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NUMERICAL MODELLING OF SHALLOW-WATER
FLOW IN HYDRODYNAMIC APPROXIMATIONS

PETRO VENHERSKYI, VALERII TRUSHEVSKYI

PE3IOME. CdopMynp0BaHO IBOBUMIPDHY MOYATKOBO-KPANOBY 3a7ady DPYyXy
BO/M HA TepuTOpii Bom0o360py. st BUBOMY PIBHSHB PyXy ITPOBOJIMJINCS yCe-
DPeJHEHHSI TOJAHKIB 33 IIMOMHOIO IOTOKY Ta BPAXOBYBAJIACH YMOBU MIJIKOCTI
noTokiB. ITobymoBamo BiamOBiAHY BapialliifiHy 3a0aty, [1JIs SIKOT IIPY JUCKPETH-
3ariii 3a TPOCTOPOBUMYU 3MIHHUMU BUKOPHUCTAHO METO CKIHYeHHUX eJIEMEHTIB 1
3a 4acOM — OJHOKPOKOBY PeKypeHTHy cxemy. s Benukux uuces Peitnosbaca
nobymoBaHO cTabimizarmiiiHy cxeMy, mo 6a3yeThes Ha GYHKIiaX-0yap0amkax i3
BUKOPUCTAHHIM METOy HafiMeHNuX KBa/paTiB. UucaoBi pe3yibTatu ampobo-
BAHO HA TECTOBUX IIPUKJ/IAJAX /I PI3HUX HOYATKOBUX Ta KPAHOBHUX yMOB, y
pi3Hi MOMeHTH Yacy i mpu BrOOpi BeJMKHUX 3HAUeHDb umnces PeitHoabaca.

ABSTRACT. Formulated a two-dimensional initial-boundary value problem
of movement of water in the watershed. To derive the equations of motion
were carried averaging summands in the depth flow and conditions of shallow
flows were taken into account. The variational problem was built for it in
discretization for spatial variables used finite element method and time - one-
step recurrent scheme. For large Reynolds numbers built stabilization scheme
based on functional bubbles by the method of least squares. Numerical re-
sults tested on test examples for different initial and boundary conditions, at
different times and in selecting high values of Reynolds numbers.

1. INTRODUCTION

One of the most important processes of a hydrological cycle concerns to a
shallow water flows to which belong rain and channels flows, water flow from a
watershed surface, motion of water in ocean, etc. Processes which underlie of
this model have wave nature, with wave length is much greater then the ver-
tical dimensions. To describe these processes is possible outgoing from general
equations of Navier-Stokes or from equations of Reynolds. From supposition,
that the horizontal scales of fluid motion are much more vertical, the average
on vertical component of a flow is realized. The detailed derivation of average
equations of shallow water from equations of the Reynolds can be found in
works [3],[6]. Equations looks like following:

TKey words. Variational problem, initial-boundary value problem, Galerkin approxima-
tions, shallow-water flow, Navier-Stokes equations, hydrodynamic approximations.
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where €;; - vortex viscosity coefﬁcient, q; = hu; — unknowns of value flows,
B; = 7| — 7, +pa by pgh (i=12),N,= pg%2 + hpa, pa - atmospheric
pressure, £ - free surface of ﬂow7 - bottom contour, h - flow depth, 7;|¢ Ta 7,
- stresses on free surface and bottom contour accordingly.

Average equations of shallow water deduced from general Navier-Stokes equa-
tions in the works [1,2],[4],]7]. It looks like

ou, ou; on , (wi—u))R—wil 95 F 9(RA)
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where u; - unknowns of speed value, h - unknown flow depth, u;, - velocity
on a free surface, g - acceleration of gravity, I - speed of fluid infiltration into
the ground, R - rain inflow velocity, n - bottom contour, A - speed of falling of
rain drops, F; - items which allow for tangential stresses on the bottom and on
the free surface of a flow.

In motion equations from viscous terms there are only tangential stresses on
a free surface and at the bottom, others are rejected in conditions of shallow
water. In a result of averaging system of equations set by depth of a flow
and allowing conditions of shallow water, the third equation of motion will be
converted to the hydrostatic law of pressure, which is characteristic for shallow
water equations

p(z) =p&)—pfs(§—2).

For completion of problem formulation equation of shallow-water supplement
by an initial and boundary conditions. The boundary conditions in the litera-
ture partition on two kinds: those which are set on hard boundary of flow and
on opened boundary. On each of boundaries it is necessary to set two condi-
tions: normal and tangent components of stresses or speeds. For model (2) are
set only normal components [2]:

on hard boundary

Gn =001 gn = qp;
on opened boundary

It is explained to those that in model (1) the terms that take into account votex
viscosity are discarded, therefore tangent components of stresses or flows are
not set.
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Let’s consider one more version of assigning of a boundary conditions. Let
Q - projection of a fluid flow on a two-dimension plane. The boundary of area
Q is partitioned on following parts: I'p - fixed boundary of a watershed, I'g-
boundary of a channel (the fluid inflows), I's - opened sea border (the fluid can
both inflow and outflow, see Fig. 1).

Is

FiG. 1. Projection of a fluid flow on a two-dimension plane

More often boundary conditions for two-dimension problem of shallow water
write down [2,4,9-13]:
— on fixed boundary I'p of a flow set
U.v=0, VU, -v=0,

where v and 7 - units normal and tangent to bound of domain, U, -
tangential components of velocity;
— on boundary of fluid inflow:

- oU
Uv=U v, p— -7=0,
ov
where p - coefficient of viscosity;
— on opened sea border the boundary conditions it is possible to set as

ov
In considered above shallow water models all items which contain component
of stresses are skipped. Component of stresses are saved only on a free surface
and on the bottom of flow. Scientific approach, which is submitted in this work
saves all components of stresses in motion equations. For solving of shallow

water problem the finite element method was selected.

2. FORMULATION OF INITIAL-BOUNDARY PROBLEM
Suppose that flow of viscous incompressible fluid in each point of time ¢ &
[0,7],0 < T < 400, forms on an immovable surface x3 = n(x1, x2) of watershed
some fluid layer D = D(t) (Fig.2).
Let’s designate through £(x,t) a free surface of this flow, which contacts to
atmosphere, where = (71,22, 73) € R3 v - unit outward normal of domain
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F1G. 2. Model of shallow water flow

D = D(t). Lateral (vertical) surface of this flow, if such exists we shall designate
through S. Let’s mark, that the part of a surface S can be degenerated in
boundary I' of watershed river. So dD(t) = nU&(t) U S.

Projection of a fluid layer D(t) on a horizontal plane we will denote as .
Assume, that boundary v of domain continuous by Lipschitz.

Let’s guess, that a fluid state under the influence of mass forces F = {f;(z)?_,
in each point of time t € [0,77,0 < ¢t < +00 is described by of the Navier-Stokes
equations

( Ou; > o) 3 do;
P<a{ + 2 azk(uiuk)_fi> - > =0,
k=1 k=1
ij = —Pdij + Tij
Tij = 2peij, (3)

1 (0w | Oy
674] -2 <(9.Z’j + axb) ’

divi=0, i,j=1,23,

3
where div @ = kzl g—z’;,ﬁ = {u; (z,t)}2_, and p = p(z,t) - velocity vector
and hydrostatic pressure accordingly, F' = fz'(a:,t)?zl - vector of mass forces,
p = const > 0 and p = const > 0- density and viscosity, {eij}?,j:h {aij}ij:l -
velocity and stresses tensors, d;; - Kroneker symbol.
Let in an initial time water flow described by conditions

uil,_o = u in D(0),i = 1,2,3. (4)

Except of initial conditions, the equations are necessary supplement by the
applicable boundary conditions, which determine interaction of flow water with
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atmosphere, surface of ground, groundwater etc.The main factors which influ-
ence on a fluid state:

— intensive rain precipitations, evaporation of water;

— replenishing of water from channel;

— infiltration of water in soil(groundwater replenishment);
— atmospheric wind, etc.

Attempts to describe characteristic modes of shallow-water flows result in
simplification of equations (3) and respective to them boundary conditions and
will be reviewed later. At the given stage we will limit by a typical boundary
conditions for this equations [2,5,7,9-13]:

u=uon By, x (0,T],mes(B,) > 0,B, C 0D(t), (5

TijVj = T;0n B; X (O,T],BT - 8D(t)\Bu, 1,5 =1,2,3, (6

where u = {ui}?zl,u = {Vi}?zl - unit outward normal of bound 90D(t),v;
cos(v, x;).

Generally free surface of a flow £(z,t) is unknown, therefore it is necessary
to set conditions for definition of its position in space in each point time. For
finding of a free surface x3 = {(x1, 22,t) we shall use a kinematic condition [16]:

o€ 0 0¢ 0 0¢
ug+ R=—+tuj— +ug—, 7
3 ot Yoz, 2019 (7)
where R — rain velocity, u?,u9 - horizontal components of velocity on a free
surface and initial condition

€li=o = 50 in Q. (8)
On the bottom of flow the fluid can flow in a soil in a direction of an axis x3
ug = —1on[0,T], (9)

where I - velocity of seepage water in soil. If I = 0 does it mean that surface is
impermeable ; I > 0 - fluid particles seepage in a soil with a preset speed; I <
0 - the groundwaters rise on a back surface of ground.

On a base surface for velocity we shall allow for a condition of adhesion

Ul = U = 0. (10)

The initial-boundary problem (3)-(10) is difficult to applying for a nature wa-
tersheds and requires simplifications. At the first stage (3) we will reduce equa-
tion to a undimensional kind. Such form will give a chance to receive numbers,
which characterize motion of water (Reynold’s number), and also the parame-
ters of equations are such normalized that their values will change in definite
limits. At the second stage, allowing conditions of shallow water, neglect terms
order of smallness € = /L (the maximum thickness of a flow does not exceed
the size ¢, and characteristic horizontal dimensions value L,and(d/L << 1)).

All components of stresses in two first equations of motion remain saved after
simplification. The following step of simplifications is reduction of a problem
dimension at the expense of a depth averaging of equations. After an average
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is received a two-dimension problem of a water flow in hydrodynamic approxi-
mation concerning three unknowns - two components of flow and depth:

2
dq; 3 (.94 Oh | On o(rizh) _ _glalai  _
ot T Zl Ox; (QZ h) +Gh (Bzi ) pRe Z oz ReC?h2 0,
]:
oh 2. 9,
9% _ p_
ot + Z Ox; — R I’

riy = p (S 4 B g,
(11)

where h - unknown depth, ¢ = (¢1,¢2) - unknown vector of flow, 7 - bottom
contour,p - density of water, Re - Reynolds number, 7;; - stresses tensor W -
V2 , L -
typical spatial size, Vi - typical velocity, R - rain inflow, I - water seepage in
a soil.

The first two equations of system are averaged equations of motion, which are
parabolic type. Their novelty consists in preservation of addend with internal
stresses of a flow, which are essential on surfaces with considerably change
gradients. In the literature the hyperbolic equations of a shallow water flow
are considered where the stresses only on the bottom and on a free surface of
a flow are taking into consideration. In this case it is supposed that the wind
stresses are negligible. The third equation of a system is an averaged equation
of continuity, which describes a free surface of a flow.

Let’s consider a water flow from a surface watershed in a projection on a
horizontal plane. Here ) - two-dimension domain which restricted by curve I'p
(watershed line) and I'p (outflow line), n, ¢ - normal and tangent to boundary
of area accordingly.

viscosity of water, C' - Shezi factor,g - gravitational acceleration, G =

FiG. 3. Water flow projection on a horizontal plane

Equations of system (11) are added by boundary conditions

TC‘FB:(’)?qnh—‘B:O’ qC’l—‘p:()’qn‘Fp:q\ (12)
and initial conditions
hli—o = ho, qli_g = qoB inQ, (13)
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where ¢ — known water outflow.

In outcome we received a system of three equations (11) for searching com-
ponents of vector of a flow and depth with boundary (12) and initial (13)
conditions. We will decide a problem (11)-(13) by a finite element method
(FEM)|8,12-13].

3. ApPLYING OF A FEM TO THE PROBLEM SOLUTION
According to a procedure of a FEM it is necessary to make a variational
formulation. For formulation of variational initial-boundary target setting (11)
— (13) we will enter set of allowed functions for flows

Qi) = {a="{aY, € B (%|q-nly, =d ¢ nlp, = 0.4 Clp, =0}

and space Qo = Q(0). Space of allowed(permissible) functions for depth - ¢ :=
L%*(Q). Let’s search a flow as ¢ = g« + ¢ with unknown ¢, € Qo,q.n = GonT),.
Further, for simplicity of identifications we will use instead of ¢. identification
q.

Let’s enter the following forms

a@m)=fq0ﬂ% b(w;q,p) = ggi%mé%@mwd%
1,)=

c(h;w, p) —-1fiz§:1n] w) p?dx, d(z; h,p) = QJY?zh (V- p)dz,

7-7 14
L(nihp) = [ GV - (hp) dz, R (h,q,p) = fg‘g‘Zfdm (14)

Q

Vp, ¢, w € Qo,
m(q,0) = [(V-q)0dz, (s,0)= [(R—1I)0dz, Vb, ze€ P.
\ Q Q

Then, take into 3, the variational initial-boundary target setting to become

Given gy € Qo, hg € ;

Find g € Qg, h € ® such that

a(q (t),p) +b(q(t)/h(t);q(t),p) —d(h(t); -

4@M%M+ﬁ“()ﬂ“ﬁm R(h(t);q(t),p)]+ (15)
+a (F(g),p) =0,

a(h'(t),0) +m(q(t),0)+a(V(g),0) = (s(t),0)vt € [0,T7,

a(q(0) — qo,p) =0, a(h(0) = ho,0) =0 Vp € Qo, V0 € P,

where F(¢) and V() — items accordingly of first and second equations of a
system, which are formed by a flow components q.

We will decide the variational problem with usage of a projective-net scheme
of FEM. Let’s conduct a discretization of a problem in time. Interval of time
[0,T] we will divide into N7 + 1 identical parts [tg,tx+1] by length At and we
will select approximations for depth and flows as

h(z,t) ~ hay(z,t) = hF () + H" 2 (2) Atw (1), (16)
a(z,t) ~ qae(z,t) = ¢" (2) + UM2 (2) Atw (1) (17)
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hk—l—l _ hk

N JHMY2 €@, Vo eQ, Ve [tetin], k=0, ...,Np.

It is known, that if we approximate a function by an interpolation polynomial
of the first order, the precision greater than At? cannot be obtained. Therefore
at the given stage (phase) we can conduct a linearization of a problem by
throwing off terms of the order. By substituting (16) — (17) in a variational
problem (15) and ignore terms of the order At?, we receive a linearized problem
as the one-step recurrent scheme of integrating in time

( Given ¢° € Qo, hY € such that X € (0, 1] ;
Find U3 € Qy, H*2 € Phi , such that
a(Uk'%,p)—l-
FAAL (g /HR UM p) 4+ B(UR 3 gF 0¥, p) = 2d(HM 55 0%, p)
—U(n; H*3,p) + 4 <C(H’“+%;q’“/h’“,p) +C(h’“;U’“+%/h’“,p)>} = (18)
=d (h*; h*,p) + 1 (n:h*, p) — b (¢"/h*; ¢",p) —
— [ (hF5d%/h* . p) — R (B*;¢%,p)] — a(Fyt1/2:p),
a(H*"2,0) + MAtm(U 2, 0) =
=< Spy1/2,0 > —m(q¥,0) — a(Viy1/2,9),
[ "l = gF + AtURS ) BFH = BB 4 AtHY 3, b =0,..., Ny,

where Fyy 10 = F(ti + At/2), Vip1o = V(s + At/2), spy1/2 = s(te + At/2).

At a discretization of a problem (18) according to space variables are utilised
piecewise linear approximatings on triangular elements for flows and piecewise
constant approximatings of depthes. Such selection of approximatings allows
to eliminate depth of a flow and to receive a system of simple equations only
concerning vector of a flow.

For a discretization of a problem according space variables the domain €2 is
divided into triangular finite elements. Let’s enter the spaces for flows Qf C
Qo,dim Qg = N, < oo and for depthes d" C &, dim P! = N, < oco. Let’s
select piecewise linear approximatings for flows

) _ Li($1,$2),Pj€Qe,
pi(on,m) = | Ll

and piecewise constant for depthes

1,P € Q.,
Ve (o1,2) = { 0,P ¢ Q,.

Further using a procedure of a Galorkin method, we will obtain a system of
simple equations concerning unknowns of vector of a low W in nodal values of
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a grid and vector of depths S in center of gravity of triangles:
Given ¢° € Qp, W€ ® and )€ (0,1] ;

. iy Mo gyl 0 [ O\ R i h

i=1 e=1
1
such, that CL(U;+2 P+
koik. pritE k3 ook MY

+AAL|b(q" /R U, ", p) + b(Uy, 757 /R, p) — 2d(H), *, b, p)—

kt+d

0., p) + (el bk p) + C(hk;U£+%/h’“,p)>] = (19
= d (h*,h¥,p) +1(n, k", p) — b (¢"/1¥; ¢",p) —
— i [e (WF5q5/h% p) = R (W¥:6F,p)] — a(Fyy1,p) Wb € Qu,

kt+ 3 k+3
a(Hy, =,0) + A\Atm(U, °,0) =
=< sk+%,9 > —m(q*,0) — a(V,H%ﬁ) Vo € ©,

k41 _ ok bt k+1 _ pk k3 —
¢ =q" + AU, 7, h*Th = h" + AtH, ~, k=0,...,Np.
On a Fig. 4 completely sampled equations are sketched on one finite element
- - e -
.:-'Lk: _'-'1"'11 < | o T FLD

Fia. 4. Diagrammatic representation of a system of simple equations

Agg — diagonal matrix. At the expense of condensation of internal parameters
we can eliminate depth on one finite element by using a ratio

1 _ 1
SEFE = AR (FE - AR W, (20)

In outcome we will obtain a system of simple equations concerning two un-
knowns — flow components

_ k+l _
(Alﬁ - Alf2AI§2 lAgl)We ? = Fk - Alf2Al2€2 1Fé€~

4. STABILIZATION SCHEME FEM
At large values of Reynold’s numbers (Re>100) flows and their gradients
change sharply. As outcome the obtained solution of a shallow water problem
loses the stability and appears oscillations. On this case, stabilization scheme
is obtained, which is based on bubble functions with usage of a least-squares
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method. As the depth of a fluid is considered as a constant on one finite
element, it does not influence behaviour of the solution. In a system (18) the
stabilization addend is added to equations of flows in the next view

S(U*z, HE 2 p) = M, /Uk+% - pdz+

e

2
0 ket 1 k+3
+ AtA /E (((%j((quj 2) + (4} 2))/hk)pdx+
j=1

2 o

b+ 9 by qprdn _ _gldla
- / U, +;3x] ) O~ e (b
Qe -

(21)

1 0n
k k+2
Z o o)+ (ahp) | o [ Gt P -
Qe

2
g‘qk‘quz 8 / k0N
7}2@02 e /El ((gFq))/hF)pda + | Gh mzpdfc ;

where M, — stabilization factor on each finite element.
For stabilization factor M, using the upper-bound estimate po obtained in
the work [6] for approximating scheme of Navier-Stokes equations

7 1
Ho =3 <7l<:d2/A2—> 7 (22)

where A - square of finite triangle element, d? = 3413 +13,1; - length of triangle
side (i=1, 2, 3), e = div w, w - know velocity from previous step, k - kinematic
viscosity of a fluid.

5. TEST EXAMPLES

Example 1. Let’s consider a problem of shallow water flow from a surface
some watershed. All parameters of a problem are set in a dimensionless view.
Let’s select a test surface watershed n(x,y) as Fig. 5, where x, y change from 0
to 2. In an initial time we will enable that hg =0.01, ¢;=0 (i=1,2). Concerning
boundary conditions, we enable, that the water does not outflow and normal
component of flow velocities on boundary of domain is equal zero gn=0. We
enable, that constant rain influx R=1, infiltration of a fluid in a ground I=0,
coefficient factor Shezi C=60, Reynold’s number Re=0.1. Quantity of splitting
points of domain 60x60. For the solution of a problem we apply the numeric
scheme (19), in which parameters A = 0.5, At = 0.005. Let’s consider result in
a point of time t = 0.195 (quantity of steps in time tt=40).

In a Fig. 5 the depth of a flow H (quantity of water is figured, which collects
at the bottom surface with constant rain influx). As the water does not outflow,
cavities are filled by the water. From results apparently, that the maximum
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value of depth is reached in the middle of a bottom surface, where there is a
greatest cavity. In the highest points of surface watershed values of depth are
approaches to zero, as the water flows down.

The law of conservation of mass for the given example is tested. The con-
ducted calculations have shown, that the volume of the fall out precipitations
approximately coincides with water volume on a given surface in the given point
of time 0.78105.

In Fig.7 and Fig.8 are figured values components of a fluid flow accordingly
on axes x and y. In a Fig.9 the module of a flow is figured. From results it is
possible to see, that the flow has zero values in those points of a bottom surface,
where the fluid collects and whence the water flows off, in these extreme points
water is not gone. The maximum values of a flow are reached in currents, where
there is a maximum slope of a bottom surface to horizont.
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FiGg. 7. Flow component Qx FiGg. 8. Flow component Qy

Example 2. By important point at problem solving of shallow water is
selection of a Reynold’s number values. When parameter receives large values
(Re>100), solution obtained with the help of the numeric scheme (19), loses
the stability, values of flows and their gradients are very large, as a result of
it there are oscillations. In the Fig. 10 the values of depthes of a problem
with parameters by given in an example 1 and Reynold’s number Re = 150
are figured. On Fig. 11 the values of component flows accordingly on axis x
are figured. The results are displayed in a point of time t = 0.073 (quantity of
steps in time tt = 15, At = 0.005).

For the solution of this problem the stabilization scheme of a finite element
method with stabilization factor (21) was obtained. We apply the stabilization
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F1G. 9. Module of flow

Fig. 11. Flow com-

Fic. 10. Flow depth H ponent QX

scheme to the solution of our problem with a Reynold’s number Re=150 and
stabilization factor M, = —0.5. Let’s consider computing results in a point of
time t = 0.586 (quantity of steps in time tt=60), quantity of splitting points of
domain 30x30. In a Fig. 12 the values of depth are figured, the Fig. 13, Fig.
14, Fig. 15 - represent values components and module of a flow accordingly.

From results it is possible to see, that the problem, which has arisen, at
applying the numeric scheme (19) to the solution of a problem, is decided
positively

The results are smoothed at the expense of the introducing of a stabilization
factor. The computing results have shown, that the problems of a shallow
water flow can be decided with any values of Reynold’s numbers, applying the
stabilization scheme of a finite element method.

The law of conservation of mass for the obtained outcomes is executed. The
volume of the fall out precipitations coincides with a volume of a fluid on a
surface watershed 2.34314.

Example 3. Let’s consider a water flow from a surface watershed Fig. 16
(part of Perespil countryside in the Lvov area). Boundary and initial conditions
we will select similarly to the previous example, quantity of splitting points of
domain 60x60, stabilization a factor M. = -0.5. Let’s consider the results in
a point of time t = 0.146 (quantity of steps in time tt=30) with a Reynold’s
number Re=150. In a Fig. 17 the depth H of a water flow is displayed. For
the greater visualization we compare isolines of a watershed surface (Fig. 18)
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and depth (Fig. 19). As the water does not outflow, cavities are filled by
water. From results we can see, that the filling of a watershed surface by water
implements according to isolines.In Fig. 20 is displayed module of flow.

7. CONCLUSIONS

For a selected example with stabilization factor is the laws of conservation
of mass and flow of fluids are fair. The obtained model enables to conduct
calculations of values of depth and speeds of fluid flows on columbines with
rain and lateral influxes for different initial and boundary conditions in different
point of time with large values of a Reynold’s number.

The above examples indicate that significant influence on the solution of
the problem of shallow water on the surface of a watershed has a choice of
Reynolds number. For small values of this number of problem can be solved
by using numerical scheme (19). Choosing Re> 100, the solution loses its
stability (Fig. 10 — Fig. 13). This is because for large values of the Reynolds
number solutions of problems may have internal and boundary layers - a very
narrow area where most solutions and their gradients change sharply. As a
result, numerical solutions, built on the Galerkin scheme, where the parameter
discretization is too large to consider all these layers can ostcillate throughout
the domain.

Considering it was built stabilization scheme FEM. Applying this scheme to
solving problems of shallow water on the surface of a watershed above men-
tioned problem disappears (Fig.14 - Fig.20).
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Thus, based stabilization scheme FEM can be effective in solving the problem
of shallow water from any surface water catchment for large Reynolds numbers.
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