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ON THE BOUNDARY ELEMENT METHOD FOR
BOUNDARY VALUE PROBLEMS FOR CONVOLUTIONAL
SYSTEMS OF ELLIPTIC EQUATIONS

Y.A.MUZYCHUK

PE3IOME. /Ijs 4uCesIbHOrO pO3B’sI3yBAaHHS KPAMOBUX 33Jad /I HECKIHYIEH-
HUX CHCTEM 31 3rOPTKOBOIO CTPYKTYPOIO, sIKi CK/IAIAIOTHCS 3 €INTUIHAX PiB-
HSIHB JPYTOTO TIOPSIIKY, 3AMPOIIOHOBAHO METO/ IPAHNTHIX eJIeMeHTiB. Po3s’s-
30K IIOJIAHO 3a JOIOMOTIOI0 IOCJIiIOBHOCTI MOTEHIIAJIiB IpocToro mapy. [ma
AIPOKCUMAII] HEBIOMUX I'yCTUH ITOTEHIAIIB BUKOPUCTAHO 0a3uc, AKnil CKIIa-
JAETHCS 3 KYCKOBO-CTAJINX 0A3UCHUX (DYHKIIIH, MOOYJOBAHNX HA TPUKYTHUX
rpaHnyHuX ejseMeHTax. Jlocaimkeno amnpiopni noxubku. Hasememo pesysbra-
TH cepil 06YUCTIOBAIbHUX €KCIIEPUMEHTIB.

ABSTRACT. For the numerical solution of boundary value problems for infinite
systems with convolutional structure that consist of the second order elliptic
equations, a boundary elements method is suggested. The solution is given as
a sequence of single layer potentials. For the approximation of the unknown
densities of the potentials a basis that consists of piece-wise constant functions
built on triangular boundary elements is used. A priory error estimates are
obtained. Results of a series of computational experiments are given.

1. INTRODUCTION

Boundary value problems for infinite systems that consist of elliptic partial
differential equations (PDEs) can be found while investigating solutions of lin-
ear evolution problems for instance in the following works [3, 6,10, 15,16, 21].
Note that in [14] the well-posedness of such problems has been proven by tran-
sitioning to the corresponding variational formulations. Integral representa-
tions of the solutions of these boundary value problems that lead to equivalent
boundary integral equations (BIEs) have been obtained. Properties of the BIEs
method for exterior problems have been studied by the author in [17].

The main goal of the current article is such transformation of the obtained
system of BIE that allows to efficiently apply the Bubnov-Galerkin method to
it and prove its convergence. We also develop an algorithm for its solution by
the boundary elements method (BEM) and investigate the approximation error
of the obtained solution.

The paper is organized as follows. In Section 2 we formulate a Dirichlet BVP
for an infinite triangular system of elliptic PDEs. We consider this problem in
appropriate Sobolev spaces and introduce a notion of sequences and a new
operation on them — g-convolution. In this section we also give an integral
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representation of the solution of the BVP by a combination of some surface
potentials which reduces the problem to a system of BIEs.

In Section 3 we transform the system of BIEs into such sequence of BIEs all
equations of which have the same boundary integral operator in the left hand
side. It allows us to justify the application of the Bubnov-Galerkin method
for finding the unknown functions — densities of the potentials. Afterwards,
the main properties of the BEM and a priory error estimate of the numerical
solution are obtained. In Section 4 some computational aspects of the systems
of linear equations that appear as a result of the discretization of the BIEs are
considered. Results of a series of computational experiments for the numerical
solution of some model problems are given in Section 5. In this section an
example of the application of the suggested approach for the solution of an
initial-boundary value problem for the wave equation with homogeneous initial
conditions is given. In the last section conclusions about the introduced method
are given.

2. FORMULATION OF THE CONVOLUTIONAL SYSTEMS OF PDE AND BIE

Let © C R? be a bounded and simply connected domain with a Lipschitz
boundary I and QF := R?\ Q be an exterior domain. We consider an infinite
system in QF

Coug — AUQ = 0,
c1ug + cour — Aug = 0,

coug + crur + coua — Aug = 0, (1)

cruo + Cp—1u1 + ... + coup — Aug = 0,

\

where ug, 41, ..., ug, ... are unknown functions, cg,cy, ..., cg, ... are some
given constants and ¢y > 0. We investigate BVPs for system (1) that consist
in finding its solutions that satisfy the Dirichlet condition on the boundary I"

ukr = gr, k € No := NU{0}), (2)

where g; (i € Np) are given functions on I'. In other words, we will consider
the Dirichlet problem (1), (2).

Let X be an arbitrary linear space over the field of real numbers, Z — the set
of integers. By X we denote a linear space of mappings u : Z — X satisfying
u(k) = 0 when k < 0. For any element u € X we have u, = (u) := u(k),k €
Z, and will write it as u := (ug, uy, ..., ug, ...) 7. Henceforth we will call elements
of X sequences.

_ - - T
Let E(z,y) = (Eo(a:,y), Er(z,y), ) , =,y € R3, be a fundamental so-

lution of the system (1) and sequence E(z,y) = (Eo(z,y), Ei(z,y), )T s
calculated by the formula

Ez(‘rvy) = Ez(xay) - Ei—l(‘rvy)7 €N, Eo(l’,y) = EO(xay)v T,y € RS' (3)
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Note that Ey(z,y) = e VOITUL A for the other components see, for example,

Anlz—y]
[17].
Consider a sequence of functions V&(z) = (Vo&(z), Vié(x), ...)" with com-
ponents

ViE() == (Vj) () = / EW)E (2, y)dly, j € No, 2 € RS, (4)
N

where ¢ is a square integrable on I' function. It is known [17] that sequence
u(z) = (uo(x), ui(z), ...)" built for an arbitrary sequence p = (uo, 1, -..) "
of square integrable on I' functions by the rule

i
’LLl(CL‘) = Z‘/jﬂi,]’([ﬁ), 1€ Ny, x € Rg, (5)
§=0
will satisfy the system (1). Then in order for the sequence u to be a solution

of the Dirichlet problem for the given sequence g = (go, g1, ...) it is enough
to find such sequence p that would satisfy on I' the following equalities

Voo = go,
Vipo + Vopr = g1,
Vapo + Vipr + Vopo = go2, (6)

Viero + Vi—1p1 + .. + Vopr = gi,

Lets introduce some notations. We will use the Lebesgue space L2(27) and
Sobolev spaces H!(2T) of real-valued scalar functions. Let vg : H'(QT) —
H'2(T) be the trace operator, H~/2(T) := (H_l/Q(F))/ and (-, -)r denote the
duality between H~Y2(T') and HY/?(I).

Definition 4. Let g € (H'/?(T"))*®. Sequence u € (H'Y(27))* is called a
generalized solution of the Dirichlet problem if it satisfies the system (1) in the
sense of distributions and the boundary condition (2) in the sense of traces.

Definition 5 ( [10]). Let X, Y and Z be arbitrary linear spaces and ¢ :
X XY — Z — some mapping. By a g-convolution of sequences u € X and
v € Y™ we understand a sequence w € Z°° whose components are defined by
the following rule

Ww; 1= Zq(ui_j,vj) R 1€ No, (7)
=0

and denote it w =uov.
q

In case when X = H-Y2(I'), Y = HY/*(T'), Z =R and q(u,v) :=< u,v >r,
uwe H V2T, v e Hl/Z(F , for the components of the g-convolution of arbi-
trary sequences u € (H*1/2(F))Oo and v € (H1/2(F))Oo we have the following
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formula

J
wj =Y <uji,v; >, j €Ny, (8)
i=0
and write w := ugv.

Another example of g-convolution is related to linear operators, when X =
L(Y, Z) is a space of linear operators that act from Y into Z, and ¢(A,v) := Av,
Ae L(Y,Z), veY. In this case for the components of the g-convolution of
arbitrary sequences A € (L£(Y,Z))™ and v € Y™ we obtain the formula

J
wj = ZAj—’ivia ] S N(), (9)
1=0
and write w := A;v.

Definition 6 ( [14]). Let V : (H~Y2(I))™ — (HY*('))™ be a sequence
of operators that act by the rule (4), where we consider the inner product in
L*(T) extended to the duality on H—/?(T") x H/?(T') and p € (H~V2(T))™.
Sequence

— 3
VHI/C‘;(F)LL(:E) =V Hl/oz(r) w(e), = R 10

is called a single layer potential of the system (1) on the surface I'.
Using the introduced notations, we can rewrite the system (6) as

VH1/02(F) p=gonl. (11)

We will call systems of type (11) that can be represented by a g-convolution

systems with a convolutional structure. It is easy to see that the system of PDEs

(1) also has a convolutional structure since the expressions in it’s left had side

(that are not related to the Laplacian) are components of the g-convolution of
sequences ¢ and u.

Proposition 6 ( [14]). For an arbitrary sequence g € 12(HY/?(T")) there exists
a unique generalized solution of the Dirichlet problem u € I>(HY(Q)). It can be
represented as a single layer potential (10) whose density p € I>(H1/2(I)) s
a solution of the BIE (11).

3. BOoUNDARY ELEMENTS METHOD FOR BIE SYSTEM
Triangular shape of system (11) is a consequence of the convolutional struc-
ture of (1) and the application of the g-convolution in the single layer potential
definition. Lets use this property to build a step-by-step process of the numer-
ical solution of the BIE (11). This system can be represented as a sequence of
Fredholm BIEs of the first kind:

Vour =g 8 HY(I'), k € N, (12)
where
k—1
gk =gk — > Viithi. (13)
=0
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As you can see, the system is reduced to a sequence of equations that have

the form

Von=f » HYX(T). (14)
They have two important properties. First, the left-hand side of the integral
equation with an arbitrary index k € IN is defined by the same boundary
operator Vy and the right-hand side depends on the boundary condition data
and on the solutions of the equations with previous indexes ¢ = 0,k — 1. Taking
these considerations into account during the the implementation of the method
makes it possible to build efficient algorithms for the numerical solution of the
obtained sequence of BIEs (12) as well as for the computation of the solutions
of the boundary problem.

Another feature of the obtained system is that the boundary integral operator
on left-hand side of the equations corresponds to the elliptic operator cogl — A,
where [ is the identity operator, and is well studied in the literature (see,
e.g., [2,4,5,13]). In our case, it gives us the opportunity not only to prove
the existence and the uniqueness of the solutions of the obtained sequence of
BIEs, but also to get the corresponding numerical solutions using BEM, which
is considered as a representative of the Bubnov-Galerkin method family [8]. A
large number of publications (see, e.g., the literature review in [9,20]) confirms
the effectiveness and the versatility of this method regarding the numerical
solution of boundary value problems for different types of elliptic equations
and systems of elliptic equations of smaller dimension.

Investigation of the solutions of BIE (14) and the approximation by the
Bubnov-Galerkin scheme is based on the ellipticity and the boundedness of the
operator Vp:

(Von,mr = ellnlfy /ey [Vonllmewy < ellnllg-12qry), Vi€ H-V2(T)),

where ¢; > 0 and ¢ > 0 are constants.

Consider a sequence of finite-dimensional subspaces Xy, ¢ H-Y2(I'), M €
N, that are linear spans of functions {¢; }£, that form a basis in Xs. According
to the Bubnov-Galerkin method, we seek a numerical solution of the equation
(14) in the form of a linear combination

M
M= "nigi € Xy (15)
i=1

as a solution of such variational problem
Von™,myr = (f,m)r, Vn € Xu. (16)

In order to find the vector of the unknown coefficients niM! := {n M < RM
lets take the basis functions ¢; as the test ones. Then from the variational
equations we obtain a system of linear algebraic equations (SLAE) regarding
the unknown coefficients 7;:

v gl = g, a7

where ViM[5,4] :== (Voor, é5)r, fj[M] = (f,¢j)r, i, =1,M.
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Note that the matrix of the obtained system if symmetric. Moreover, as
a result of the H~1/2(I")-ellipticity of the operator Vp, it is positive definite.
Therefore, with an arbitrary right-hand side the system (17) will have a unique
solution i.e. VM € N by using the Bubnov-Galerkin method we will get an
approximate solution of the equation (14). By the Cea lemma (see, e.g., |20,
Theorem 8.1]) such approximate solution satisfies the inequality

el =120y < el fll ey (18)
and there exists an estimate for its error
Co .
ln =l g-120) < o 5611)1;1»1 [ = &l g—172(r)- (19)

Hence the convergence in H~/2(I") of the approximate solution ny; — n €
H~Y2(I') when M — oo, where 7 is the solution of the corresponding BIE
in the sequence (12). Note that convergence of the numerical solution follows
from the approximation property of the trial space Xj;.

Lets specificate the numerical scheme (17) using the boundary elements

method [8,19,20]. Let I'y; = Uf\il 7; be some approximation of the surface

T built by triangular boundary elements {r}1~, with vertices {z1), 2], zlls]}

1/2
and h := max ( fﬂ d5> — parameter of the approximation. We assume that
1=1,M
vertices of all triangles have global numeration {zy},_,.
Lets build a set of linearly-independent on I' ;7 piece-wise constant functions

M —~
{90?}1:1’ M = M:

1, zem,
da={y TEm (20)
We will consider finite-dimensional spaces of functions SY(I') = XM =

span {¢7} f\i 1> dim S)(T') = M as approximating spaces for the numerical scheme
(17).

Let the operator equation (14) correspond to some k-th equation of the
sequence (12). Its approximate (numerical) solution u} can be represented as
a linear combination of piece-wise constant functions:

M
’LLZ - ZMZ,I(/D? S Sg(r); k € Np. (21)
=1
M
Here {” Zvl } =: pl € RM is a vector of unknown coefficients that can be

found from the following system of algebraic equations:
Viul =gh ke N (22)

Matrix Vg is a concrete representation of the matrix of the system (17). Its
elements can be given as

Voh[z',l]:/ / Eo(z — y)dsy,dsy, i,0=1,M, (23)
T Tl
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and the components of the right-hand side vector in (22) have the following
form

k—1
1= [ {onte) = 3 (Voo @)}, =T 0T (24
7=0
Sequence p" = (ug, Mf, )—r can be treated as a numerical solution of the

system of BIEs (12). After finding the consequent solution NZ of the algebraic
system (22), we can approximate the corresponding density element using the
formula (21) and calculate the k-th component of the numerical solution of the
Dirichlet problem at an arbitrary point z € Q*:

k
= (Vi—jul) (@), z € QF. (25)
]:

The sequence u” := (uo, uy, .. )—r can be treated as a numerical solution of the

Dirichlet problem.
Lets find an apriory estimate for the error of its components after introducing

some Sobolev spaces [9]. Let the boundary I' be given as a union I' = UZ]L T,
of surfaces I'; (I'; NT'; = @ when @ # j) each of which has a sufficiently smooth
parameterization

Ii={zeR®:2=x;(9, €7 CR*}.
By using a set of non-negative functions ¢; € C§°(R?) such that

N
D ¢ix)=1VeeT, ¢(z)=0Vzel\Iy

each function v given on the boundary I' can be written in a form

N
=Y dix)v
=1 =1

where vi(x) := ¢;(x)v(z) Vz € I';. We consider the Sobolev spaces H™(7;)
when m € N, elements of which are functions v;(£) := v;(x:(€)) when £ € 7,
with a norm and a half-norm

1/2 1/2
llinisy o= (3 lloe mw) il = (wa )

la|<m o=
(27)
correspondingly. Here 0“ is a notation of the partial derivative with a multi-
index o« = (a1, 2). Then for the functions, given on the whole surface I', we
will use the Sobolev spaces H™(I') with a norm and a half-norm

Mz

) Vz el (26)

N

1/2 1/2
ol ey = (ZHvAer(T,) \ermw)::(Zm@m@) L (28)

i=1
correspondingly.
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For non-integer values of the indexes s = m + o0, m € Ny, o € (0,1),
we will use Sobolev-Slobodetski spaces H*(7;) and H*(I") with corresponding
half-norms and norms

. [ 10708 — 0" Tu(o)P v
|Ui|Hs(?i = Z \{ 77‘2+20 ds¢dsy, ,

1/2
[l = (HvZHHm T mmsm) , (20)

N 1/2 1/2
[0l g (ry = (Z\@\qu(ﬁ)) o NllEsr) = (’UH%V”(F) + |U\qu(r)) ;
=1

and also spaces of piece-wise smooth functions

H3, (1) == {v e L*T) :v|r, € H*(T})}, (30)
for which
N 1/2 N 1/2
ol o= (o By ) ol = (o ey ) - 31
i=1 =1

Lemma 1. Let p € (H;w(f‘))oo be a solution of the system (12) for some
€ (0,1], that satisfies the inequality

Z |1l () < +o00. (32)

Then for the components of the numerical solutions of the system of BIEs (12)
and the Dirichlet problem (1), (2) obtained by BEM the following asymptotic
estimates hold

< crh™ 2 g | s r

H-12(D) 5,(0) ke No, (33)

o=

k
|up(z) — uft(x)| < Gh T2 Z |15l ms, ), T € QF, k€ N, (34)
j=0
where ¢ and ¢, are some values that do not depend on the parameter h.
Proof. Validity of the statement regarding (33) directly follows from a known
theorem ( [7], |20, Theorem 12.3]).

A priory error of the k-th component of the numerical solution of the Dirichlet
problem at an arbitrary point x € Q7 can be given as

Jur(z) — ui (= |—\Zv;“ pi — o y_\z  Eyi(z— ) )rl.

Note, that for an arbitrary fixed point 2 € QT all the functions E;(z — -) are
infinitely-differentiable and bounded together with all their derivatives on I,
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ie. HE] (x — -)HH1/2(F) < ¢; = const. Using the generalized Cauchy-Schwarz

inequality, we get

k
Jur(@) = ujp(@)] < [((wi = ), Ex-ie =) )r| <

12 = 13| g2 0 1B = )| g2y
=0

Then, taking into account the 1nequality (33), we obtain

Jug () — ul(x)] < hﬁ“ﬂzck il 13, () hS“/QZ\m\H;m
1=0

where ¢ = [nax {c}_;ci} does not depend on the parameter h. O
<i<

4. COMPUTATIONAL ASPECTS OF THE METHOD

Effectiveness of the numerical solution of the Dirichlet problem depends in
great length on the approaches for the calculation of the surface potential in the
domain and the trace on the boundary. In practice, it means a combination of
algorithms for numerical integration and analytic calculation of some singular
integrals over the boundary elements.

If the point, at which the trace of the potentials mentioned above is cal-
culated, is not located on the boundary element over which the integration
is performed, then the kernels of these potentials are infinitely-differentiable
functions on the corresponding boundary element. Hence, the calculation of
the majority of the elements in corresponding SLAE and also the components
of the numerical solution of the problem at the observational points can be
performed using numerical integration and the Gauss quadrature in particular.

Lets consider the calculation of integrals over singular functions that can be
obtained during the construction of the matrix of the SLAE and correspond to
the boundary operator Vg (23):

e —+/Colz—y|
Vi, 1] = / / Sy Bovdse kI=T . (35)
Tl

If the boundary elements 75 and 7; coincide or are adjacent then the integrand
of the internal integral has a weak singularity when the points x € 7, and y € 7y
coincide. It can be explicitly eliminated if the element of the matrix is given as

ik, 1] = eZveol Tyl - S L A 36
i, e g [ e

1
—ds
T |‘T - y|
Integrand of the first integral in (36) allows continuous definition at x = y (it

can be verified if the exponential function is expanded in a Maclaurin series over
the variable r = |z — y|), so the value of this integral can be found numerically

where

Ii(z) = (37)
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using the Gauss quadrature rules. The integral (37) can be found analytically
as a function [11,18-20], parameterized by the geometric data of the boundary
element 7; and the coordinates of the point x.

In the integrals

VI'k, 1] :/ /Ej($,y)d8ydsx, k,1=1,M, j € N, (38)
Tk YTl

that correspond to the boundary operator V;, j € N, and are found during
the construction of the right-hand side, the integrands are continuous for any
location of the boundary elements 7 and 7;. Hence these integrals can also be
found numerically using the Gauss quadratures.

Note, that all relations of the suggested approach can be applied to interior
BVP without any changes.

5. RESULTS OF THE COMPUTATIONAL EXPERIMENT
Lets demonstrate the usage of the suggested method to find numerical solu-
tions of some model Dirichlet problems. We assume that in (1) and (2) compo-
nents of the sequences ¢ and g have the form ¢ = (k+1)k and g = v, k € Ny,
correspondingly, where x is some parameter and the sequence v consists of func-
tions
) T O sl =) — B (sllz D)

|z — 2]

39
e—r(lz—z*|-1) ( )

vo(z) =

o — 2%

parameterized by some point z*, Ly, k € Ny, are the Laguerre polynomials [1].
Up to a factor the sequence v coincides with the fundamental solution of the
system (1), so it will be used to build the analytical solution of the Dirichlet
problem. Note, that the variable  will denote points on the boundary I' and
in the domain where the numerical solution is sought, and the parameter z* is
located in the complement of this domain to the whole space R3.

We consider the following domains in the model problem: a unit sphere,
its exterior in R3, a cube Q := (—1,1) x (=1,1) x (=1,1) and its exterior
Ot =R3\ Q.

Lets consider first the model boundary value problems for the first equation
of the system (1).

Example 1. Find a numerical solution u? of the exterior (z* = (0,0,0)) and
interior (z* = (2,0,0)) Dirichlet problems in case of the cubic boundary when

go = vo.

Table 1 contains corresponding numerical solutions of the exterior problem
using the decomposition of the cube’s boundary into M = 1200 boundary
elements. As we can see, with increasing value of x the solutions are decreasing
rapidly when moving further from the boundary. Next, we examine the errors
of the numerical solutions of this problem with a fixed value of the parameter

K, for example, take kK = 2.

49



Y.A.MUZYCHUK

TaBL. 1. Numerical solutions u?(x) of the problem 1 for differ-
ent values of Kk

Value of the parameter s
x1 0.5 1.0 2.0 4.0 8.0
1.2 | 7483141071 | 6.75199 - 10~ T | 5.49666 - 10~ ' | 3.64214 - 10~ | 1.59908 - 10~ "
2.0 | 3.02031-107% | 1.82901 107! | 6.70731-1072 | 9.01743- 1072 | 1.62947-10~*
3.0 | 1.22230-107" | 4.49190- 1072 | 6.06765 - 102 | 1.10698 - 10~ | 3.68426 - 1078
4.0 | 5.56144 - 1072 | 1.23988 - 1072 | 6.16492 - 10* | 1.52428 - 107% | 9.29979 - 102

TABL. 2. Errors of the numerical solution u2(x) of the problem 1

Exterior problem Interior problem
M 5" eoc | €"(%) 5" eoc | €"(%)
300 | 0.01384 3.10 | 0.01324 2.99
588 | 0.00702 | 2.018 | 1.55 | 0.00673 | 2.012 | 1.50
768 | 0.00537 | 2.010 | 1.18 | 0.00515 | 2.005 | 1.14
972 | 0.00421 | 2.061 | 0.93 | 0.00404 | 2.058 | 0.90
1200 | 0.00340 | 2.030 | 0.75 | 0.00326 | 2.027 | 0.72
1728 | 0.00234 | 2.039 | 0.51 | 0.00225 | 2.037 | 0.50
2700 | 0.00149 | 2.033 | 0.33 | 0.00143 | 2.031 | 0.32

In order to find the dependency between the error of the numerical solution
and the parameter h that defines the triangulation of the boundary surface we

L -100%, where

- Hu0||L2<a,b)
(a,b) is an inverval in space from which the points of observation x are taken.
We will also calculate the value of the estimated order of convergence [19]

In § — In §hi+1

coc= In hj —In hj+1 ’

will consider the values 6" := ||uft —uo|| 2 (a,p) and el

(40)

where h; and hji1 are the parameters of the two consequent triangulations of
the boundary surface into boundary elements. Results of the calculations given
in table 2 highlight the equal orders of errors of the numerical solutions of the
interior and exterior problems. Moreover, the obtained result has eoc = 2.0.
Now lets demonstrate that the developed method gives us ability to find
components of the numerical solutions with other values of the indexes.

Example 2. Find N components of the numerical solution u?, 1 =0,N, of

the exterior Dirichlet problem (1), (2) if h; = v;, £ = 2 and z* = (0,0, 0).

Charts of the obtained numerical solutions are given on figure 1. They
demonstrate rapid decrease of the functions u?(x), 1 = 0,10, 20, with the in-
crease of their index. Numerical solutions obtained on M = 1200 boundary
elements are given in table 3 and indicate the commensurability of the errors
of components of the numerical solutions uf(z) when i = 10 and i = 20 with

the corresponding error of ul(x).
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TABL. 3. Solutions u?(az), 1 = 10,20 of the problem 2 when

M = 1200.

T uio(z) ufy(2) uzo () uy (x)

1.5 8.8570 - 10~2 9.0932-102 [ —7.6672- 102 | —7.5956 - 102
2.0 5.6502 - 102 5.6254 - 1072 4.0784 - 102 4.1496 - 102
30| —1.9676-10"2 | —1.9664-10"2 | —1.0549-10~2 | —1.0619 - 102
4.0 4.3413-1073 4.3359 - 1073 2.9939 - 103 3.0045 - 1073

1
0.5
E
-':‘S-a
0

FiG. 1. Charts of the components ult(z), uy(z), uby(z) of the
numerical solution of the problem 2 when M = 768

As it has been mentioned above, the Dirichlet problem (1), (2) can be ob-
tained by means of the application of the Laguerre transform by the time vari-
able to a certain class of linear evolutionary problems. For instance, the system
(1), that is mentioned in problems 1 and 2, can be obtained from a homoge-
neous wave equation with homogeneous boundary conditions. After finding for
some N the components u?, i = 0, N, the numerical solution of the mixed
problem can be given as a partial sum of the Laguerre-Fourier expansion

N
W (2, 1) = %Zuh(:v)Li(mf), (2,1) € OF x (0,00). (41)

7
1=0

To generate the data for the boundary conditions (2) we use a "spherical im-
pulse with a center at x*

St = |z — =)

t =
vlz,?) Arr|x — z*|

, (z,t) € QF x [0, 00), (42)

ol
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uN(x,t)
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Fia. 2. Chart of the solution of the problem 3 in the exterior
of the sphere with N =40, M = 720

where f is a cubical B-spline [12], and apply to it the Laguerre transform

vp(z) = /v(m,t) Li(xt) e "dt, x €T, k€ No. (43)

R4

Example 3. In the exterior Q of the unit sphere calculate the numerical
solution of the Dirichlet problem for the wave equation with homogeneous initial
conditions and the boundary condition defined by (42) at * = (0,0, 0).

Let the problem (1), (2) correspond to the initial-boundary value problem
3 when k = 2. After finding N = 40 components of the numerical solution
ué’, i = 0, N, with the use of M = 720 boundary elements, the numerical
solution of the problem 3 at the points along the axis Oz is calculated by the
formula (41). As it can be seen from the charts of the numerical solution, given
on the figure 2, the obtained results are well representing the physics of the
wave propagation from the boundary surface, especially, passing through the

observation points of the front and rear disturbance fronts.

Note that the formulation of the problem 3 gives us ability to find the coef-
ficients u;, @ € Np, of the expansion of the precise solution u(z,t) into series
(41) analytically. So it can be compared how the partial sums of the series (41)
with analytical coefficients and coefficients found by the suggested approach
approximate the precise solution of the evolution problem. As it can be see
from the table 4, values of such partial sums are pointwise (regarding the time
variable) close.

6. CONCLUSIONS
Application of the surface potentials built using the g¢-convolution opera-
tion is an effective way to obtain the integral representation of the solutions of
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TaBL. 4. Comparison of the numerical solution of the prob-
lem 3 u™N(x,t) (the row above) with the values of the partial
sum (41)(the row below), in which the coefficients are calculated
analytically

t T = 1.0 xr1 = 1.2 xr1 = 1.4 Tr1 = 1.6 Tr1 = 1.8 T = 2.0
0.0 | 0.00037 | 0.00043 | -0.00011 | 0.00013 | -0.00010 | -0.00013
0.00012 | -0.00034 | 0.00012 | 0.00000 | 0.00008 | -0.00004
0.4 | 0.01521 | 0.00136 | -0.00007 | -0.00006 | -0.00003 | -0.00002
0.01595 | 0.00178 | -0.00006 | -0.00004 | 0.00004 | 0.00001
1.2 | 0.41588 | 0.20541 | 0.08926 | 0.03234 | 0.00852 | 0.00100
0.42386 | 0.20880 | 0.09113 | 0.03376 | 0.00898 | 0.00100
2.0 | 0.99249 | 0.78406 | 0.57393 | 0.38364 | 0.23108 | 0.12327
0.99860 | 0.78846 | 0.57774 | 0.38853 | 0.23510 | 0.12553

boundary value problems for infinite systems of PDE with convolutional struc-
ture. Such approach makes it possible to reduce the boundary value problem
to an equivalent BIE system, develop efficient projection methods for its nu-
merical solution and justify their usage. The results of a series of numerical
experiments that confirm the theoretical statements and demonstrate the ap-
plicability of the proposed methods for modeling of evolutionary processes are
given.
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