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ARITHMETICAL COMPLEXITY OF MODIFIED FULLY
DISCRETE PROJECTION METHOD FOR THE PERIODIC
INTEGRAL EQUATIONS

E.V.SEMENOVA

PE3IOME. Posrisgmaerscs 3aa1ua CKOPOUeHHsT 06CATY IH(OPMAIIITHIUX 3aTpaT
pU PO3B’sI3aHHI MEPIOIUIHUX IHTErPATbHUX PIBHAHL 3 MIHIMAJIBHOIO ITOXHO-
K010. [ls mpOro ImpOMOHYETHCH Aesika MOMU(MIKAId MOBHICTIO MUCKPETHOTO
npoekmiitnoro Meroxy. Jlosenemo, mo s mMomumdikariist 36epirae Haiikparry
TOYHICTh YUCETHHOTO METO/Iy B METPHIl COO0EBCHKUX MPOCTOPIB 3 00CATOM
apudmernarnnx aiit N log N 3a mopaakom.

ABsTRACT. The reduction of arithmetical operations for the solving of pe-
riodic integral equations with minimal error bound is considered. For this
some modification of a fully discrete projection method was proposed. It was
proved that such modification guarantees the best possible accuracy of the nu-
merical method in the metric of Sobolev spaces with the order of arithmetical
operations N log N.

1. INTRODUCTION
Periodic integral equations are frequently found in various problems of nat-
ural sciences that can be described by a boundary value problems such as
Laplace or Helmholz equations. To illustrate this, we rewrite Dirichlet problem
for Laplace equation on the simply connected domain 2. So it takes the form

AG(X)=0, XeQ, (1)

G(X) = g(X), X el =09, )

where I" is a smooth boundary of domain 2 and function g is continuous. As
it is well-known (see [8]), the problem (1) has a unique solution under quite
natural condition on I'. Solving (1) by direct method, using the representation

of the function G(X), X € Q in the form of a simple-layer potential, we derive
to a boundary integral equation

Su =g, (3)
oG

where S is a single layer operator with logarithmic kernel and u = o is
a normal derivation on the boundary. Note that by so-called Cauchy data
(G]r, g—g‘r) we can easily find the function G(X) for X € Q. Thus for solving

boundary value problem (1) it is necessary to solve periodic integral equation
of the first kind (3). It is such kind of problem that will be the object of our
investigation. Periodic integral equations are well-known and various aspects
of their solving in the metric of Sobolev spaces were investigated, for example,
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in [2], [4], |7]. The most widely-used approaches for numerical solving of periodic
integral equations are fully discrete collocation and projection methods that
applied together with selfregularization principle. In the paper we will consider
modification of a fully discrete projection method that was firstly proposed
for solving the integral Symm equation (see Example 1) in [4] and extended
on the class of pseudodifferentional equation in [12]. Moreover we introduce
some additional projection in the method to reduce amount of arithmetical
operations.

2. STATEMENT OF THE PROBLEMS
In the space L2(0,1) we consider the following integral equation

Au(t) = f(t), te]0,1], (4)

where f is 1- periodic function and operator A has the form
q 1
A:}j&”A%Mw:/m@a—@%@@mg@. (5)
p=0 0

Let’s denote by C® = (C°°([0,1]?) the space C™ of smooth I-biperiodic
functions of both variables. Suppose that a, € C*([0,1]?), p=0,..., ¢, and

ag(t,t) # 0,Vt € [0,1]. (6)

Moreover assume that k,(t) is 1 - periodic function with known Fourier co-

efficients l%p(n) by trigonometric basis for each p = 0,...,q. Additionally we
suppose that for some o € R and 8 > 0 the following inequalities

cooln|® < |ko(n)| < coln|®, n € Z/0, (7)
|ko(n) — ko(n —1)| < en®?, nez, (8)
lkp(n)| <en® P, neZ p=1,...,4q, (9)

hold true, where ¢, cg, cgo > 0 and

{1l nezfo
B= 1, n=0

Denote by H* and HM 2, —oco < A\, Ay < oo, Hilbert spaces of 1-periodic
functions and 1-biperiodic functions with the norm

1/2
[ullr, = (Z Inlzhlﬂ(n)F) < 00,

nez

1/2

lalaae = | D KPHP2ak, D | < oo
(k,l)ez?
respectively. Here

1 1 1
u(n):/o e_n(t)u(t)dt, a(k,l):/o /0 e_r(t)e_i(s)a(t, s)dtds
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are Fourier coefficients of functions u(t) and a(t,s) by trigonometric basis
{er}{2° ., where ex(t) = €™ t € [0, 1].

In general case in the space H? = Ly(0, 1) operator A is compact and problem
is unstable. But for considered class of equations (4) with (6)-(9) it is possible
to choose appropriate pair of spaces to regularized problem. As it was shown
in |7, Theorem 6.3.1], operator A under our assumptions creates isomorphism
between H* and H*~® for any A\ € R. That is why if f € H*® the equation
(4) has unique solution u € H*. Let’s consider more precisely the structure of
(4). Following |7, Ch.6|, we rewrite the equation (4) in a such way

q
Au = Du + Z Aju=f, (10)

p=1
where Du = fol ko(t — s)u(s)ds, Ay = A = ao(lt’t) fol k(t — s)(ao(t,s) —
ao(t,t))u(s)ds, A, := A, = % for p=1.q and f := f = ao(J:f,t)' Note

that D € L(H*, H*®) is performing the isomorphism between the spaces H*
and H*~® and operators Ay, € L(HN H=*8) p = 0,..,q are compact on the
pair of spaces H*» and H*~®. Further we will deal with equation (10) instead
of (4).

Thereafter for all A < p there are constants cy,cy > 0, such that for any
v € H* the following inequality

Allvlix < JAv[x-a < Kllvlla (11)

holds true.

Further we assume that exact solution of equation (4) belongs to some
Sobolev spaces, namely u € H* for some > a+1/2 and ||Jul[, < 1. Then due
to conditions (11) we have that f € H*~ and || f|[,—a < ¢}

Note that classical elliptic pseudodifferential equations are included in the
class of equations (4) with conditions (6)- (9) (see for detail [6]). Below we
rewrite the examples of some equations that satisfy the conditions (6)- (9).

Ezample 1. The typical example of equation from the class under consider-
ation is an integral Symm’s equation

1 1
Au(t) ::/0 ko(t — s)u(s)ds —I-/O ai(t, s)u(s)ds = f(t), (12)

ko(t — s) = log |sinm(t — s)], (13)
[y (t)—(s)|
log m, t 7é S
ay(t,s) =
log([y'(t)/n]), t=s
As it is known, the kernel a; (¢, s) of operator A; presents the C°°-smooth and
1-biperiodic function and Fourier coefficients kg have the view

~ o, nE€Z)0
ot ={ 2, "<
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It is evident that conditions (6)-(9) are satisfied for ag(t,s) = ki(t,s) = 1,
a = —1 and any § > 0.
Ezxample 2. The integral equation

1
/0 j2(t) — x(s)*log |z (t) — a(s)lu(s)ds = f(t), te[0,1],

arises for solving biharmonic Dirichlet problems in the bounded domain with
smooth Jordan boundary (see for more detailed information, for example, [1], |7,
Ch. 6]). Rewrite the equation in the form

1 1
/ ko(t — s)ag(t, s)u(s)ds +/ ai(t, s)u(s)ds = f(t),
0 0
where
ap(t,s) = \93(752)——3:(8)|2 for t#s, ao(tt)= |2 (?F,
sin® w(t — s) T
ay(t,s) = |z(t) — az(s)]2logM for t#s, ai(t,t)=0,

|sinm(t — s)]
ko(t) = sin® 7t log | sin 7rt|.
The Fourier coefficients ko are known and have the following view ko(0) =
—% log2 + %,
l%o(jzl) = ilogQ — 1%’
A 1
ko(n) = Al = 1)’

It is easy to see that conditions (7)-(9) satisfied for « = —3,3 = 1. Thus,
the equation under consideration is also included in the investigated class of
problems.

To make more precise the smoothness properties of functions a,, p =0,...,q,
we introduce in consideration the space of Gevre function of Roumieu type
(see [3, p.112]):

G o :{a e 0> Ha||%w2 =

> 14
. Z ‘&(k,l)|262n2(\k\1/n1+|l|1/n1) < 00}7 m, 1 > 0. ( )

k,l=—o0

Note that with ;1 = 1 by (14) it follows that function a(¢,s) has analytic
continuations in both variables into the strip {z : z = t +is,|s| < 2} of
complex plane. Further suppose that a, € Gy, ,,0 =0, ..., ¢q, for some 71 > 1
and 12 > 0. It should be noted that condition (14) doesn’t restrict the class
of equation under consideration but allows to take better into account the
smoothness of kernels a,. At first such assumption for a, was proposed in
the paper [4], which considered particular case of mentioned class of periodic
integral equations, namely Symm integral equation.

In the paper we state the aim to reduce the amount of arithmetical operations
of fully discrete projection method for solving (4) with conditions (7)-(9) and
(14). For that we propose modification of the method that should not influence

In| > 2.
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on the best error accuracy of solution for a priori case of choosing regularization
parameter.

3. AUXILIARY STATEMENTS
For further presentation of our results we will use the following notations.
Let’s introduce n-dimensional subspaces of trigonometric polynomials

In = {UN : uN(t) = Z Ckek(t)}7

keZn
N N

Denote by Py and Pq orthogonal projectors

Pyu(t) = > a(k)ex(t) € T,

k€EZ N

Poya(t,s)= Y a(k,Dep(t)ei(s) € Tn x T,
LkEQN
where pn is some domain on coordinate plane restricted by square
(=N/2,N/2] x (=N/2,N/2]. Also denote by Qn and Qn,n interpolation pro-
jectors, such that Qnu(t) € Ty, Qn.na(t,s) € Ty X Ty and on the uniform
grid it holds true
(QNu)(]N_l):u(]N_1)7 j:1727"'7N7
Qv Nna)GN"INTY) = a(GNTINTY), ji=1,2,... N.
It is well-known (see, for example, |7, Ch.8]), that

N\
o= Pyl < ()l A<uwe s, (16)

_ 1
lu—Qnullx < ex N #ully, 0<A<p, p>g, uweH”, (17)
1
where ¢y, = (%)A_M Vus and 7y, = (1 +23075 ﬁ) 2

Moreover, for any vy € 7Ty according to inverse Bernshtein inequality it
holds

N\*
foxtlo < (3) oxlh A< (18)
4. DISCRETIZATION OF OPERATOR A), p=0,...,q

Note that operator D has simple structure and doesn’t need any additional
discretization. Thus we need to discretize only operators A, for each p =
0,...,q,. This will be done further.

Let’s consider the following domain of coordinate plane
1

M\ 7
DEZ{@M:WWW+UUW<(2>”,hZZQiLi2~} (19)

Note that D7} C D}, for all 1 > 1.
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Assume that the discrete information about kernels a,(t,s) and right hand
side f is given in the knots of uniform grids (%, JMQ) , where j1,72 = 1..M.

Let’s approximate the kernels a, in the following way
ap, v = Ppm Qurarap, (20)

where PDX} is ortoprojector on span of vectors {e;, e;} such that (i,j) € DJ}.
Then the operators Ay )/ can be approximate by

1
Ap vu(t) = /0 kp(t — s)ap nm(t, s)u(s)ds. (21)

where function a, s has the form (20). To find the approximative properties
of operator (21) we state the following auxiliary lemmas.

Lemma 1. Let a € Gy, 5, for m1 > 1, then for VA1, A2 and

M>2 <max{)\1, )\2}771)771
2

it holds true

M A1+A2 _9 M 1/m
o= Pogaloa< (5 ) e faly

Proof. We rewrite the norm of element a — PDX} a in the following way

la=Ppmal}p, < 1Y- D0 akDer(els)I3, x =

|k|>01:(k,1)g DL

=D D KPMUPak 1P =

|k|>01:(k,l)¢ D7}

=Y D EPMIPRalk, D) ey e, = S,

[kI>01:(k,1)¢ Dy

— eE2m(k"+IY™) fyrther it is worth to estimate the norm of Sj

where ef !
depending on values k and [.

At first we consider the case then |k| < &, |I| < &L and (k,1) ¢ D}}. In the

1/n:
view of fact that maxy, o |k3|2>\1|l|2>\2€];l = (%)2(/\1+’\2)6_4771(%) 2

Si= 3 3T MPPeack DPe e, =

k| <2 [1|<2L:(k,1)¢ D}

_ <M>2()\1+/\2) 6747]2(%)1/771
2

we have

lall3, -

Let consider the element S for the case |k| < %, | > % and (k,1) ¢ DT},

then
Si= Y kP> 1Palk, D) Pey e
k<& [l|>2L: (k)¢ DYk
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1
n . . Uit
Since the function 22e~2™*™ has the maximum in the point z; = (ﬂ) ,

72
then for all
M A m
=M < 2771>
2 72
it holds true

2
‘”2)\26—2772\”1/771 < <]\24> 2672772(%)1/”1.

With account of this we have

Sp= Y [ePheme N P, 1)[Pe R, lef, <

|k|<2f 1> (k)¢ DY}
M 200 +2) s (MY )
§<2> e (3 al}

For the third case when |k| > %, I < %, (k,1) ¢ DT, the estimation of S;
can be found similar to the second one, namely we get

Sp= 3 [kPreTmk 3T e agk, e,
k| > 2L o<|l|]<X:(kl)¢D}t
M2y
<(3) el

And in the last case when |k| > & |i| > &L the element S; can be easily
estimated as in the cases above, namely we have

S = Z Z \k:|2>‘1|l\2>‘2€,;l|d(k,l)|2e;l

|k|>2L ji|> 2L
M 2(A1+A2) _4772(M)1/771 9
S 7 € 2 HaHT]l,nQ
for M > (Llax{/\l«b}m n
- n2 .

Summarizing all cases considered above, we arrive to statement of lemma.

Lemma 2. Let a € Gy, p, for m > 1, then for A1, o > 1/2 and

M <9 <max{)\1, )\2}7’]1)”1
2

it holds true

)\14‘/\2 9 (M)l/'ql
la = Ppn @ ala n < a <2> e TP l[alln: o

where c1 =2z + 1; z1 = Zl()‘lv )\2) =T\ + o + YA VAo
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Proof. Due to simple transformation we have
lla = Ppm Qurarallx, a, < [1Ppm(a — Qarara)ll x, + (1= Ppmalla, a,-

For the further estimation we need the previous result, that was obtained in
Lemma 2 [10]. Namely, for A1, A2 > 1/2 it holds true

A1+
_ M\1/m
la — Qar,pral|a re < 21 <2> e=2m(%7) lalln -

Using inequality above and lemma 1 we have

la = PpnQuaralln x, < lla =P allx o, + [1Ppn (Quraa —a)lln a, <

M Y M\ AR oy
21 <> 6_2772(%) n1 HaHﬂ1,n2 + () 6—2772(%) 1

<
2 2

HaHmm =

M A1+A2 B ML/
<a(3) O ol

what was to be proved.
For the further analysis we need following results

Proposition 2. [7, Lemma 6.1.3] Let k(t) be 1 - periodic function such that
k(n)| < con® n € (22)
Then for any A > % it fulfils

< o2 My allvlan—as
A—a

/1 k(t — s)v(t, s)ds
0

where co is some constant and v(t,s) is 1-biperiodic function in Sobolev space
H)\,A—a'

Proposition 3. [7, Lemma 6.1.1] For any A, A2 > %, u,a € HM?2 4t holds
true
”auHM,M < Z2Ha||>\17)\2Hu||>\1,)\27
where 2 = z3(A1, Ag) = 2N 242y 4y
Further we need the following additional bounds. Namely using the propo-

sitions 2, 3 and integral representation of A, it is easy to find that for any
A1 >1/2 and A\g > 1/2

HAPH)\L)\Z < 23”“;0”)\1)\27 (23)

where 23 := 23(A1, A2) = 2MF1yy 20(A1, A2) is some increasing function. Now
we are ready to prove the error of approximation for the operator
A, € L(H* H%) by A, n. The corresponding result is formulated in the
lemma 3.
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Lemma 3. Let A, has the form (5) for all p = 0,...,q and the conditions
(6)-(9) are fulfilled. Moreover we assume that a, € Gy, y,, p = 0..q for m > 1

and ng > 0. Then for all A > max{%, % +a} and M > 2 (Z—; max{A, A\ — a}>771
it holds true

M 2 —a B M 1/711
Ay — Ap mrliar—a < c2llally . <2> e—2m ()

where ¢y = ¢1¢92* " yy_o20.

Proof. Taking into account Lemma 1, the Propositions 2 and 3, we have
1
(A= Apan)iaa = I [ Folt = 5)ay = Pogy Qassan)(t s)u(s)dslso <
0

< o2y ol (ap — Py Quraray) (1, 8)u(s)[r-a <

< 2" ys_azallay — Ppm Quamaplas—allu(s)|x <

M 2A—a —opo (M 7%
<a(hy) O ol

which was to be proved.

Corollary 3. From Lemma 8 follows that
q 22—« 1
M o (M\aT
I3 Ay = Aparllne < ealat Dmaxllagl ) () e
p=0
Now we are ready to propose fully discrete method for solving equations
under consideration.

5. FuLLy DISCRETE PROJECTION METHOD
Taking into account representation (10), we approximate A as follows

q
Au=D+P> AunP, (24)
p=0
where [ = N7, for some 0 < 7 < 1. Note that our approximate variant of A
is distinguished from respective approximation from [12] by using additional
projections Py and Ppm . Such projection helps to bound the amount of arith-
metical operations. The right-hand side of equation (4) we approximate as
following
N :=QnN/,

where N > M. The main idea of the fully discrete projection method (FDPM)
for equation (4) consists in solving the equation

q
Apuy = Duy + P> Ay mPuy = Qnf, (25)
p=0
where Ay s has the view (21) and uy € 7y is considered as approximate
solution of (4). Note that by virtue of (7) and (8), it holds true A,y €
LH H°8) p=0,...,q.
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Lemma 4. Let the conditions of Lemma 3 be satisfied and f € H*~. Moreover

operator Ay has the form (24). Then for alll ~ N7, 7 € [ﬂ%iﬁ,l) and
max{a +1/2,1/2} < X\ < p it holds true
N A—p 1 M 2 —a
A= Asla<a () +ac(O ()
where
cs = 2(¢ + 1) max{|lapllu,u+p-a}es(p p + 8 — ),
cy=ca(q+1) m}?X{Hap”mﬂ?z}'
Proof. Due to simple transformation we have
a
A=Ay =(-P))_ Ajut
p=0

(26)

q q q
> Apn =D Ay | P+ P> A - P
p=0 p=0 p=0

Consider each summand separately.
By virtue of the fact that A, € L(H*, H*=**8) for p = 0..q and taking into
account (16) and (23) we find that

q

=Y Al (5) 13X Apulass <

p=0 p=0

l

A—p+p
: <2> (g+1) ml?x{HapHu,u-i-ﬁ—a}ZS(H’M+ﬂ—Oé).

Because of | = N7 and N™A—#=0) < NA# for 7 ¢ [uﬁﬁ)\ﬁ’ 1) , one can

derive the estimate

q A
N 12
=) S Ao < (0 Dmallaplss-adaatin+5-a) (5 )
p=0

Similar estimate holds for third summand from (26), namely

q q
17i( ZAp I=P)u)ln-a < 1Y Apllr-pa-all(l = P)ulr-a <

=0 p=0
l A—p—pB

< <2 (¢ + 1) max{[lapr-pr-a}zs(A = 0,2 — @) <
N

< <2> (-+ 1) mac{lagla-sa-a}2(A = B, A = ).
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The second summand from (26) we estimate with help of Lemma 3:

q q
12> Apar =Y Ap)Pillar—a <
p=0 p=0

—2772(M)1/n1 M e
< ea(g -+ D maxt gl e 2 ()

Combing the corresponding bounds we get the statement of the lemma.

Lemma 5. Let the conditions of Lemma 8 are fulfilled. Then for any \ €
(max{a +1/2,1/2}, 1) and for sufficiently small N and M such that

N A=p . MmN\U/m (M 2A-a c
3 (2> +ege2m(7) (2> < 5)‘

it holds true
[v[lx < dallAmv|r-as

where dy = cl,
A
Proof. Using the inequality (11) and lemma 4 we have

1 1
iy = FllAvlI-a < 5 ([Avllx-a + (A = Arr)vllx-a) <

A A
1 Apv||az 2
< A_“H A= e < Ml
=g () e )

which was to be proved.

The estimation of accuracy for FDPM on the class of problems (4)-(9) with
nonperturbed input data is established in the following assertion (see for detail
[10]).

Theorem 1. Let the conditions (6)- (9) are fulfilled, and operator Ay has the
form (24). Then for any X € (max{1/2 + a,1/2}, 1), p > a+1/2 and for all

M,N: M >2 (%max{k,A—a})nl,

27)
_ a\1/ _ ’ (
3 (%)A g ege 2 (F) (%)2)\ T2
it holds true
N A—pu 1 M 22—«
llu —un|[x < cs <2> + 06672772(%) " <2> , (28)

where c5 =1+ d)\Cl)( + dycg + d,\c;h“_a, cg = dxcy.

Proof. Using the inequality (16) and [|ul|, <1 we find

N\
o=l < = Pl + IPvu = unla < (5 )+ IPvu=uvll 29

Using Lemma 5 it is easy to find the bounds for second summand in (29),
namely
[Pvu—un|lx < dallAm (Pyu — un)|[rx—a <
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< dr([|(A = An) Prulla—a + |Avuny — APyul[x—a) <

< dA([[(A = Ap) Prulla—a + 1@Nf = fllx-a + [A(PNu — w)[[r-a)-
Taking into account the lemma 4, inequalities (11), (16), (17) and the fact that
|lul|p <1 we have

N\ M\ A

2
A— A—
Z N a /! N a
T Vu—a 5 + ¢y 5 .

Substituting the bound above in (29) we obtain the desired estimation.

Corollary 4. As follows from (16), the optimal error of recovering the elements
from uw € H*, X < p is the following

= wnllx < 27 lull,

where u, € T, is some approximation. From Theorem 1 follows that for M =<
log™ N we have ||[u —un||x < (%))\_M, that establish optimality of the method.

6. CALCULATION OF ARITHMETICAL OPERATIONS
Let construct the matrix corresponding to the element P, A, prPiun(t). Using

the fact that [ ko(t — s)e;(s)ds = ko(i)e;(t) we have

1
PA, mPun(t) = Pl/ kp(t — s)Qnrmap(t, s)Prun(s)ds =
0

1 —
= Pl/o kp(t —s) Z Qnrmap(m, k)en (t)ex(s) Z a(i)e;(s)ds =

m,keD}} €Ly
—— 1
“P Y G R)aen(t) [kt s)esi(s)ds =
m,keD} i€Z, 0

=B Z Q@ prap(m, k’)iﬂp(k’ +8) (i) emtrri(t) =
m,keD]} i€Z,

(30)

To obtain the matrix form of FDPM (25) one can make the following substitu-
tion
m+k+i—m
k+i—k

and as the result get

]DlAp MPZUN Z ZAp "L em(t)v

meZ; |i€Z;

where /\ R
AP = > Qumap(m =k, k — i)kp(k).
(m—k,k—3i)€DT} kE€Lpr 4y
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Thus, the equation (25) can be rewritten as the system of linear equations

q
Du+» AP =f, (31)
p=0
where 4 = {u(i) };cz, is Fourier coefficient of desired solution = {f()}iczy

is Fourier coefficient for right-hand side and AP = {AP"" }m i€z,

Proposition 4. Calculation of matriz AP requires NlogN arithmetical op-
erations (a.0.) by the order.

Proof. Since D, C Dj, for ;1 > 1, then the biggest amount of arithmetical
operations is needed for calculation of matrix AP! and we consider this case
below. Since (m—k,k— 7,) D}, then by the definition of the set D}, we have
that m — ¢ € Zys. Let | = m — 4 and calculate the amount of a.o. for element
Aﬁii near diagonal [. For that rewrite the element Aﬁ;:i in the following way

Ny =m = > Quarap(m—k,l=(m=k)ky(k) = > a(m—k)ky(k).
VAvVES kE€EZnr 1

Using FFT, we can construct the element Afrfm—l for all m € Zy4; with (M +
[)1log(M + 1) a.o. by the order. Because of [ € Zyy, the total amount of a.o.
for constructing elements of matrix AP! is M (M + 1) log(M + ). Taking into
account the fact that llogl ~ N for 7 € [uﬁ%iﬁ’ 1) we arrive to the required
result.

Let’s calculate the amount of arithmetical operations that is necessary to
construct all the elements from equation (31).

— For the element Qmp(i j) we apply the relation

M M
QMMap 7 j 2 Z Z ap llM 1 JloM™ )ei(llM_l)ej(lgM_l)
l1=11l2=1

that can be calculated for all i, j € Zys with the help of FFT by M?log M
arithmetical operations.
— the elements of the vector f can be calculated by the relation

quv Jes(IN7H)

with the help of FFT by NlogN a.o.
— the elements of AP for [ = N7 can be calculated by (N log N) a.o. (see
proposition 4).
Summarizing all items above, we can conclude that the total amount of a.o.
for constructing all elements from (25) is N log N by the order.

7. PERTURBED INPUT DATA
Following [7], suppose that instead of functions a,(t,s),p =0,...,q and f(t)
we are given only some their pertubations a,(t,s),p = 0,...,q, and fs(t) is
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such that in the points of uniform grids it fulfils
M 3
M7 ape(iM T iM ™) —ap(iM T jM Y| <6, p=0,...,q,
ij=1

N
NTO D IfHGNTY = FGNTHPY2 <6l fllu-a-
j=1

It is easy to show (see, for example, [7, p.100]), that mentioned estimations are
equivalent to

||QM,M(ap_ap,5)||0,0 < g D= 07"'7q’ (32)
1QN(fs = Flllo < 6llfllu—a (33)

respectively. Then taking into account perturbation of input data the FDPM
for equation (10) becomes

a
AM,EUN,E,J = DUN,E + B Z Ap,]V[,aB“N,s,& = QNf57 (34)
p=0
where A, v cv(s) = fol kp(t — S)PDX} Qmmape(t,s)v(s)ds and unes € Tn is
approximate solution.

We pose the problem to solve equations (4) and (10) with perturbed input
data as (32) and (33) with minimal amount of discrete information (i.e. set of
values for functions fs(t) and ap (¢, s) in the points of uniform grid). At the
same time arithmetical expenses should be less in comparison with methods
known earlier (see, for example, |7] and [12]).

To achieve the aim of our investigation at first we state some auxiliary esti-
mations.

Lemma 6. Let estimation (32) is satisfied then for any A > max{1/2, a+1/2}
it holds true

M 2)\—04
| AM — Anmelda—a < c7 (2> g,

where ¢7 = 002)‘70‘+1’)/,\,a22(/\, A— a)(q + 1).
It is easy to find that

q
(AM - AM,E)U = B(Z Ap,M - Ap,M,s)Plu-
p=0

Using Proposition 2, 3, inequalities (18) and (32) we have
[(Axr — Apre)vlla-a <

q 1
IR [ K= 9)Po Quinlape = )9 Pro(s)dslsa <
p=0 '

q
<02 M aze(M A = @) Y (1@ (ape — ap)|an—allPollx <
p=0
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M

2 -«
< (@t Da? o an0a-a) () el

which is the required result.

Lemma 7. Let estimation (32) is satisfied and Apre has the form (34). Then

for M such that
MNP 1
d)\C7 <2> e < 5 (35)

operator A is invertible between spaces H> and H** and the following holds
true
[ullx < 2dx[lAncullr—a- (36)

The lemma can be proved in a similar way as lemma 5 by using the statements
of lemmas 5 and 6.

Lemma 8. Let the conditions (6)-(9) and (32), (33) fulfil and a € Gy, 5., M1 >
1,m3 > 0. Then for all A € (max{1/2,a+ 1/2}, u) it holds true

N A—« M 2 —«
lunv —ungelln < cg <2> 0+ co <2> €,

where cg = 2dxc); and cg = c1ocr2dy with c19 < 2+ dx(cy + % + CyYp—a)-
Proof. Using Lemmas 7 and 6, inequality (18) and (33) we find

lun —unselln < 2da||Ame(un —unse)llr—a <
< 2dy|[Anun — Apreun||a—a + +2d5[|QN f — Q@ f5]Ix <

N A—a M 22—«
<mh<<2> M-t er () emNm>.

Using (28) and (27) we bound the norm of element uy as follows:

(37)

Junlix < Jlullx + flu —un|[x <
N A—p 1 M 22—«
<lultes () e (B <

Substituting the estimation above in (37) and taking into account (11) we derive
desired estimation.

8. SELECTION OF THE DISCRETIZATION LEVELS
Generalizing the results of the previos section we rewrite general estimation
of error for FDPM. By virtue of Theorem 1 and Lemma 7, the accuracy of
method (34) is estimated as

lv = unsellx < llu—unllx +[luy —unsels <

N )\_,U _ (M)l/m M 2 —«
< cs 5 + cge” P2 - +

N A—a M 2 —a
+ cg 5 6+ co - €.

(38)
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Further following the paper [12] we consider the problem to select such levels
of discretization N and M that minimize the error bound (38). Here we consider
only the case then smoothness of parameters u is known precisely (a priori case).

1. A priori selection of parameter. The problem of a priori selection of
discretization levels was described in detail in [12] for class of equations under
consideration. Here we slightly modify FDPM. However, as we can see below,
it doesn’t influence on the best accuracy of the method.

Further we denote by [¢] the integer part of number ¢ and formulate the
theorem that establishes a priori rule for choosing discretization parameter.

Theorem 2. Let the conditions (6)-(9) fulfil and input data are perturbed as
(83) and (32). Then for any A € (max{1/2,a + 1/2}, ), p > a + 1/2 with
choosing the discretization parameters according to rule

— 1 C13 m
M= |2 —1log 3 39
[ (2772 o8 ) , (39)

N [2 () ] (10)

the error bound of the method (34) has the form

B=X _a) €1
[ — ungselly < c110i—a + crpe logMm A=) 13 (41)
€
where
A—p A—«a c6 1 771(2)\—01)
e = (eg) ey, ez = (>
c13 \ 212
and

_a
c13 = 10 m;lX{HaHmﬂIQ}'

Proof. Direct substitution (39) and (40) in (38) gives the statement of theo-
rem.

Remark 4. It is evident that condition (35) fulfils with choosing M according
(39) for sufficiently small €. Let’s check that condition (27) also holds true.
From (39) it follows that

()"

Cc13€ =¢&.

Then taking into account the relation above and (40) we can conclude that
condition (27) takes place sor sufficiently small €.

2. Fast solving of FDPM (34). Following [6] for fast solving (34), we pro-
pose to use GMRES. Such approach for solving problem under consideration
has been detailed in [6] and here we only rewrite main points. Denote by

q
Sy =D+ P, Z Ap B
p=0

It is evident that Sy is invertable operator (see lemma 7) that acts in 7. Thus
according to theory we can apply GMRES with operator Sy and right-hand
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side fn with respect to the space H*. The procedure concludes in constructing
sequence up, that satisfies the condition for n =1,2,...

SNUpr — = min Syu —
|| NUny fNHoz ueICn(SN,fN)H N fNHm

where IC\, (SN, fn) is well-known Krylov space. As the stopping rule we consider
the discrepancy principle

[Sntny = fnlla < 6| flla, (42)

where u,,,, is n-iteration of GMRES that we consider as approximation for uy.
Now we are ready to establish the accuracy of GMRES approximation for
our class of problems.

Theorem 3. Suppose that N, M — 0. Let n be the first number for which the
condition (42) fulfils. Then the accuracy of GMRES applied to equation (34) is
the following

N A—a
fuvae = uly <203 (5 ) vl (43)
Moreover we have that n = O(log(N)).

Proof. Using Lemma 6 we have that

lunse = un,lx < dal[Ane(unse = uny)llx—a < dillfn = Arreun,[[r-a-
Further applying the inequalities (18) and (42) one can obtain

N )\—OZ
fuvse = ula <203 (5 ) vl
what was to be proved.

Remark 5. As we can see from Theorem § the accuracy of FDPM method in
combination with GMRES is the following

B=A 1
llu —un,|[x < O((SLQ + e logM (A=) g)

Such accuracy of FDPM in the case of € = 0 is optimal by the order (see [11]).

Remark 6. For the realization of GMRES we need at every iteration to com-
pute a matriz-vector product Sy fn. Due to the structure of Sy as (34) and
relation (30), the calculation can be performed by l- M? operations. Since M =
O(log N) (see corollary 4), then due to N = llogl forl = N7, 1 € [ﬁ, 1)
we have that constructing of matriz-vector product Sy fn requires Nlog N a.o.
Moreover, as it is known, for realization of GMRES O(nl) floating-point oper-
ations must be computed at the n-th iteration, i.e on the n-th step we need
O(NlogN) a.o. Thus total amount of a.o. for solving (10) is limited by
O(Nlog N) by the order.

Remark 7. Let us suppose that € > ¢ and calculate the amount of necessary
discrete information for equation (4) to implement the proposed method (34)
with the accuracy (41). It is evident that in that case M does not exceed the
magnitude O(log(N)). So, for the discretization of Ay, less than O(log? N)
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values of kernels apc(t,s) in the points of the uniform grid should be used.
Note, that in the monograph [7] for the realization of the fully discrete projection
method (34) at M = N the order of discrete information was estimated as
O(NlogN) .

10.

11.

12.
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