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COMBINED NEWTON-KURCHATOV METHOD UNDER
THE GENERALIZED LIPSCHITZ CONDITIONS FOR
THE DERIVATIVES AND DIVIDED DIFFERENCES

S.M.SHAKHNO

PE3IOME. oBemeno j0KaIbHYy 30iKHICTH KOMOIHOBAHOTO iTeparifiHoro mpo-
necy, moby10BaHOTO Ha, OCHOBI MeToxy HbioTOHA i MeToy iHIHHOT iHTEpTIOJISI-
nii KypuaTosa, a7 po3B’si3yBaHHs HeJIIHINHIX OIlePATOPHUX PIiBHAHDL B OaHa-
XOBOMY HPOCTOPI 33 y3arajabHEHUX yMOB JIimmiuigg Ajsl MOXiJHUX IepIIoro
MOPSAAKY 1 TOMIIEHNX PI3HUIIL MEPUIOTO Ta APYTOro MOpSAAKYy. BusHadeHo
pazmiyc Kymi 30iKHOCTI i MBHIKICTH 301KHOCTI METO/Iy, 3HANIEHO 00/aCTh
€IMHOCTL PO3B’A3KY HEJIHIIHOTO PIBHIHHS.

ABSTRACT. The local convergence of combined iterative process, built on the
basis of Newton’s method and Kurchatov’s method of linear interpolation, for
solving of nonlinear operator equations in Banach space under the generalized
Lipschitz conditions for the derivative of the first order and divided differences
of the first and second order is proved. The radius of the convergence ball
and convergence order of the method are determined, the ball of uniqueness
of the solution of nonlinear equation is found.

1. INTRODUCTION
In this study we are concerned with the problem of approximating a
locally unique solution z* € D of equation

F(x) + G(z) = 0, (1)

where F' is a Fréchet-differentiable nonlinear operator on an open convex subset
D of a Banach space X with values in a Banach space Y, and G: D — Y is a
continuous nonlinear operator.

Let x,y be two points of D. A linear operator from X into Y, denoted
dG(z,y), which satisfies the condition

0G(z,y)(z —y) = G(z) - G(y) (2)

is called a divided difference of G' at points « and y.

Let z,y, z be three points of D. A operator 6G(z,y, z) will be called a divided
difference of the second order of the operator G at the points x, y and z , if it
satisfies the condition

0G(x,y,2)(y — z) = 0G(z,y) — 0G(x, 2). (3)

Key words. Banach space, Newton’s method; Kurchatov’s method; Combined iterative
method; Divided difference; Local convergence; Convergence order; Generalized Lipschitz
condition.
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A well-known simple difference method for solving nonlinear equations
F(z) = 0 is the Secant method

Tpy1 = Tp — (0F(p_1,2,))  F(2,),n=0,1,2,..., (4)

where dF(x,—1,xy) is a divided difference of the first order and xg,z_; are
given.

Secant method for solving nonlinear operator equations in a Banach space
was explored by the authors [5,14,15,19,30] under the condition that the divided
differences of a nonlinear operator F' satisfy the Lipschitz (Holder) condition
with constant L of type

10F (z,y) = 0F (u,v)|| < L(llz — ull + [ly = vl})-

In [11] it was proposed one-point iterative Secant-type method with memory.
In [29] it was explored the Kurchatov method under the classical Lipschitz
conditions for the divided differences of the first and second order and it was
determined the quadratic convergence of it. The iterative formula of Kurchatov
method has the form [4,5,18, 29|

Tpi1 = 2p — (6F (22 — Tp1,2n-1)) ' F(2,),n =0,1,2,..., (5)

where dF(u,v) is a divided difference of the first order, zg, z_1 are given.

In paper |20| Potra investigated the three-point difference method with con-
vergence order 1.839. .. for classical Lipschitz conditions for divided differences
of the first and second order [20]

Tp1 = Tn — A F (),

(6)
Ap = 0F (zn, xp—1) + OF (xp—2,2p) — 0F (xp—2,2n-1), n =0,1,2,.. .,

o, x_1,T_2 are given. This method first has been proposed for scalar nonlinear
equations by Traub in [30].

Regarding the local convergence of Newton method, Traub and Wozniakowski
in [31] and Wang in [33] gave the best estimate of the radii of convergence balls
when the first derivatives are Lipschitz continuous around a solution.

Besides, there are a lot of the works on the weakness and/or extension of the
hypothesis made on the nonlinear operators; see works of Argyros, Ezquerro,
Hernandez, Rubio, Gutierrez, Wang, Li [5,12,13,32-35| and references therein.
In particular, Wang introduced in [33] the notions of generalized Lipschitz con-
ditions or Lipschitz conditions with L average, where instead of constant L it
is used some positive integrable function.

The center Lipschitz condition with L average in the inscribe sphere makes
us unify the convergence criteria containing the Kantorovich theorem and the
Smale a-theory, while the radius Lipschitz conditions with L average unify
the estimates of the radii of convergence balls for operators with Lipschitz
continuous first derivatives and analytic operators [10,32,33].

In our work [|27] for the first time we have introduced a similar generalized
Lipschitz condition for the operator of the first order divided difference and
under this condition the convergence of Secant method was studied and was
found that its convergence order is (1 + +/5)/2. In the paper [26] we have
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introduced a generalized Lipschitz condition also for the divided differences
of the second order and we have studied the local convergence of Kurchatov
method (5).

Note that in many papers such as [1,2,7,16,21]|, the authors investigated the
Secant and Secant-type methods under the generalized conditions for the first
divided differences of the form

[(OF (z,y) = 6F (u,0)))[| S w(llz =yl [lu—2l) Vz,y,u,0eD, (7)

where w : Ry x Ry — Ry is continuous nondecreasing function in their two
arguments. Under these same conditions in the work of Argyros [4] it is proven
semilocal convergence of Kurchatov method and in [22] of Ren and Argyros the
semilocal convergence of combined Kurchatov method and Secant method. In
both cases only the linear convergence of the methods is received.

In this paper, we study the local convergence of the combined Newton—
Kurchatov method

Tpg1 = T — (F'(z0) + 0G (220 — Tne1, Tno1)) (F(zn) + G(z0)),

8
n=001.2,..., ®)

where F'(u) is a Fréchet derivative, G (u,v) is a divided difference of the first
order, xg, z_1 are given, which is built on the basis of the mentioned Newton and
Kurchatov methods under relatively weak, generalized Lipschitz conditions for
the derivatives and divided differences of nonlinear operators. Setting G(z) = 0,
we receive the results for Newton method [33], and when F'(z) = 0 we get the
known results for Kurchatov method [26].

We first proposed the method (8) in the paper [28]. Semilocal convergence
of the method (8) under the classical Lipschitz conditions is studied in the
mentioned article, but there was determined the convergence only with the
order (1 +/5)/2.

In this article we prove the quadratic order of convergence of the method (8),
which is higher than the convergence order (1 ++/5)/2 for the Newton-Secant
method [5,8,9,23]

Tp4+1 = Tp — (F/(xn) + 5G([En_1,l’n))_1(F<l'n> + G((L’n)),

9
n=0,1,2,..., )

Method (9) was proposed in [9] and proved its convergence with the or-
der (1 ++/5)/2 under the classical Lipschitz conditions for the first derivative
F'(x) and bounded norm of the second-order divided difference 6G(x,y, z). The
same order of convergence was received in [5] with weaker conditions - classical
Lipschitz conditions for the first derivative F’(x) and the first-order divided
difference 0G(x,y).

Note that in the work [23] we have considered combined Newton-Secant
method (9) and we have proposed a methodology of studying the convergence
of combined methods for solving nonlinear equations with nondifferentiable
operator under the relatively weak, generalized Lipschitz conditions for the
first derivatives and divided differences of nonlinear operators. Under the same
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conditions in [24] it was studied the convergence of the combined two-step
method for the solution of nonlinear equations.

The results of the numerical study of the method (8) and other combined
methods on the test problems are provided in our works [25,28].

2. LOCAL CONVERGENCE OF NEWTON-KURCHATOV METHOD
Lets denote B(zg,r) = {z : ||x — zo|]| < r} an open ball of radius r > 0 with
center at point xg € D, B(zo,r) C D.
Condition on the divided difference operator d F'(z,y)

[0F(z,y) = 6F (u,0)|| < L(llz —ull + [ly = vl) Va,y,u,0 € D (10)

is called Lipschitz condition in domain D with constant L > 0. If the condition
is being fulfilled

16F (2, y) — F'(wo)|| < Lz = zoll + lly — xoll) Va,y € B(zo,7),  (11)

then we call it the center Lipschitz condition in the ball B(zg, ) with constant
L.

However L in Lipschitz conditions can be not a constant, and can be a pos-
itive integrable function. In this case, if for * € D inverse operator [F’(z*)] ™}
exists, then the conditions (10 ) and (11) for g = x* can be replaced respec-
tively for

1F" ()M (OF (2, y) — 6F (u, v)))|| <
(12)

lz—yll+llu—vl|
</ L(z)dz Vz,y,u,v € D
0

and
|F"(2*) M (OF (2, y) — F'(a"))| <
lz—*{|+[ly—z=|] (13)
S/ L(z)dz Vz,y € B(z*,r).
0
Simultaneously Lipschitz condition (12) — (13) are called generalized Lipschitz
conditions or Lipschitz conditions with the L average.
Similarly, we introduce the generalized Lipschitz condition for the divided
difference of the second order

IF" (@) " (OF (u, ,y) — 6F (v, 2,y))l| <
(14)

llu—vl|
< / N(z)dz Vz,y,u,v € B(z*,r),
0

where N is a positive integrable function.

Remark 8. Noie than the operator F' is Fréchet differentiable on D when
the Lipschitz conditions (10) or (12) are fulfilled V,y,u,v € D (the divided
differences OF (x,y) are Lipschitz continuous on D) and 6F (xz,x) = F'(x) Va €
D [3].

The radius of the convergence ball and the convergence order of the combined
Newton-Kurchatov method (8) are determined in next theorem.
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Theorem 1. Let F and G be continuous nonlinear operators defined in open
convex domain D of a Banach space X with values in the Banach space Y.
Lets suppose, that: 1) H(x) = F(xz) + G(x) = 0 has a solution z* € D, for
which there exists a Fréchet derivative H'(x*) and it is invertible; 2) F has
the Fréchet derivative of the first order, and G has divided differences of the
first and second order on B(x*,3r) C D, which are satisfying on B(xz*,3r) the
generalized Lipschitz conditions

p(x)
1H (2%) " (F'(z) — F'(z7))]| </ Li(w)du, 0<7<1,  (15)
7p(x)
1 l—ul+ly—ol
|H (%) (5C (. ) — G (u, )] < / Lo(z)dz,  (16)
0
fuvl
|H'(z*) " (6G(u, 2, y) — 6G(v,z,y))|| S/ N(z)dz, (17)
0
where 7 = z* + 7(x — x¥), o(x) = |lx — z*||, L1, L2 and N are positive

nondecreasing integrable functions and r > 0 satisfies the equation

%fOT Ly (u)udu + fo Lo(u)du + 2r fo w)du

=1. 18
1—([;1'4 du+f0 Lo(u)du + 2r 0 (u)du> 18)

Then for all zg,x_1 € B(z*,r) the iterative method (8) is correctly defined
and the generated by it sequence {xy, }n>0, which belongs to B(x*,r), converges
to ¥ and satisfies the inequality

[#nt1 — 27| <

{ 1 /p(:vn)L (u)ud p(wn)L (u)d
< U)u u+/ u)du+
p(rn) Jo ! 0 ?

lzn—2n-1]
+ N(u)dul||x, — xp— X
/ (wdulfen, — w01} 19)

p(zn) 2P($n)
X {1 - (/ Ll(u)du—i—/ Lo (u)du+
0 0
|zn—zn—1]| 1 .
4 / N()dulz, — i)}l — 7).
0

Proof. First we show that

1

0 =5

[ e, o= [ Latwd
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t
in h(t) = : N (u)du monotonically nondecreasing with respect to ¢. Indeed,

under the monotony of Li, Ly, N we have

(tlg/ob—tl%/otl)Ll(u)UdU_ <t1§ /t:2+<t1§_tlf> /Otl)h(u)uduz

> L(tl)(tlg /: +<tl§ B é) /Otl )udu = Ll(t1)<t1% /th —tl% /0“ )udu =0,
(7512 /{:2 _tll /Otl )Lz(u)du = (tlg /tlt2 —i—(é . tll> /Ot1 )Lg(u)du >

ZLQ(tl)(;Q /:2+(32 - tll) /Otl)du:LQ(t1)<t2t_2tl +t1(t12 - tll)) -0

for 0 < t1 < ta. So, f(t), g(t) are nondecreasing with respect to t. Similarly we
get for h(t).

We denote by A, linear operator A, = F'(zy,)+0G(2xy, — xp—1,Tn—1). Easy
to see that if z,,x,—1 € B(z*,r), then 2z, —xp_1,2,—1 € B(z*,3r). Then 4,
is invertible and the inequality holds

1AL H (7)== (I = H (") 7" A)] 7 <

< (1 - </0p(xn) Ly (u)du + /OQP(M) Lo (u)du+ (20)

l[&n—an—1]| -1
+ / N(u)dul||zy, — xn_1||>> .
0
Indeed from the formulas (15)-(17) we get

1T — H' (%) Al = || H (@)~ (F'(2%) = F'(wn) + 6G(a", 2%)—
—6G (T, ) + 0G (20, 70) — 0G (2T, — Tp—1, Tn1) ) <

p(xn) ,
< / Li(u)du + || H (z*) " (6G (z*, 2*) — 6G (2, )+
0
+0G (xp, zp) — 0G(Tp, Tp—1) + 0G(Tp, Tp—1) — 0G (2, — Tp—1,Tn—1))|| <
p(xn) 2p(zn)
< / Lo (u)du + / Lo(u)dut
0 0
+”H/ (SC*)_I((SG(xn, Tn—1, mn) - 5G(2$n — Tp—1,Tn-1, :En))(xn - xnfl)H <

p(zn) 2p(wn) 20 —n—1l
< / Li(u)du + / Lo(u)du —l—/ N(u)dul|z, — xp-1]|.
0 0 0

From the definition r (18) we get

T 2r 2r
/ Li(u)du + / Lo(u)du + 2r N(u)du =
0 0 0
(21)
1 r T 2r
=1- / Li(u)du —/ Loy(u)du — 2r N(u)du < 1.
" Jo 0 0
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Using the Banach theorem on inverse operator [17], we get formula (20). Then
we can write

|zn41 — 2| = [lon — 2" = AN (F(20) = F(2*) + G(an) — G"))|| =

- H_Agl(/ol(pf(x;)  F' ()T + 6G(n, )

—0G(2xy — Tp—1,Tn—1))(zy —2¥)|| < (22)
, o)
<||AJYH (2* || |H' (z / / u)dudT+
xn)
+|H (%) " (+6G (20, %) — 6G(22, — xn_l,xn_l))H> |xn — 2%
According to the condition (15)—(17) of the theorem we get
|H (%) / / wdudr + 6G(n, ) — Ay)| =
Tp(xn)
1 p(zn)
= / Li(uw)udu + | H' (z*) Y (0G (2, %) — 0G (0, 20) +
p(zn) Jo
+0G (zp, zp) — 0G(Tp, Tpn—1) + 0G(Tp, Tp—1) — 0G (2, — Tp—1,Tn—1))|| <

p(n)
s /0 Li(w)udu + ||H' (z*) "1 (6G (2, %) — 6G (20, z0)) ||+

+HH/(~%'*)71(5G($7L1 Tn—1, xn) - 5G(2$n — Tp—1,Tn—1, xn))(wn - -%'nfl)H <

1 /P($n) L ( ) d P($n) L ( )d
< U ) U u+/ u)du+
p(zn) Jo ! 0 ?

lzn—2n lH
+/ N(w)dulzn — 21
0

From (20) and (22) shows that fulfills (19). Then from (19) and (18) we get

|xnt1 — || < [|zn — 2% < ... <max{||xg— ", ||x=1 — 2|} <7
Therefore, the iterative process (5) is correctly defined and the sequence that
it generates belongs to B(x*,r). From the last inequality and estimates (19)
we get lim ||z, — 2*|| = 0. Since the sequence {z, }n>0 converges to z*, then

n—oo -

[2n = 2na|l < llzn — 27 + 201 — 27| < 2[zn-1 — 27
and lim ||z, —z,_1] = 0.
n—oo

The theorem is proven.

Corollary 5. The order of convergence of the iterative procedure (8) is qua-
dratic.
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Proof. Lets denote pmax = max{p(xo),p(x_1)}. Since g(t) and h(t) are
monotonically nondecreasing, then with taking into account the expressions

1 e _ I Liwudup(a,))
e fy Tt = S R s

o Ly (wudup(a,)
(PmaX)2

<

= Alp(xn)7

p(xn) p(zn) L d Pmax L d
/ Lo(u)du = fo 2(u)dup(n) < fo 2(w)dup(zn) =: Aop(zn),
0 P(l‘n) Pmax

Hxn_xnfln Hxnixn_l” N u du Xz — Tp—
| " (wdulfzn = 21|
0 ||~Tn - 1‘n—1H

f0||x0—a271H N(u)dungjn — xn71||

[0 — 21|

p(zn) p(n)
(1 - (/ Ly(w)du + 2/ Lo(u)du+
0 0
Hxn_xn—ln -1
+/ N()dulz, 2, ])) <
0
Pmax Pmax
< (1 - (/ Ll(u)du+2/ Lo(u)du+t
0 0

llzo—a—1l| 1
+/ N(u)dul|zg — x_1\|>) =: Ay,
0

from the inequality (19) follows

<

= A3||1‘n — xn_lH

and

|41 — 2| < Ag(Arp(wn) + A2p(zn) + Asllzn — zn-1]?)l|zn — 2"
or
lonr1 = 2*[| < Csllan — 2*||* + Callzn — zp—r|*[lon — ]| (23)

Here Ay, k =1,...,4,C3,Cy are some positive constants.
Suppose now that the order of convergence of the iterative process (8) is lower

2, therefore there exist Cs > 0 and N > 0, that for all n > N the inequality
holds

lzn — 2*|| > Cslan—1 — 2|

Since

len = 21l < (lon = 2™ + l2n-1 = 2*[)* < 4llzn-1 — 2",
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then from (23) we get

lzn1 — 2% < Csllan — 2*[|” + 4C4 |21 — 2*|*[|2n — 27|
(24)
< (C3 +4Cy/Cs)|lxn — 2*|* = Collzn — 2*[|.

But inequality (24) means that the order of convergence not lower 2. Thus,
the convergence rate of sequence {zy}n>0 to z* is quadratic.

Next theorem determines the ball of uniqueness of the solution z* of (1) in
B(z*,r).

Theorem 2. Lets assume that: 1) H(x) = F(z) + G(x) = 0 has a solution
x* € D, in which there exists a Fréchet derivative H'(z*) and it is invertible; 2)
F has a continuous Frechet derivative in B(z*,r), F' satisfies the generalized
Lipschitz condition

p(x)
1H (%) (F' () = F'(a")]| < /0 Li(u)du V€ B(a",r),

the divided difference 0G(x,y) satisfies the generalized Lipschitz condition

p(z)
||H’(x*)_1(5G(x,:p*) —G'(2")| < /0 Lo(u)du Yz € B(z*,r),

where L1 and Lo are positive integrable functions. Let v > 0 satisfy

1 [ "
/0 (r—u)Ll(u)du—i-/o Lo(u)du < 1.

r

Then the equation H(x) = 0 has a unique solution x* in B(x*,r).

Proof analogous to [23,24].

3. COROLLARIES
In the study of iterative methods the traditional assumption is that the
derivatives and/or the divided differences satisfy the classical Lipschitz condi-
tions. Assuming that Li, Ly and N are constants, we get from theorem 2.1
and 3.1 important corollaries, which are of interest on its own.

Corollary 6. Let’s assume that: 1) H(x) = F(z) + G(x) = 0 has a solution
x* € D, in which there exists Fréchet derivative H'(x*) and it is invertible;
2) F has a continuous Fréchet derivative and G has divided differences of the
first and second order 6G(z,y) and 0G(z,y,z) in B(z*,3r) C D, which satisfy
the Lipschitz condition

|H (%) 7 (F' () = F'(«" +7(x = 2%))|| < (1= 7)Laf|lz — 2],
[ (z%) "1 (6G (z,y) — 0G(u,v))|| < La(l|lz = ull + [y = v])),
1 (%) " (6G (u, 2, y) — 6G (v, 2,9))|| < Nlju — o],
where x,y,u,v € B(x*,r), L1, Lo, N are positive numbers and r is the positive
root of the equation
L1r/2 + Lar + 4Nr?

=1.
1—Lir—2Lor —4N7r2
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Then Newton-Kurchatov method (5) converges for all x_i,z¢ € B(z*,r) and
there fulfills

(L1/2 + LQ)H:BYL - JB*H + NHxn - xn—lHZ
1 (L1 4 2Ls |y — 2| + Nan — xn_1H2>

[€n1 — 2] <

Moreover, 1 is the best of all possible.

2
Note that the received r coincides with the value of r = 3L for Newton

1
method for solving equation F'(z) = 0 [20,31,33] and with » = 2/(3Ls +
/9L3 + 32N) for Kurchatov method for solving the equation G(z) = 0, as
derived in [29].
Corollary 7. Suppose that: 1) H(x) = F(x)+G(z) = 0 has a solution x* € D,
in which there exists the Fréchet deriwative H'(x*) and it is invertible; 2) F has

continuous derivative and G has divided difference 0G(x,z*) in B(z*,r) C D,
which satisfy the Lipschitz conditions

1 (")~ (F () = F'(@*)|| < Lalle = 27,
1 (%)~ (0G (2, 2™) = G'(a"))|| < Laflw — 27| ,

Ly +2Lsy°
Then the equation H(z) = 0 has a unique solution x* in the open ball B(x*,r).
Moreover, the given r is the best of all possible and does not depend on F and

G.

Note that the resulting radius of the uniqueness ball of the solution coincides

for all x € B(z*,r), where L1 and Lo are positive numbers and r =

2
with r = I for Newton method for solving the equation F'(z) = 0 [33] and
1

with r = Li for Kurchatov method for solving the equation G(z) = 0 [29].
2
4. CONCLUSIONS

In the papers [5,15,29] it was studied the local convergence of Secant and
Kurchatov methods in the case of fulfilment of Lipschitz conditions for the di-
vided differences, which hold some Lipschitz constants. In the work [33] it has
been justified the convergence of Newton method for the generalized Lipschitz
conditions for the Fréchet derivative of the first order. We explored the lo-
cal convergence of Newton-Kurchatov method under the generalized Lipschitz
conditions for Fréchet derivative of differentiable part of the operator and the
divided differences of the nondifferentiable part, in which instead of Lipschitz
constants some positive integrable functions are used. Our results contain the
known ones as partial cases.
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