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Ðåçþìå. Äëÿ ÷èñåëüíîãî ðîçâ'ÿçóâàííÿ êðàéîâèõ çàäà÷ äëÿ íåñêií÷åí-
íèõ ñèñòåì çi çãîðòêîâîþ ñòðóêòóðîþ, ÿêi ñêëàäàþòüñÿ ç åëiïòè÷íèõ ðiâ-
íÿíü äðóãîãî ïîðÿäêó, çàïðîïîíîâàíî ìåòîä ãðàíè÷íèõ åëåìåíòiâ. Ðîçâ'ÿ-
çîê ïîäàíî çà äîïîìîãîþ ïîñëiäîâíîñòi ïîòåíöiàëiâ ïðîñòîãî øàðó. Äëÿ
àïðîêñèìàöi¨ íåâiäîìèõ ãóñòèí ïîòåíöiàëiâ âèêîðèñòàíî áàçèñ, ÿêèé ñêëà-
äà¹òüñÿ ç êóñêîâî-ñòàëèõ áàçèñíèõ ôóíêöié, ïîáóäîâàíèõ íà òðèêóòíèõ
ãðàíè÷íèõ åëåìåíòàõ. Äîñëiäæåíî àïðiîðíi ïîõèáêè. Íàâåäåíî ðåçóëüòà-
òè ñåði¨ îá÷èñëþâàëüíèõ åêñïåðèìåíòiâ.
Abstract. For the numerical solution of boundary value problems for in�nite
systems with convolutional structure that consist of the second order elliptic
equations, a boundary elements method is suggested. The solution is given as
a sequence of single layer potentials. For the approximation of the unknown
densities of the potentials a basis that consists of piece-wise constant functions
built on triangular boundary elements is used. A priory error estimates are
obtained. Results of a series of computational experiments are given.

1. Introduction
Boundary value problems for in�nite systems that consist of elliptic partial

di�erential equations (PDEs) can be found while investigating solutions of lin-
ear evolution problems for instance in the following works [3, 6, 10, 15, 16, 21].
Note that in [14] the well-posedness of such problems has been proven by tran-
sitioning to the corresponding variational formulations. Integral representa-
tions of the solutions of these boundary value problems that lead to equivalent
boundary integral equations (BIEs) have been obtained. Properties of the BIEs
method for exterior problems have been studied by the author in [17].

The main goal of the current article is such transformation of the obtained
system of BIE that allows to e�ciently apply the Bubnov-Galerkin method to
it and prove its convergence. We also develop an algorithm for its solution by
the boundary elements method (BEM) and investigate the approximation error
of the obtained solution.

The paper is organized as follows. In Section 2 we formulate a Dirichlet BVP
for an in�nite triangular system of elliptic PDEs. We consider this problem in
appropriate Sobolev spaces and introduce a notion of sequences and a new
operation on them � q-convolution. In this section we also give an integral

Key words. Boundary value problems; boundary integral equations; elliptic equation; in�-
nite system; boundary element method; convolutional system.
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representation of the solution of the BVP by a combination of some surface
potentials which reduces the problem to a system of BIEs.

In Section 3 we transform the system of BIEs into such sequence of BIEs all
equations of which have the same boundary integral operator in the left hand
side. It allows us to justify the application of the Bubnov-Galerkin method
for �nding the unknown functions � densities of the potentials. Afterwards,
the main properties of the BEM and a priory error estimate of the numerical
solution are obtained. In Section 4 some computational aspects of the systems
of linear equations that appear as a result of the discretization of the BIEs are
considered. Results of a series of computational experiments for the numerical
solution of some model problems are given in Section 5. In this section an
example of the application of the suggested approach for the solution of an
initial-boundary value problem for the wave equation with homogeneous initial
conditions is given. In the last section conclusions about the introduced method
are given.

2. Formulation of the convolutional systems of PDE and BIE
Let Ω ⊂ R3 be a bounded and simply connected domain with a Lipschitz

boundary Γ and Ω+ := R3 \ Ω be an exterior domain. We consider an in�nite
system in Ω+





c0u0 −∆u0 = 0,
c1u0 + c0u1 −∆u1 = 0,
c2u0 + c1u1 + c0u2 −∆u2 = 0,

. . . . . . . . . . .
cku0 + ck−1u1 + ... + c0uk −∆uk = 0,

. . . . . . . . . . . . .

(1)

where u0, u1, ..., uk, ... are unknown functions, c0, c1, ..., ck, ... are some
given constants and c0 > 0. We investigate BVPs for system (1) that consist
in �nding its solutions that satisfy the Dirichlet condition on the boundary Γ

uk|Γ = g̃k, k ∈ N0 := N ∪ {0}), (2)

where g̃i (i ∈ N0) are given functions on Γ. In other words, we will consider
the Dirichlet problem (1), (2).

Let X be an arbitrary linear space over the �eld of real numbers, Z � the set
of integers. By X∞ we denote a linear space of mappings u : Z→ X satisfying
u(k) = 0 when k < 0. For any element u ∈ X∞ we have uk ≡ (u)k := u(k), k ∈
Z, and will write it as u := (u0, u1, ..., uk, ...)>. Henceforth we will call elements
of X∞ sequences.

Let Ẽ(x, y) =
(
Ẽ0(x, y), Ẽ1(x, y), ...

)>
, x, y ∈ R3, be a fundamental so-

lution of the system (1) and sequence E(x, y) = (E0(x, y), E1(x, y), ...)> is
calculated by the formula

Ei(x, y) := Ẽi(x, y)− Ẽi−1(x, y), i ∈ N, E0(x, y) = Ẽ0(x, y), x, y ∈ R3. (3)
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Note that E0(x, y) = e−
√

c0|x−y|
4π|x−y| . As for the other components see, for example,

[17].
Consider a sequence of functions Vξ(x) = (V0ξ(x), V1ξ(x), ...)> with com-

ponents

Vjξ(x) :=
(
Vjξ

)
(x) =

∫

Γ

ξ(y)Ej(x, y)dΓy, j ∈ N0, x ∈ R3, (4)

where ξ is a square integrable on Γ function. It is known [17] that sequence
u(x) = (u0(x), u1(x), ...)> built for an arbitrary sequence µ = (µ0, µ1, ...)>

of square integrable on Γ functions by the rule

ui(x) =
i∑

j=0

Vjµi−j(x), i ∈ N0, x ∈ R3, (5)

will satisfy the system (1). Then in order for the sequence u to be a solution
of the Dirichlet problem for the given sequence g = (g0, g1, ...)> it is enough
to �nd such sequence µ that would satisfy on Γ the following equalities





V0µ0 = g0,
V1µ0 + V0µ1 = g1,
V2µ0 + V1µ1 + V0µ2 = g2,

. . . . . . . . . . .
Vkµ0 + Vk−1µ1 + ... + V0µk = gk,

. . . . . . . . . . . . .

(6)

Lets introduce some notations. We will use the Lebesgue space L2(Ω+) and
Sobolev spaces H1(Ω+) of real-valued scalar functions. Let γ+

0 : H1(Ω+) →
H1/2(Γ) be the trace operator, H−1/2(Γ) :=

(
H−1/2(Γ)

)′ and 〈·, ·〉Γ denote the
duality between H−1/2(Γ) and H1/2(Γ).

De�nition 4. Let g ∈ (H1/2(Γ))∞. Sequence u ∈ (H1(Ω+))∞ is called a
generalized solution of the Dirichlet problem if it satis�es the system (1) in the
sense of distributions and the boundary condition (2) in the sense of traces.

De�nition 5 ( [10]). Let X, Y and Z be arbitrary linear spaces and q :
X × Y → Z � some mapping. By a q-convolution of sequences u ∈ X∞ and
v ∈ Y ∞ we understand a sequence w ∈ Z∞ whose components are de�ned by
the following rule

wi :=
i∑

j=0

q (ui−j , vj) , i ∈ N0, (7)

and denote it w = u ◦
q
v.

In case when X = H−1/2(Γ), Y = H1/2(Γ), Z = R and q(u, v) :=< u, v >Γ,
u ∈ H−1/2(Γ), v ∈ H1/2(Γ), for the components of the q-convolution of arbi-
trary sequences u ∈ (

H−1/2(Γ)
)∞ and v ∈ (

H1/2(Γ)
)∞ we have the following
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formula

wj =
j∑

i=0

< uj−i, vi >Γ, j ∈ N0, (8)

and write w := u ◦
Γ
v.

Another example of q-convolution is related to linear operators, when X =
L(Y, Z) is a space of linear operators that act from Y into Z, and q(A, v) := Av,
A ∈ L(Y, Z), v ∈ Y . In this case for the components of the q-convolution of
arbitrary sequences A ∈ (L(Y, Z)

)∞ and v ∈ Y ∞ we obtain the formula

wj =
j∑

i=0

Aj−ivi, j ∈ N0, (9)

and write w := A ◦
Z
v.

De�nition 6 ( [14]). Let V :
(
H−1/2(Γ)

)∞ → (
H1/2(Γ)

)∞ be a sequence
of operators that act by the rule (4), where we consider the inner product in
L2(Γ) extended to the duality on H−1/2(Γ)×H1/2(Γ) and µ ∈ (

H−1/2(Γ)
)∞.

Sequence
V ◦

H1/2(Γ)
µ(x) := (V ◦

H1/2(Γ)
µ)(x), x ∈ R3, (10)

is called a single layer potential of the system (1) on the surface Γ.
Using the introduced notations, we can rewrite the system (6) as

V ◦
H1/2(Γ)

µ = g on Γ. (11)

We will call systems of type (11) that can be represented by a q-convolution
systems with a convolutional structure. It is easy to see that the system of PDEs
(1) also has a convolutional structure since the expressions in it's left had side
(that are not related to the Laplacian) are components of the q-convolution of
sequences c and u.
Proposition 6 ( [14]). For an arbitrary sequence g ∈ l2(H1/2(Γ)) there exists
a unique generalized solution of the Dirichlet problem u ∈ l2(H1(Ω)). It can be
represented as a single layer potential (10) whose density µ ∈ l2(H−1/2(Γ)) is
a solution of the BIE (11).

3. Boundary Elements Method for BIE System
Triangular shape of system (11) is a consequence of the convolutional struc-

ture of (1) and the application of the q-convolution in the single layer potential
de�nition. Lets use this property to build a step-by-step process of the numer-
ical solution of the BIE (11). This system can be represented as a sequence of
Fredholm BIEs of the �rst kind:

V0µk = g̃k â H1/2(Γ), k ∈ N0, (12)
where

g̃k := gk −
k−1∑

i=0

Vk−iµi. (13)
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As you can see, the system is reduced to a sequence of equations that have
the form

V0η = f â H1/2(Γ). (14)
They have two important properties. First, the left-hand side of the integral
equation with an arbitrary index k ∈ N is de�ned by the same boundary
operator V0 and the right-hand side depends on the boundary condition data
and on the solutions of the equations with previous indexes i = 0, k − 1. Taking
these considerations into account during the the implementation of the method
makes it possible to build e�cient algorithms for the numerical solution of the
obtained sequence of BIEs (12) as well as for the computation of the solutions
of the boundary problem.

Another feature of the obtained system is that the boundary integral operator
on left-hand side of the equations corresponds to the elliptic operator c0I −∆,
where I is the identity operator, and is well studied in the literature (see,
e.g., [2, 4, 5, 13]). In our case, it gives us the opportunity not only to prove
the existence and the uniqueness of the solutions of the obtained sequence of
BIEs, but also to get the corresponding numerical solutions using BEM, which
is considered as a representative of the Bubnov-Galerkin method family [8]. A
large number of publications (see, e.g., the literature review in [9,20]) con�rms
the e�ectiveness and the versatility of this method regarding the numerical
solution of boundary value problems for di�erent types of elliptic equations
and systems of elliptic equations of smaller dimension.

Investigation of the solutions of BIE (14) and the approximation by the
Bubnov-Galerkin scheme is based on the ellipticity and the boundedness of the
operator V0:
〈V0η, η〉Γ ≥ c1||η||2H−1/2(Γ))

, ||V0η||H1/2(Γ)) ≤ c2||η||H−1/2(Γ)), ∀η ∈ H−1/2(Γ)),

where c1 > 0 and c2 > 0 are constants.
Consider a sequence of �nite-dimensional subspaces XM ⊂ H−1/2(Γ), M ∈

N, that are linear spans of functions {φi}M
i=1 that form a basis in XM . According

to the Bubnov-Galerkin method, we seek a numerical solution of the equation
(14) in the form of a linear combination

ηM :=
M∑

i=1

ηiφi ∈ XM (15)

as a solution of such variational problem
〈V0η

M , η〉Γ = 〈f, η〉Γ, ∀η ∈ XM . (16)
In order to �nd the vector of the unknown coe�cients η[M ] := {ηi}M

i=1 ∈ RM

lets take the basis functions φj as the test ones. Then from the variational
equations we obtain a system of linear algebraic equations (SLAE) regarding
the unknown coe�cients ηi:

V
[M ]
0 η[M ] = f[M ], (17)

where V
[M ]
0 [j, i] := 〈V0φi, φj〉Γ, f

[M ]
j := 〈f, φj〉Γ, i, j = 1,M .
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Note that the matrix of the obtained system if symmetric. Moreover, as
a result of the H−1/2(Γ)-ellipticity of the operator V0, it is positive de�nite.
Therefore, with an arbitrary right-hand side the system (17) will have a unique
solution i.e. ∀M ∈ N by using the Bubnov-Galerkin method we will get an
approximate solution of the equation (14). By the Cea lemma (see, e.g., [20,
Theorem 8.1]) such approximate solution satis�es the inequality

||ηM ||H−1/2(Γ) ≤ c1||f ||H1/2(Γ)), (18)
and there exists an estimate for its error

||η − ηM ||H−1/2(Γ) ≤
c2

c1
inf

ξ∈XM
||η − ξ||H−1/2(Γ). (19)

Hence the convergence in H−1/2(Γ) of the approximate solution ηM → η ∈
H−1/2(Γ) when M → ∞, where η is the solution of the corresponding BIE
in the sequence (12). Note that convergence of the numerical solution follows
from the approximation property of the trial space XM .

Lets speci�cate the numerical scheme (17) using the boundary elements
method [8, 19, 20]. Let Γ

M̃
=

⋃M̃
l=1 τ l be some approximation of the surface

Γ built by triangular boundary elements {τl}M̃
l=1 with vertices {x[l1], x[l2], x[l3]}

and h := max
l=1,M̃

( ∫
τl

ds

)1/2

� parameter of the approximation. We assume that

vertices of all triangles have global numeration {xk}M∗
k=1.

Lets build a set of linearly-independent on Γ
M̃

piece-wise constant functions{
ϕ0

l

}M

l=1
, M = M̃ :

ϕ0
l (x) =

{
1, x ∈ τl,
0, x /∈ τl.

(20)

We will consider �nite-dimensional spaces of functions S0
h(Γ) := XM =

span {ϕs
l }M

l=1, dimS0
h(Γ) = M as approximating spaces for the numerical scheme

(17).
Let the operator equation (14) correspond to some k-th equation of the

sequence (12). Its approximate (numerical) solution µh
k can be represented as

a linear combination of piece-wise constant functions:

µh
k =

M∑

l=1

µh
k,lϕ

0
l ∈ S0

h(Γ), k ∈ N0. (21)

Here
{

µh
k,l

}M

l=1
=: µh

k ∈ RM is a vector of unknown coe�cients that can be
found from the following system of algebraic equations:

Vh
0µh

k = g̃h
k , k ∈ N0. (22)

Matrix Vh
0 is a concrete representation of the matrix of the system (17). Its

elements can be given as

V h
0 [i, l] =

∫

τi

∫

τl

E0(x− y)dsydsx, i, l = 1,M, (23)
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and the components of the right-hand side vector in (22) have the following
form

g̃h
k [i] =

∫

τi

{
gk(x)−

k−1∑

j=0

(
Vk−jµ

h
j

)
(x)

}
dsx, j = 1,M. (24)

Sequence µh :=
(
µh

0 , µh
1 , ...

)> can be treated as a numerical solution of the
system of BIEs (12). After �nding the consequent solution µh

k of the algebraic
system (22), we can approximate the corresponding density element using the
formula (21) and calculate the k-th component of the numerical solution of the
Dirichlet problem at an arbitrary point x ∈ Ω+:

uh
k(x) =

k∑

j=0

(
Vk−jµ

h
j

)
(x), x ∈ Ω+. (25)

The sequence uh :=
(
uh

0 , uh
1 , ...

)> can be treated as a numerical solution of the
Dirichlet problem.

Lets �nd an apriory estimate for the error of its components after introducing
some Sobolev spaces [9]. Let the boundary Γ be given as a union Γ =

⋃Ñ
i=1 Γi

of surfaces Γi (Γi ∩Γj = ® when i 6= j) each of which has a su�ciently smooth
parameterization

Γi :=
{
x ∈ R3 : x = χ̃i(ξ), ξ ∈ τ̃i ⊂ R2

}
.

By using a set of non-negative functions φi ∈ C∞
0 (R3) such that

Ñ∑

i=1

φi(x) = 1 ∀x ∈ Γ, φi(x) = 0 ∀x ∈ Γ \ Γi,

each function v given on the boundary Γ can be written in a form

v(x) =
Ñ∑

i=1

φi(x)v(x) =
Ñ∑

i=1

vi(x) ∀x ∈ Γ, (26)

where vi(x) := φi(x)v(x) ∀x ∈ Γi. We consider the Sobolev spaces Hm(τ̃i)
when m ∈ N0, elements of which are functions ṽi(ξ) := vi(χ̃i(ξ)) when ξ ∈ τ̃i,
with a norm and a half-norm

||ṽi||Hm(τ̃i) :=
( ∑

|α|≤m

||∂αṽi||2L2(τ̃i)

)1/2

, |ṽi|Hm(τ̃i) :=
( ∑

|α|=m

|∂αṽi|2L2(τ̃i)

)1/2

,

(27)
correspondingly. Here ∂α is a notation of the partial derivative with a multi-
index α = (α1, α2). Then for the functions, given on the whole surface Γ, we
will use the Sobolev spaces Hm(Γ) with a norm and a half-norm

||v||Hm(Γ) :=
( Ñ∑

i=1

||ṽi||2Hm(τ̃i)

)1/2

, |v|Hm(Γ) :=
( Ñ∑

i=1

|ṽi|2Hm(τ̃i)

)1/2

, (28)

correspondingly.
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For non-integer values of the indexes s = m + σ, m ∈ N0, σ ∈ (0, 1),
we will use Sobolev-Slobodetski spaces Hs(τ̃i) and Hs(Γ) with corresponding
half-norms and norms

|ṽi|Hs(τ̃i) :=
( ∑

|α|=m

∫

τ̃i

∫

τ̃i

|∂αṽi(ξ)− ∂αṽi(η)|2
|ξ − η|2+2σ

dsξdsη

)1/2

,

||ṽi||Hs(τ̃i) :=
(
||ṽi||2Hm(τ̃i)

+ |ṽi|2Hs(τ̃i)

)1/2

,

|v|Hs(Γ) :=
( Ñ∑

i=1

|ṽi|2Hs(τ̃i)

)1/2

, ||v||Hs(Γ) :=
(
||v||2Hm(Γ) + |v|2Hs(Γ)

)1/2

,

(29)

and also spaces of piece-wise smooth functions
Hs

pw(Γ) :=
{
v ∈ L2(Γ) : v|Γi ∈ Hs(Γi)

}
, (30)

for which

||v||Hs
pw(Γ) :=

( Ñ∑

i=1

||v|Γi
||2Hs(Γi)

)1/2

, |v|Hs
pw(Γ) :=

( Ñ∑

i=1

|v|Γi
|2Hs(Γi)

)1/2

. (31)

Lemma 1. Let µ ∈ (
Hs

pw(Γ)
)∞ be a solution of the system (12) for some

s ∈ (0, 1], that satis�es the inequality
∞∑

j=0

|µj |Hs
pw(Γ) < +∞. (32)

Then for the components of the numerical solutions of the system of BIEs (12)
and the Dirichlet problem (1), (2) obtained by BEM the following asymptotic
estimates hold ∥∥∥µk − µh

k

∥∥∥
H−1/2(Γ)

≤ ckh
s+1/2|µk|Hs

pw(Γ), k ∈ N0, (33)

|uk(x)− uh
k(x)| ≤ c̃kh

s+1/2
k∑

j=0

|µj |Hs
pw(Γ), x ∈ Ω+, k ∈ N0, (34)

where ck and c̃k are some values that do not depend on the parameter h.

Proof. Validity of the statement regarding (33) directly follows from a known
theorem ( [7], [20, Theorem 12.3]).

A priory error of the k-th component of the numerical solution of the Dirichlet
problem at an arbitrary point x ∈ Ω+ can be given as

|uk(x)− uh
k(x)| = |

k∑

i=0

Vk−i

(
µi − µh

i

)
(x)| = ∣∣

k∑

i=0

〈(µi − µh
i

)
, Ek−i(x− ·) 〉Γ

∣∣.

Note, that for an arbitrary �xed point x ∈ Ω+ all the functions Ej(x − ·) are
in�nitely-di�erentiable and bounded together with all their derivatives on Γ,
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i.e.
∥∥Ej(x − ·)

∥∥
H1/2(Γ)

≤ c∗j = const. Using the generalized Cauchy-Schwarz
inequality, we get

|uk(x)− uh
k(x)| ≤

k∑

i=0

∣∣〈(µi − µh
i

)
, Ek−i(x− ·) 〉Γ

∣∣ ≤

≤
k∑

i=0

∥∥µi − µh
i

∥∥
H−1/2(Γ)

∥∥Ek−i(x− ·)
∥∥

H1/2(Γ)
.

Then, taking into account the inequality (33), we obtain

|uk(x)− uh
k(x)| ≤ hs+1/2

k∑

i=0

c∗k−ici|µi|Hs
pw(Γ) ≤ c̃kh

s+1/2
k∑

i=0

|µi|Hs
pw(Γ),

where c̃k = max
0≤i≤k

{c∗k−ici} does not depend on the parameter h. 2

4. Computational aspects of the method
E�ectiveness of the numerical solution of the Dirichlet problem depends in

great length on the approaches for the calculation of the surface potential in the
domain and the trace on the boundary. In practice, it means a combination of
algorithms for numerical integration and analytic calculation of some singular
integrals over the boundary elements.

If the point, at which the trace of the potentials mentioned above is cal-
culated, is not located on the boundary element over which the integration
is performed, then the kernels of these potentials are in�nitely-di�erentiable
functions on the corresponding boundary element. Hence, the calculation of
the majority of the elements in corresponding SLAE and also the components
of the numerical solution of the problem at the observational points can be
performed using numerical integration and the Gauss quadrature in particular.

Lets consider the calculation of integrals over singular functions that can be
obtained during the construction of the matrix of the SLAE and correspond to
the boundary operator V0 (23):

V h
0 [k, l] =

1
4π

∫

τk

∫

τl

e−
√

c0|x−y|

|x− y| dsydsx, k, l = 1,M. (35)

If the boundary elements τk and τl coincide or are adjacent then the integrand
of the internal integral has a weak singularity when the points x ∈ τk and y ∈ τl

coincide. It can be explicitly eliminated if the element of the matrix is given as

V h
0 [k, l] =

1
4π

∫

τk

∫

τl

e−
√

c0|x−y| − 1
|x− y| dsydsx +

1
4π

∫

τk

Il(x)dsx, (36)

where
Il(x) =

∫

τl

1
|x− y|dsy. (37)

Integrand of the �rst integral in (36) allows continuous de�nition at x = y (it
can be veri�ed if the exponential function is expanded in a Maclaurin series over
the variable r = |x− y|), so the value of this integral can be found numerically
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using the Gauss quadrature rules. The integral (37) can be found analytically
as a function [11,18�20], parameterized by the geometric data of the boundary
element τl and the coordinates of the point x.

In the integrals

V h
j [k, l] =

∫

τk

∫

τl

Ej(x, y)dsydsx, k, l = 1,M, j ∈ N, (38)

that correspond to the boundary operator Vj , j ∈ N, and are found during
the construction of the right-hand side, the integrands are continuous for any
location of the boundary elements τk and τl. Hence these integrals can also be
found numerically using the Gauss quadratures.

Note, that all relations of the suggested approach can be applied to interior
BVP without any changes.

5. Results of the computational experiment
Lets demonstrate the usage of the suggested method to �nd numerical solu-

tions of some model Dirichlet problems. We assume that in (1) and (2) compo-
nents of the sequences c and g have the form ck = (k+1)κ and gk = vk, k ∈ N0,
correspondingly, where κ is some parameter and the sequence v consists of func-
tions

vk(x) =
e−κ(|x−x∗|−1)

(
Lk(κ(|x− x∗|)− Lk−1(κ(|x− x∗|))

|x− x∗| , k ∈ N,

v0(x) =
e−κ(|x−x∗|−1)

|x− x∗| ,

(39)

parameterized by some point x∗, Lk, k ∈ N0, are the Laguerre polynomials [1].
Up to a factor the sequence v coincides with the fundamental solution of the
system (1), so it will be used to build the analytical solution of the Dirichlet
problem. Note, that the variable x will denote points on the boundary Γ and
in the domain where the numerical solution is sought, and the parameter x∗ is
located in the complement of this domain to the whole space R3.

We consider the following domains in the model problem: a unit sphere,
its exterior in R3, a cube Ω := (−1, 1) × (−1, 1) × (−1, 1) and its exterior
Ω+ := R3 \ Ω.

Lets consider �rst the model boundary value problems for the �rst equation
of the system (1).
Example 1. Find a numerical solution uh

0 of the exterior (x∗ = (0, 0, 0)) and
interior (x∗ = (2, 0, 0)) Dirichlet problems in case of the cubic boundary when
g0 = v0.

Table 1 contains corresponding numerical solutions of the exterior problem
using the decomposition of the cube's boundary into M = 1200 boundary
elements. As we can see, with increasing value of κ the solutions are decreasing
rapidly when moving further from the boundary. Next, we examine the errors
of the numerical solutions of this problem with a �xed value of the parameter
κ, for example, take κ = 2.
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Tabl. 1. Numerical solutions uh
0(x) of the problem 1 for di�er-

ent values of κ

Value of the parameter κ
x1 0.5 1.0 2.0 4.0 8.0

1.2 7.48314 · 10−1 6.75199 · 10−1 5.49666 · 10−1 3.64214 · 10−1 1.59908 · 10−1

2.0 3.02031 · 10−1 1.82901 · 10−1 6.70731 · 10−2 9.01743 · 10−3 1.62947 · 10−4

3.0 1.22230 · 10−1 4.49190 · 10−2 6.06765 · 10−3 1.10698 · 10−4 3.68426 · 10−8

4.0 5.56144 · 10−2 1.23988 · 10−2 6.16492 · 10−4 1.52428 · 10−6 9.29979 · 10−12

Tabl. 2. Errors of the numerical solution uh
0(x) of the problem 1

Exterior problem Interior problem
M δh eoc εh(%) δh eoc εh(%)
300 0.01384 3.10 0.01324 2.99
588 0.00702 2.018 1.55 0.00673 2.012 1.50
768 0.00537 2.010 1.18 0.00515 2.005 1.14
972 0.00421 2.061 0.93 0.00404 2.058 0.90

1200 0.00340 2.030 0.75 0.00326 2.027 0.72
1728 0.00234 2.039 0.51 0.00225 2.037 0.50
2700 0.00149 2.033 0.33 0.00143 2.031 0.32

In order to �nd the dependency between the error of the numerical solution
and the parameter h that de�nes the triangulation of the boundary surface we
will consider the values δh := ||uh

0−u0||L2(a,b) and εh := δh

||u0||L2(a,b)
·100%, where

(a, b) is an inverval in space from which the points of observation x are taken.
We will also calculate the value of the estimated order of convergence [19]

eoc :=
ln δhj − ln δhj+1

ln hj − ln hj+1
, (40)

where hj and hj+1 are the parameters of the two consequent triangulations of
the boundary surface into boundary elements. Results of the calculations given
in table 2 highlight the equal orders of errors of the numerical solutions of the
interior and exterior problems. Moreover, the obtained result has eoc ≈ 2.0.

Now lets demonstrate that the developed method gives us ability to �nd
components of the numerical solutions with other values of the indexes.
Example 2. Find N components of the numerical solution uh

i , i = 0, N, of
the exterior Dirichlet problem (1), (2) if h̃i = vi, κ = 2 and x∗ = (0, 0, 0).

Charts of the obtained numerical solutions are given on �gure 1. They
demonstrate rapid decrease of the functions uh

i (x), i = 0, 10, 20, with the in-
crease of their index. Numerical solutions obtained on M = 1200 boundary
elements are given in table 3 and indicate the commensurability of the errors
of components of the numerical solutions uh

i (x) when i = 10 and i = 20 with
the corresponding error of uh

0(x).
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Tabl. 3. Solutions uh
i (x), i = 10, 20 of the problem 2 when

M = 1200.

x1 u10(x) uh
10(x) u20(x) uh

20(x)
1.5 8.8570 · 10−2 9.0932 · 10−2 −7.6672 · 10−2 −7.5956 · 10−2

2.0 5.6502 · 10−2 5.6254 · 10−2 4.0784 · 10−2 4.1496 · 10−2

3.0 −1.9676 · 10−2 −1.9664 · 10−2 −1.0549 · 10−2 −1.0619 · 10−2

4.0 4.3413 · 10−3 4.3359 · 10−3 2.9939 · 10−3 3.0045 · 10−3

Fig. 1. Charts of the components uh
0(x), uh

10(x), uh
20(x) of the

numerical solution of the problem 2 when M = 768

As it has been mentioned above, the Dirichlet problem (1), (2) can be ob-
tained by means of the application of the Laguerre transform by the time vari-
able to a certain class of linear evolutionary problems. For instance, the system
(1), that is mentioned in problems 1 and 2, can be obtained from a homoge-
neous wave equation with homogeneous boundary conditions. After �nding for
some N the components uh

i , i = 0, N, the numerical solution of the mixed
problem can be given as a partial sum of the Laguerre-Fourier expansion

uh,N (x, t) =
1
κ

N∑

i=0

uh
i (x)Li(κt), (x, t) ∈ Ω+ × (0,∞). (41)

To generate the data for the boundary conditions (2) we use a �spherical im-
pulse� with a center at x∗

v(x, t) =
f(t− |x− x∗|)

4π|x− x∗| , (x, t) ∈ Ω+ × [0,∞), (42)
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Fig. 2. Chart of the solution of the problem 3 in the exterior
of the sphere with N = 40, M = 720

where f is a cubical β-spline [12], and apply to it the Laguerre transform

vk(x) =
∫

R+

v(x, t)Lk(κt) e−κtdt, x ∈ Γ, k ∈ N0. (43)

Example 3. In the exterior Ω+ of the unit sphere calculate the numerical
solution of the Dirichlet problem for the wave equation with homogeneous initial
conditions and the boundary condition de�ned by (42) at x∗ = (0, 0, 0).

Let the problem (1), (2) correspond to the initial-boundary value problem
3 when κ = 2. After �nding N = 40 components of the numerical solution
uh

i , i = 0, N, with the use of M = 720 boundary elements, the numerical
solution of the problem 3 at the points along the axis Ox1 is calculated by the
formula (41). As it can be seen from the charts of the numerical solution, given
on the �gure 2, the obtained results are well representing the physics of the
wave propagation from the boundary surface, especially, passing through the
observation points of the front and rear disturbance fronts.

Note that the formulation of the problem 3 gives us ability to �nd the coef-
�cients ui, i ∈ N0, of the expansion of the precise solution u(x, t) into series
(41) analytically. So it can be compared how the partial sums of the series (41)
with analytical coe�cients and coe�cients found by the suggested approach
approximate the precise solution of the evolution problem. As it can be see
from the table 4, values of such partial sums are pointwise (regarding the time
variable) close.

6. Conclusions
Application of the surface potentials built using the q-convolution opera-

tion is an e�ective way to obtain the integral representation of the solutions of
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Tabl. 4. Comparison of the numerical solution of the prob-
lem3 uh,N (x, t) (the row above) with the values of the partial
sum (41)(the row below), in which the coe�cients are calculated
analytically

t x1 = 1.0 x1 = 1.2 x1 = 1.4 x1 = 1.6 x1 = 1.8 x1 = 2.0
0.0 0.00037 0.00043 -0.00011 0.00013 -0.00010 -0.00013

0.00012 -0.00034 0.00012 0.00000 0.00008 -0.00004
0.4 0.01521 0.00136 -0.00007 -0.00006 -0.00003 -0.00002

0.01595 0.00178 -0.00006 -0.00004 0.00004 0.00001
1.2 0.41588 0.20541 0.08926 0.03234 0.00852 0.00100

0.42386 0.20880 0.09113 0.03376 0.00898 0.00100
2.0 0.99249 0.78406 0.57393 0.38364 0.23108 0.12327

0.99860 0.78846 0.57774 0.38853 0.23510 0.12553

boundary value problems for in�nite systems of PDE with convolutional struc-
ture. Such approach makes it possible to reduce the boundary value problem
to an equivalent BIE system, develop e�cient projection methods for its nu-
merical solution and justify their usage. The results of a series of numerical
experiments that con�rm the theoretical statements and demonstrate the ap-
plicability of the proposed methods for modeling of evolutionary processes are
given.
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