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SPECIAL ESTIMATORS FOR CORRECTING
SOME SOLUTIONS OF INTEGRAL EQUATIONS

B.OSTUDIN, YA.GARASYM, A.BESHLEY

PE3IOME. Y po060Ti IpoBeeHO aHAJI3 9UCeIbHOr0 PO3B’I3yBAHHS IBOBUMID-
HOT'O IHTerpaJIbHOTO PIBHAHHS TEOPil MOTEHIialy Ha HE3AMKHEHIX [MOBEPXHIX.
Ha mpukiaal anaiizy KOHKpeTHOI MOIeIbHOI 33/1a9i TTOKa3aHO, 9K, BPAXOBYIO-
au crrerndiky MOYATKOBUX JIAHUX, BUPIMIATH MPOOIeMy CIIeriaabHOTO 300pa-
KEHHsl CaMOr'0 IHTerpaJibHOrO PiBHsAHHHA. Take 300parKeHHsI J03BOJISE IIPU
mo0y10Bi BiAMOBIAHOI HAOIMKEHOI CXEeMU CYTTEBO CIPOCTUTH BUKODWCTAHHS
anpiopuol indopmaril mpo XxapakTep MOBEIIHKHA MIYKAHOro po3B’a3Ky. Ocran-
HE BLOIrpa€ BaXKJIMBY POJIb y IPOIEC] peastiziariil Pi3HUX MIPOIELYP yTOIHEHHS
OTPMMYBAaHUX HAOJIMKEHNX DPO3B’SI3KIB HA OCHOBI CIEI[aJbHO ITOOYIOBAHIX
OIiHIOBa4iB. Y POOOTI TIPE/ICTABIEH] PE3Y/IbTATH YUCETHHUX €KCIIEPUMEHTIB.
ABsSTRACT. The numerical solution of two-dimensional integral equation on
unclosed surfaces is analyzed in present paper. Such equations with weak
singularities in the kernels are considered in potential theory. General prob-
lem of integral equation solving, and besides that special representation of
considered equation, are exemplified by the model task, taking into account
the specificity of initial date. In the process of appropriate numerical scheme
constructing such a representation gives the possibility to essentially simplify
the use of a priori information on desired solution. The last is important for
objectifying various correction procedures of obtained results on the basis of
special estimators. The results of numerical experiments are presented.

1. INTRODUCTION
In previous paper [2] with a similar research object various aspects of numer-
ical schemes construction for solving integral equations of the first kind were
considered. In this connection we had to deal with two-dimensional equations
in the form as

(Ao)(M) = //O‘(P)|M — P|7'dSp =U(M), M € S, (1)
S

where, in general case, S is an open Lipschitz surface; M and P are the points of
Euclidean space R3. In present article, by solving one typical model problem, we
analyze the proposed schemes adaptive possibilities for maximal taking account
of desired solutions specificity in order to receive the results with preassigned
accuracy. The equations of type (1) have been used in mathematical modelling
of some boundary value problems in electron optics [3]. Ordinary generalization
of (1) is an assumption that S is formed by the aggregate of m surfaces, so
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that S := (J;~; S;. In this case, we interpret o(P) as a desired total charge
distribution density on S, that is o(P) := {o;(P), P € S;}";.

It is possible to research the solvability of integral equation (1) in various
functional spaces. However, it should be taken into account the specificity of
investigated physical phenomenon. In this connection, the modelling of elec-
trostatic field in the substantially spatial setting foresees the account of desired
charge distribution density o(P) behavior near the contour of unclosed surface
S. As to right hand side of (1), we consider that U(M), M € S, is the given
boundary value of potential on an electrode which is actually simulated by a
surface S (U(M) = const). At last, the solvability of (1) can be expressed by
the following inequalities |4, 6]:

M1l o2y < 140l m1r2gs) < mallolyo1va ) (0 < ma < ma),

where H'/2(S) is a trace space, H&)IQ(S) is dual space with respect to Héé2(5).
Note that S is an open surface treated as a component of some close surface
Y. In addition, HééQ(S) is different from H'/2(S), and in the case of smooth
S, relevant norm may be defined as

—-1/2

2 2 2
HUHH&@(S) = ||UHH1/2(S) +lp ‘7”L2(5)7

where p(M) is the distance from M € S to the smooth edge 05S.

2. THE NUMERICAL SCHEME FOR MODEL PROBLEM TESTING

Let us consider the calculation problem of plane-parallel condenser electro-
static field. From mathematical model point of view this condenser can be rep-
resented as a surface S, which is an aggregate of two parallel identical plates
S1 and S3 situated symmetrically with respect to a coordinate plane XY, so
that S := 51 |J S2. The distance between them equals 2h. Suppose that U; and
U, are the given potential values on S and Sa, respectively. The electrostatic
treatment of problem (1) means that U; and Uy are arbitrary constant. As we
mentioned in [2], this problem is not trivial, and the results of calculation are
especially sensitive with respect to variation of output data.

With a view to analyze integral equation (1) let us use such \S; representation

Sii={(@.,2)7 €R|@y) € [FL1% 2= (-1 1=T2 h>0}. (2)
According to (2), we can represent S in the form of congruent components

combination:
2 4
s=U(U su)-

=1 k=1
Taking into account subdivision of S and S, integral equation (1), in its turn,
can be formally represented as

2
>3/ ‘”k<P>|P—M\‘1dSp=U<M>={Ul’ ves

4
I=1 k=17 Uz, M€ S,
lk
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where oy (P) := oy (x,y) is the restriction of o(P) onto Sy;

M := (z0,y0,20 = £h) "5 (z,9), (z0,%0) € [-1,1]%.

Then, applying in (3) some changes of variables, we realize the conversion
from integration over S to integration over its congruent constituent Si;. As
a result, we get the system of eight linear integral equations with respect to
unknown density o;(z,y)(j = 1,8), according to the chosen group of surface S
Symmetry:

Z//O'j 2, Y)Glizjl+1(2, Y5 20, Yo; h)dxdy = U(M;), (i=1,8). (4)

JlAl

-
Here, Ay == [0,1]%; M; := ((—1)7"_1$0, (—1)5_1y0,(—1)p_1h) € Spg; in this
case i :=4(p—1)+2(r—1)+s, and ¢ := 2(r — 1) + s with p,r,s = 1,2; M;
are the points of collocation; (xg,yo) € A1. The point of integration is

Pi= ((—1)"*1@«, (—1)m1y, (—1)Hh)T € Sik;

in this case, j :=4(l—1)+2(n—1)+m, and k := 2(n—1)+m with [,n,m = 1,2;
and finally
Gliejj+1 (2, y; 0, yos h) == | P — M|~
It is easy to see that the system of integral equations (4) may be written in
the form of matrix operator equation
Az =T, (5)
where
7= (01(2,9), 02(2,9), ..., os(2,9)) T,
U = (U(M1),U(Mz),...,U(Ms))";
and A := (Aij)?,j:p in this case, A;; is an integral operator that acts by the
rule

AZJU] // Uj z,y G|z ]\Jrl('r Y; $0,y0,h)d$dy

Since an initial integral equatlon has an Abelian eighth order group of sym-
metry [7], then, we can split (5) into eight independent integral equations

A7 =T, where A == F-A-F1,5 := F, U := FU. Here, I := (Fij)§,j=1

is known matrix of Fourier transform [2,7]; A’ := (A})%_,, in this case,

Ajoi( // z,y)Ri(z, y; 20, Yo; h)dzdy,

Ri(xa Y50, Yo, h) = Z FijG|i—j\+1(x7 Y520, Yo, h)a
j=1

8
Z 103 (T, y), U'(M;) = ZEjU(x,y).
j=1
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Solving every of independent integral equations, as the final result, it is possible
to reproduce o;(z,y).

Then, without loss of generality let us consider one special case of integral
equation (5) presentation. Namely, taking into account the antisymmetry of
boundary values of potentials on condenser plates (U := U; = —Us), and in
accordance with this similar properties of (5) solutions, it is possible to represent
(5) in the form as

(AU $an0 // € y l‘ » Y5 x07y0ah)dxdy = U(x()?yo)v
(6)

(o0, %0) € (0,1)?,

where
2

i{th? [~ 1)+

=1 p=1 k=1

(1P 4 (=) ]

(]~
—
|
[
~
—

R(x,y; 70,903 h) =

NI

+ [y + (-]}

It is easy see that integral equation (6) is an equation with weak singularity
in the kernel. In addition, (6) has mentioned singularity only in one item of
the sum R(az,y;xo,yg; h), where k =1 =1, p = 2. Moreover, in the process of
numerical scheme constructing it is necessary to take into consideration special
behavior of desired solution only on Sy;.

It is known [5] that desired solution o(z,y) has singularities in the neighbor-
hood of S11 corner point and at the points which border on a straight edge of
S11. In the first case, the charge singularity is proportional to p~%7034 and,
in the second case, the charge singularity is proportional to p~%%, where p
is the distance from the vertex and straight edge of Si1, respectively. These
singularities can be expressed by the following weight function

(1—a)+(1—y)
[(1—a)(1—y)]"?

This function is applied for mentioned singularities isolation in the notation
of charge distribution density o(z,y). But such accounting of desired solution
characteristics is rather complicated from practical point of view. So, we apply
the different method, based on progressive analysis and correction of obtained
results.

Using the collocation method under the condition of piecewise-constant ap-
proximation of desired density o(x,y), two-dimensional integral equation (6)
was reduced to the following system of linear algebraic equations

Ny 2
Z% /

7j=11i=1

(y = 0,2966).

- Y+

N,L J
/ ZE >y Ys $0>90>h)d33dl/ - U(‘T"an())
_T

?JJ

93



B.OSTUDIN, YA.GARASYM, A.BESHLEY

where H, := N;', H,:= N, (N,, N, eN);

Ny

Cwe{Zei-n)"

xoe{%(%—l)} :

i=1
0i; are approximate values of desired density o(z,y) at the points of collocation
(20, y0). In this case, we used uniform subdivision of S1; onto elements, that is
H, = Hy, and N; = N,,.

3. A POSTERIORI ERROR ESTIMATION OF (6) NUMERICAL
SOLUTION UNDER THE CONDITION OF Al IRREGULAR
PARTITION ONTO ELEMENTS

In numerical solving of integral equation (6) the problem of obtained results
error estimation is actual from practical point of view. Taking into account
a priori information of desired density special behavior, the method based on
experience proved to be the most acceptable. Let us note that stable results ob-
taining is also important problem independently of S1; uniform or nonuniform
partition onto elements.

Let 0.(P) be a numerical solution of integral equation (6) that belongs to the
chosen approximation space. It generates approximate potential value at arbi-
trary point @ between charged condenser electrodes simulated by appropriate
surfaces:

U:(Q) = (Ao:)(Q).

In addition, general error function ey of integral equation (6) approximate
solution may be represented as [1]

ey = Ao — Ao, = A(o — o.) = Aey,
where e, is a solution of such integral equation
(Aes)(M) =U — (Ao-)(M), M € Sm. (7)

Integral equation (6) solution has irregular behavior near the contour of
unclosed surface S (essentially in the neighborhood of its corner points) [5].
Therefore, the reproduction of error function ey, specified the level of boundary
values satisfaction, is established onto elements D¢. These elements appear in
the process of surface S sequential nonuniform partition (in the present case,
its congruent component Sii). On D€ the function ey may reach maximum
values. Moreover, on D° the function e, is approximately equal to its value at
checking point T" (see fig.1, fig.2):

U—- (AJE)(T)

/ T — P|~'dSp
De

eq(T)
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Fig. 3. Checking elements D;

Selecting the furthest strategies of obtained results correction, it is possible
to use various methodologies. Let us consider the method, different from pro-
posed in the paper [2], which is sufficiently effective for two-dimensional integral
equations numerical solution. The main idea of this strategy consists of the fol-
lowing. In the process of domain A nonuniform subdivision let us consider not
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only one special element D° but some set of elements where the desired function
errors are inadmissible. Taking into account the symmetry of obtained results
it is advisable to select such elements not far from the part of plate contour
(for example, on the last horizontal layer). Let Dy, Ds,..., Dy (N € N) be
above mentioned elements (see fig.3). Then, if we use piece-wise approxima-
tion of e, and equation (7), it is possible to find solution error on every element
Di, (Z = 1, N)

U — (Ao.)(T3)

/ T, — P|~'dSp
De

Let us denote by ey, the solution error e, on the element Dy (k =1, N), that
is e, = e, (T}). Then, it needs to calculate the value &:

er(Ti) =

At that time for the completeness of domain /A; subdivision process the
following condition must be fulfilled

lesll 1009 < TOL Ver, & = T,W. (8)

§

If the condition (8) is fulfilled only for certain elements Dy and appropriate
errors eg, then it is needed later on to eliminate such elements out of previous
defined checking. Let us note that the disposition of elements Dy does not
strictly allocate, so its sampling must be realized in various ways. In this
connection, it is always necessary to control the obtained results of calculation.

4. THE ANALYSIS OF NUMERICAL EXPERIMENTS
Ezxample 1. Hlustration of calculation stability and analysis of results relia-
bility Using piece-wise approximation of o(P) (charge distribution density) for
N, = N, = 40 (the number of collocation points is 1600) we obtained the
following results:

Axis Z

Axis Y 0 0 Axis X

Fig. 4. Charge distribution density. N, = N, = 40
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Let us note, that uniform subdivision of S1; can be selected so that there
exists a point of collocation which will be present at the next division area. For
example, the following divisions of N, = N, = 6, N, = N, = 18 contain the
collocation point with coordinates (0.75 0.75). Justification of approximation
schemes stability and hence the approximate solution results of integral equa-
tion solving are shown in the Tabl. 1. Approximative values of density o(x,y) at
the checking points are not much different from the values which were obtained
in the previous step of division.

Tabl. 1. Charge distribution density. Hlustration of calculation stability

. . N, = N,

Point of collocation (x,y) g T3 L 51
(0.250,0.250) 0.0531427 | 0.0519844 | 0.0515285
(0.250,0.917) 0.2005168 | 0.1459617 | 0.1482432
(0.917,0.250) 0.2005168 | 0.1459617 | 0.1482432
(0.917,0.917) 0.3955893 | 0.2588432 | 0.2699086

Absolute error ey of reproduced boundary values for N, = N, = 40 is

represented in the following figure:

0.014
0.012
0.01

N 0-008

s

% 0.006
0.004

0.002

Axis Y

Axis X

Fig. 5. Absolute error of boundary values. N, = N, = 40

Example 2. Nlustration of nonuniform partition approach. The comparison
between approaches Nonuniform partition is applied for better approximation
of charge distribution density function and decreasing error function, especially
near the contour of unclosed surface. Two parameters are important for this
approach: the first one is initial partition of the surface, and the second is the
number or steps of nonuniform partition; these parameters affect to the results
of calculation. Absolute error of reprodused boundary values is shown in the
Fig.6, in the case when initial partition is N; = N, = 2. The number of
iterations (steps) for nonuniform partition is 9.

The results in this figure reflect the impact of initial partition parameter
to the error function: error was reduced near the contour of surface but was
not decreased onto others elements. So, next figure displays the results of
calculation with different initial partition.
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Fig. 6. Absolute error of reproduced boundary values. Nonuniform partition

Axis Z
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Fig. 7. Absolute error of boundary values. First partition (/V; = N, = 8)

The Fig. 7 presents an absolute error of boundary values for the first partition
N; = Ny = 8 and the number of iteration for nonuniform division is 6.

The following two tables represent comparing of surface partition approaches
(uniform and nonuniform) and summarize obtained results. The tables contain
values of error function at checking points near the contour and comparison of
these tables concludes that nonuniform partition is more effective for solving

integral equations of such type.

Tabl. 2. Uniform partition

y/x 0.85 0.95 0.995 | 0.9995

0.85 | 0.00303 | 0.00124 | 0.08051 | 0.09443

0.95 0.02228 | 0.10008 | 0.11801
0.995 - - 0.15808 | 0.17186
0.9995 - - - 0.18295

The Tabl. 2 represents N, = N, = 8. The number of collocation points is 64.
In the Tabl. 3 initial partition IV = N, is equal to 2. The number of steps
for nonuniform partition is 4. The number of collocation points is 79.
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Tabl. 3: Nonuniform partition
y/x 0.85 0.95 0.995 0.9995
0.85 | 0.00385 | 0.01239 | 0.04937 | 0.06633

0.95 - 0.02971 | 0.04802 | 0.07266
0.995 - - 0.110306 | 0.13008
0.9995 - - - 0.14557

So, by the example of the concrete model problem solving it is shown how,
taking into account the specificity of initial data, to solve the problem of integral
equation special representation. In the process of appropriate numerical scheme
constructing such a representation gives the possibility to essentially simplify
the use of a priori information on desired solution. The last is important for
objectifying various correction procedures of obtained results on the basis of
special estimators. With the help of proposed estimators the effective solution
of initial integral equation were received.
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