavity. In the highest points of surface watershed values of depth are
approaches to zero, as the water �ows down.

The law of conservation of mass for the given example is tested. The con-
ducted calculations have shown, that the volume of the fall out precipitations
approximately coincides with water volume on a given surface in the given point
of time 0.78105.

In Fig.7 and Fig.8 are �gured values components of a �uid �ow accordingly
on axes x and y. In a Fig.9 the module of a �ow is �gured. From results it is
possible to see, that the �ow has zero values in those points of a bottom surface,
where the �uid collects and whence the water �ows o�, in these extreme points
water is not gone. The maximum values of a �ow are reached in currents, where
there is a maximum slope of a bottom surface to horizont.

Fig. 5. Bottom sur-
face η(x, y) Fig. 6. Flow depth Í

Fig. 7. Flow component Qx Fig. 8. Flow component Qy

Example 2. By important point at problem solving of shallow water is
selection of a Reynold's number values. When parameter receives large values
(Re>100), solution obtained with the help of the numeric scheme (19), loses
the stability, values of �ows and their gradients are very large, as a result of
it there are oscillations. In the Fig. 10 the values of depthes of a problem
with parameters by given in an example 1 and Reynold's number Re = 150
are �gured. On Fig. 11 the values of component �ows accordingly on axis x
are �gured. The results are displayed in a point of time t = 0.073 (quantity of
steps in time tt = 15, ∆t = 0.005).

For the solution of this problem the stabilization scheme of a �nite element
method with stabilization factor (21) was obtained. We apply the stabilization
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Fig. 9. Module of �ow

Fig. 10. Flow depth Í Fig. 11. Flow com-
ponent Qx

scheme to the solution of our problem with a Reynold's number Re=150 and
stabilization factor Me = −0.5. Let's consider computing results in a point of
time t = 0.586 (quantity of steps in time tt=60), quantity of splitting points of
domain 30x30. In a Fig. 12 the values of depth are �gured, the Fig. 13, Fig.
14, Fig. 15 - represent values components and module of a �ow accordingly.

From results it is possible to see, that the problem, which has arisen, at
applying the numeric scheme (19) to the solution of a problem, is decided
positively

The results are smoothed at the expense of the introducing of a stabilization
factor. The computing results have shown, that the problems of a shallow
water �ow can be decided with any values of Reynold's numbers, applying the
stabilization scheme of a �nite element method.

The law of conservation of mass for the obtained outcomes is executed. The
volume of the fall out precipitations coincides with a volume of a �uid on a
surface watershed 2.34314.
Example 3. Let's consider a water �ow from a surface watershed Fig. 16

(part of Perespil countryside in the Lvov area). Boundary and initial conditions
we will select similarly to the previous example, quantity of splitting points of
domain 60x60, stabilization a factor Me = -0.5. Let's consider the results in
a point of time t = 0.146 (quantity of steps in time tt=30) with a Reynold's
number Re=150. In a Fig. 17 the depth H of a water �ow is displayed. For
the greater visualization we compare isolines of a watershed surface (Fig. 18)
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Fig. 12. Flow depth Í Fig. 13. Flow com-
ponent Qx

Fig. 14. Flow com-
ponent Qy Fig. 15. Module of �ow

and depth (Fig. 19). As the water does not out�ow, cavities are �lled by
water. From results we can see, that the �lling of a watershed surface by water
implements according to isolines.In Fig. 20 is displayed module of �ow.

7. Conclusions
For a selected example with stabilization factor is the laws of conservation

of mass and �ow of �uids are fair. The obtained model enables to conduct
calculations of values of depth and speeds of �uid �ows on columbines with
rain and lateral in�uxes for di�erent initial and boundary conditions in di�erent
point of time with large values of a Reynold's number.

The above examples indicate that signi�cant in�uence on the solution of
the problem of shallow water on the surface of a watershed has a choice of
Reynolds number. For small values of this number of problem can be solved
by using numerical scheme (19). Choosing Re> 100, the solution loses its
stability (Fig. 10 � Fig. 13). This is because for large values of the Reynolds
number solutions of problems may have internal and boundary layers - a very
narrow area where most solutions and their gradients change sharply. As a
result, numerical solutions, built on the Galerkin scheme, where the parameter
discretization is too large to consider all these layers can ostcillate throughout
the domain.

Considering it was built stabilization scheme FEM. Applying this scheme to
solving problems of shallow water on the surface of a watershed above men-
tioned problem disappears (Fig.14 - Fig.20).

164



NUMERICAL MODELLING OF SHALLOW-WATER FLOW ...

Fig. 16. Bottom sur-
face (x, y)

Fig. 17. Flow depth Í

Fig. 18. Isolines of
bottom surface η(x,y)

Fig. 19. Isolines of
depth surface Í(x,y)

Fig. 20. Module of �ow

Thus, based stabilization scheme FEM can be e�ective in solving the problem
of shallow water from any surface water catchment for large Reynolds numbers.
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