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Ðåçþìå. Äëÿ ðîçâ'ÿçóâàííÿ åêñïîíåíöiéíî íåêîðåêòíèõ çàäà÷ ðîçðîá-
ëåíî åêîíîìi÷íèé ïðîåêöiéíèé ìåòîä, ÿêèé ïîëÿãà¹ ó êîìáiíóâàííi ñòàí-
äàðòíîãî ìåòîäà Òiõîíîâà òà ïðèíöèïó íåâ'ÿçêè Ìîðîçîâà. Ïðè öüîìó
âñòàíîâëåíî, ùî çàïðîïîíîâàíèé àëãîðèòì çàáåçïå÷ó¹ îïòèìàëüíèé ïîðÿ-
äîê iíôîðìàöiéíî¨ ñêëàäíîñòi íà êëàñi äîñëiäæóâàíèõ çàäà÷.
Abstract. An economical projection method is developed for solving expo-
nentially ill-posed problems. The method consist in combination of the stan-
dard Tikhonov method and the Morozov discrepancy principle. Herewith, it
is established that this approach provides optimal order of information com-
plexity on the class of problems under consideration.

1. Introduction
The implicit (a posteriori) choice of the regularization parameter without any

information on smoothness of a desired solution is usually assume to be the key
issue in the theory of ill-posed problems. It is well-known, there are a lot of
di�erent rules of a regularization parameter choice among them we mention
discrepancy principle [6, 8, 9, 20], Gfrerer's method [3, 19], the monotone error
rule [27], the balancing principle [2, 4, 14, 25] which sometimes is called the
Lepskij principle. Nowadays, it is sure the discrepancy principle is the most
common one.

In the present paper that is extension of the research started in [23, 24]
the authors develop economical projection method for e�ective solving severely
ill-posed problems. As a regularization the standard Tikhonov method is ap-
plied. Unlike to above-mentioned works, the regularization parameter is chosen
a posteriori, namely, according with the balancing principle. Moreover, it is es-
tablished that a proposed strategy maintains optimal oder accuracy on the
class of problems under consideration, as well as provides oder estimates of the
information complexity.

The organization of the material is as follows: in Section 2 we give the state-
ment of the problem. Further in Section 3 the regularization and discretization
methods are described. Auxiliary statements and facts are in Section 4. An
algorithm of the regularization parameter choice by discrepancy principle is

Key words. Severely ill-posed problems; minimal radius of Galerkin information; dis-
crapency principle; information complexity.
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presented in Section 5. The combination of proposed methods allows to estab-
lished optimal order accuracy for solving equations from the class of problems
under research. Finally, in Section 6, the authors establish the main result.
Namely, the order estimate for the minimal radius of the Galerkin information
is obtained.

2. Statement of the problem
Following [23] we present the rough statement of the problem. Consider

Fredholm's integral equation of the �rst kind
Ax(t) = f(t), t ∈ [0, 1], (1)

with
Ax(t) =

∫ 1

0
a(t, τ)x(τ)dτ, (2)

acting continuously in L2 = L2(0, 1). Suppose that Range(A) is not closed in
L2 and f ∈ Range(A).

We also assume that a perturbation fδ ∈ L2 : ‖f − fδ‖ ≤ δ, δ > 0 is given
instead of the right-hand side of the equation (1).

The problem (1) is regarded as severely ill-posed problem if its solution has
substantially worse smoothness than a kernel a(·, τ) In such case it is nature to
assume that an exact solutions satis�es some logarithmic source condition, in
other words it belongs to the set

Mp(A) := {u : u = ln−p(A∗A)−1v, ‖v‖ ≤ ρ},
where p, ρ are some positive parameters and A∗ is adjoined operator to A. Such
problems are called exponentially ill-posed (see e.g. [5]).

Note, that the exact information about smoothness, namely, the parameter
p, is usually not available by practical experiment. For this reason the set

M(A) :=
⋃

p∈(0,p1]

Mp(A) (3)

is considered in place of Mp(A). Here p1 < ∞ is an upper bound for possible
values of p.

Within the framework of our researches we construct an approximation to
the exact solution x† (1), which has minimal norm in L2 and belongs to the set
M(A). From now on, we assume that a parameter p is unknown.

Let {ei}∞i=1 be some orthonormal basis in L2, and let Pm denotes the orthog-
onal projection onto span{e1, e2, . . . , em}

Pmϕ(t) =
m∑

i=1

(ϕ, ei)ei(t).

Consider the following class of operators (2):

Hr,s
γ = {A : ‖A‖ ≤ γ0,

∞∑

n+m=1

â2
n,m n2rm2s ≤ γ2

1}, r, s > 0, (4)
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where
ân,m =

∫ 1

0

∫ 1

0
en(t)a(t, τ)em(τ)dτdt,

γ0 ≤ e−
1
2 , γ = (γ0; γ1), n = 1 if n = 0 and n = n otherwise.

If the kernel a(t, τ) of A has mixed partial derivatives and the inequalities
∫ 1

0

∫ 1

0

[
∂i+ja(t; τ)

∂ti∂τ j

]2

dtdτ < ∞

hold for all i = 0, 1, . . . , r, j = 0, 1, . . . , s then it is known (see e.g. [16]), A ∈ Hr,s
γ

for some γ = (γ0, γ1).
From now on, class of equations (1) with operators belonging to Hr,s

γ (4)
and solutions from M(A) (3) will be denoted by (Hr,s

γ ,M(A)). In the present
paper we concentrate on the study of projection methods for solving equations
belonging to (Hr,s

γ , M(A)), r ≥ s.
A discretization projection scheme of equations (1) with the perturbed right-

hand side one can de�ne by means of a �nite set of the inner products
(Aej , ei), (i, j) ∈ Ω, (5)

(fδ, ek), k ∈ ω1, ω1 = {i : (i, j) ∈ Ω}, (6)
where Ω to be an bounded domain of the coordinate plane [1,∞) × [1,∞).
The inner products (5), (6) are used to call the Galerkin information about
(1). Here card(Ω) is the total number of the inner products (5). In particular,
if Ω = [1, n] × [1,m], then one deal with the standard Galerkin discretization
scheme, card(Ω) = n · m. Researches for various classes of ill-posed problems
related to such scheme of discretization were conducted in a number of works
among which we mention [7, 17,18].
De�nition 11. A projection method of solving (1) can be associated with
any mapping P = P(Ω) : L2 → L2 which by the Galerkin information (5),
(6) about (1) provides a correspondence between the right-hand side of the
equation being solved and an element P(AΩ)fδ ∈ L2, which is a polynomial
by the basis {ei}∞i=1 with harmonic numbers from ω2 := {j : (i, j) ∈ Ω}. This
element is taken as an approximate solution (1).

The error of the method P(Ω) on the class of equations (Hr,s
γ ,Mp(A)) is

de�ned as
eδ

(Hr,s
γ ,M(A),P(Ω)

)
= sup

A∈Hr,s
γ

sup
x†∈M(A)

sup
fδ:‖f−fδ‖≤δ

‖x† − P(AΩ)fδ‖.

The minimal radius of the Galerkin information is given by
RN,δ

(Hr,s
γ ,M(A)

)
= inf

Ω: card(Ω)≤N
inf
P(Ω)

eδ

(Hr,s
γ ,M(A),P(Ω)

)
.

This value describes the minimal possible accuracy (among all projection meth-
ods), while the Galerkin information amount are bound. Thus, RN,δ charac-
terizes information complexity on the class of problems (Hr,s

γ ,M(A)).
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It is easy to see, that such studies belong to the range of problems from
Information Based Complexity Theory. The fundamentals of this theory were
introduced in monographs [28, 29]. It should be noted that in recent years the
interest to such researches in the light of ill-posed problems is greatly increase.
In the work [18] �rst economical projection methods for solving moderately ill-
posed problems were constructed. The standard Galerkin scheme was employed
as discretization scheme. But �rst order estimates for complexity of moderately
ill-posed problems were obtained in [16, 21, 22]. The authors point to the fact
that optimal orders of such values are achieved under a modi�ed Galerkin
scheme that is called hyperbolic cross. The complexity of severely ill-posed
problems began to be study relatively recently. These researches are highlighted
in the series of works, we mention [7, 23,24].

In the present paper as opposite to above-mentioned one, an economical
projection scheme with a posteriori rule of regularization parameter choice will
be developed for solving severely ill-posed problems.

3. Regularization and discretization strategies
To guarantee stable approximations we apply the standard Tikhonov method.

By means of this method the rugularized solution xα is de�ned as the solution
of the variation problem

Iα(x) := ‖Ax− fδ‖2 + α‖x‖2 → min . (7)
For a numerical realization of the standard Tikhonov method it is necessary to
carry out all computations with �nite amount of input data. For that reason
the variation problem (7) is replaced by following

Iα,n(x) = ‖Anx− fδ‖2 + α‖x‖2 → min,

where An is some operator of the �nite rank.
The idea to apply the hyperbolic cross to operator equations of the second

kind belongs to S.V. Pereverzev and implements in the series of works (see
e.g. [10�13]). The e�ciency of the hyperbolic cross for ill-posed problems has
been demonstrated in [15, 16, 23]. Within the framework of our researches we
apply a projection scheme with Ω = Γa

n, where

Γa
n = {1} × [1; 22an]

2n⋃

k=1

(2k−1; 2k]× [1; 2(2n−k)a] ⊂ [1; 22n]× [1; 22an] (8)

is a hyperbolic cross on the coordinate plane by the basis {ei}∞i=1 involved in
the de�nition of the class Hr,s

γ . Here for r > s the parameter a is an arbitrary
real number such that 1 < a < r

s , and for a = 1 we set r = s. To simplify
computations we assume that ak are integer numbers. An approximate solution
one can �nd from an operator equation of the second kind

αx + A∗nAnx = A∗nfδ.

On other words, we seek an approximate solution x = xδ
α,n of the form

xδ
α,n = gα(A∗nAn)A∗nfδ, (9)
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where gα(λ) = (α + λ)−1, and

An = P1AP22an +
2n∑

k=1

(P2k − P2k−1) AP2(2n−k)a . (10)

Moreover we introduce following auxiliary elements

xα = gα(A∗A)A∗f, (11)

xα,n = gα(A∗nAn)A∗nf. (12)

4. Auxiliary results
In this Section we formulate some de�nitions and facts, and also the series

of auxiliary assertions which shell later need.
It is well-known (see e.g. [30]), that for any linear bounded operator A the

inequalities
‖(αI + A∗A)−1‖ ≤ α−1, ‖(αI + A∗A)−1A∗‖ ≤ 1

2
√

α
,

‖A(αI + A∗A)−1A∗‖ ≤ 1
(13)

hold.

Lemma 1. (see [30, p. 34]) If g to be bounded Borel measurable function on
[0; γ2

0 ], A ∈ L(L2, L2), ‖A‖ ≤ γ0, then
A∗g(AA∗) = g(A∗A)A∗,
Ag(A∗A) = g(AA∗)A.

(14)

Lemma 2. (see [20]) Let ‖A‖ ≤ γ0 ≤ e−1/2. Then for su�ciently small α ∈
(0, e−2p) it holds

‖Axα − f‖ ≤ γ−1
0 ρ

√
α ln−p 1/α,

where xα is determined by (11).

Lemma 3. (see [20]) Let ‖A‖ ≤ γ0 ≤ e−1/2, and α is such that

‖Axα − f‖ ≤ d
′
δ,

where d
′
> 0 is some positive constant. Then the estimate

‖x† − xα‖ ≤ ξ ln−p 1/δ

is ful�lled. The constant ξ > 0 depends only on d
′
, ρ and p.

Lemma 4. For any α > 0 and n ∈ N the estimate

‖Axα − f‖ ≤ ‖Anxδ
α,n − P22nfδ‖+

(‖(I − P22n)f‖2 + δ2
)1/2 +

5
4
ρ‖A−An‖

holds, where xα and xδ
α,n is determined by (11) and (9), respectively.
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Proof. First o� all, we note that
‖x†‖ = ‖ ln−p(A∗A)v‖ ≤ ρ sup

0<λ≤γ2
0

| ln−p 1/λ| ≤ ρ. (15)

Further, consider the decomposition
Axα − f = Anxδ

α,n − P22nfδ + S1 + S2,

where
S1 := − (I −Angα(A∗nAn)A∗n) (f − P22nfδ) ,

S2 := (Agα(A∗A)A∗ −Angα(A∗nAn)A∗n) f.

Now we are going to bound each term S1, S2. By (13), (14) we immediate �nd
‖S1‖ ≤ ‖I −An(αI + A∗nAn)−1A∗n‖‖f − P22nfδ‖ ≤

≤ ‖I − (αI + AnA∗n)−1AnA∗n‖‖(I − P22n)f + P22n(f − fδ)‖ ≤
≤ (‖ (I − P22n) f‖2 + δ2

) 1
2 .

It remains to estimate the norm of S2. First, rewrite S2 as follows
S2 = (Agα(A∗A)A∗ −Angα(A∗nAn)A∗n) f =

= α (αI + AnA∗n)−1 (AA∗ −AnA∗n) (αI + AA∗)−1 f = s1 + s2,

where
s1 := α (αI + AnA∗n)−1 (A−An) A∗ (αI + AA∗)−1 Ax†,

s2 := α (αI + AnA∗n)−1 An (A∗ −A∗n) (αI + AA∗)−1 Ax†.

Further, we bound norms of s1 and s2. By (13), (14) and (15) we obtain
‖s1‖ ≤ α‖ (αI + AnA∗n)−1 ‖‖A−An‖‖ (αI + A∗A)−1 A∗A‖‖x†‖ ≤

≤ ρ‖A−An‖,
‖s2‖ ≤ α‖ (αI + AnA∗n)−1 An‖‖A∗ −A∗n‖‖ (αI + AA∗)−1 A‖‖x†‖ ≤

≤ ρ

4
‖A−An‖.

Thus,
‖S2‖ ≤ ‖s1‖+ ‖s2‖ ≤ 5ρ

4
‖A−An‖.

Summing up the above bounds, we �nally get
‖Axα − f‖ ≤ ‖Anxδ

α,n − P22nfδ‖+
+

(‖(I − P22n)f‖2 + δ2
)1/2 +

5ρ

4
‖A−An‖.

The lemma is proved. 2

Lemma 5. The two-side estimates
22nn < card(Γ1

n) ≤ 2 · 22nn, r = s,

η122an ≤ card(Γa
n) ≤ η222an, r > s,

(16)

are hold, with η1 = 1 + 1−23(1−a)

1−21−a , η2 = 2−21−a

1−21−a .
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Proof. From (8) it follows

card(Γa
n) =

2n∑

k=0

card(Qk),

where

Qk =

{
(2k−1; 2k]× [1; 2(2n−k)a], k = 1, 2, . . . , 2n

{1} × [1; 22an], k = 0
,

and we obtain

card(Γa
n) = 22an +

1
2

2n∑

k=1

2k2(2n−k)a.

Further, consider two cases. It is obvious that for r = s it holds

card(Γ1
n) = 22n +

1
2

2n∑

k=1

22n = 22n (1 + n) = 22nn

(
1 +

1
n

)
.

Hence,
22nn < card(Γ1

n) ≤ 2 · 22nn.

When r > s the sequence {card(Qk)}2n
k=1 is the geometric progression with the

quotient 21−a, and the relation

card(Γa
n) = 22an

(
1 +

1
2

2n∑

k=1

2k(1−a)

)

is hold. It follows that

card(Γa
n) =

1
2
22an

(
1 +

2n∑

k=0

2k(1−a)

)
=

1
2
22an

(
1 +

1− 2(1−a)(2n+1)

1− 2(1−a)

)
.

Further, we obtain lower and upper bounds for the bracketed expression:

1 +
1− 2(1−a)(2n+1)

1− 2(1−a)
=

2− 21−a
(
1 + 2(1−a)2n

)

1− 21−a
≤ 2− 21−a

1− 21−a
,

1 +
1− 2(1−a)(2n+1)

1− 2(1−a)
≥ 1 +

1− 23(1−a)

1− 21−a
.

Thus, �nally we get(
1 +

1− 23(1−a)

1− 21−a

)
22an ≤ card(Γa

n) ≤ 2− 21−a

1− 21−a
22an.

The statement of the lemma is proved. 2

It is known (see. [21]), that for any A ∈ Hr,s
γ the inequality

‖A−An‖ ≤ εr,s(n) (17)
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is ful�lled, where

εr,s(n) =

{
γ12r+1/2√n2−2rn, r = s

γ1

(
1 + 2r

1−2as−r

)
2−2nas, r > s

.

5. Error estimate of the algorithm
5.1. Algorithm (Discrepancy principle as stop rule). Let us �x θ ∈ (0, 1)
and α0 ∈ (0, 1]. We are going to choose the regularization parameter α according
with the rule

α ∈ ∆θ(δ) = { α : α = αm := α0θ
m, m = 0, 1, 2, . . . , α ∈ (δ2, α0]}, (18)

and the discretization parameter n as follows

εr,s(n) =
4
5ρ

δ. (19)

Now, we describe proposed algorithm with the discrepancy principle as a
stop rule concerning to studied problem.

1. Input data: A ∈ Hr,s
γ , fδ, δ, ρ.

2. To construct An (10) and P22nfδ we compute the inner products (5), (6).
3. The cycle: m = 1, 2, . . . , M, α = αm = α0θ

m.
An approximate solution xδ

αm,n (9) is computed by solving the equation

αmxδ
αm,n + A∗nAnxδ

αm,n = AnA∗fδ.

The cycle is running as long as stop rule conditions will be meet.
4. The stop rule (the discrepancy principle)

‖Anxδ
αM ,n − P22nfδ‖ ≤ dδ, (20)

‖Anxδ
αm,n − P22nfδ‖ > dδ, (21)

with m < M, d >
√

2 + 1, and xδ
αM ,n is determined by (9).

Introduced projection method (10), (18)�(21) we denoted as P ‘.

Lemma 6. Let αM such that the conditions (20) and (21) are satis�ed with
d >

√
2 + 1, and the parameter n in (10) is chosen as (19). Then there are the

constants d1, d2 > 0, that the two-side estimate
d1δ ≤ ‖AxαM − f‖ ≤ d2δ

is ful�lled.

Proof. First, note that by (17) and (19) it holds
5ρ

4
‖A−An‖ ≤ δ,

‖(I − P22n)f‖ ≤ δ. (22)
If αM meets the condition (20) then

‖AngαM (A∗nAn)A∗nfδ − P22nfδ‖ ≤ dδ,
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and applying Lemma 4 we obtain
‖AxαM − f‖ ≤ dδ +

√
2δ2 + δ = (d +

√
2 + 1)δ.

At the same time, kipping in mind (21), for α = αM−1 we have
‖AngαM−1(A

∗
nAn)A∗nfδ − P22nfδ‖ > dδ. (23)

Owing to the inverse triangle rule it holds
‖AxαM−1 − f‖ ≥ ‖AngαM−1(A

∗
nAn)A∗nfδ − P22nfδ‖ − (

√
2 + 1)δ. (24)

By spectral decomposition of the operator A we get

‖AxαM − f‖2 =
∞∑

k=1

λ2
k ln−2p λ−2

k (v, ψk)2
[

λ2
k

αM + λ2
k

− 1
]2

=

= α2
M

∞∑

k=1

λ2
k(

αM + λ2
k

)2 ln−2p λ−2
k (v, ψk)2 >

> θ2α2
M−1

∞∑

k=1

λ2
k(

αM−1 + λ2
k

)2 ln−2p λ−2
k (v, ψk)2.

Hence,
‖AxαM − f‖2 > θ2‖AxαM−1 − f‖2. (25)

Substituting (23) and (24) in (25), we �nally obtain
‖AxαM − f‖ ≥ θ(d−

√
2− 1)δ.

Thus, the lemma is proved with d1 = θ(d−√2− 1)δ and d2 = θ(d +
√

2 + 1)δ.

5.2. Error estimate of the algorithm P ′.
Theorem 1. Let ‖A‖ ≤ γ0 ≤ e−1/2, the parameters of regularization αM and
discretization n are chosen as in (20) and (19), correspondingly. Than the
estimate

‖x† − xδ
αM ,n‖ ≤ c̃ ln−p 1/δ (26)

holds, where the constant c̃ > 0 only depends on γ0, d1, d2, ρ and p; xδ
αM ,n is

determined by (9).
Proof. It is obvious that

‖x† − xδ
αM ,n‖ ≤ ‖x† − xαM‖+ ‖xαM − xαM ,n‖+ ‖xαM ,n − xδ

αM ,n‖.
Owing to 3 for the �rst term we have

‖x† − xαM‖ ≤ ξ ln−p 1/δ.

By applying (13) the last term is immediately bounded

‖xαM ,n − xδ
αM ,n‖ = ‖(αMI + A∗nAn)−1A∗n(f − fδ)‖ ≤ δ

2
√

αM
.

Finally, we need to estimate the second term. First, consider the decomposition
xαM − xαM ,n = (αMI + A∗A)−1A∗Ax† − (αMI + A∗nAn)−1A∗nAx† =

= T1x
† + T2x

†,
(27)
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where
T1 := (αMI + A∗A)−1A∗A− (αMI + A∗nAn)−1A∗nAn,

T2 := (αMI + A∗nAn)−1A∗n(An −A).

By (13), (19) and (17) we have

‖T2‖ ≤ 1
2
√

αM

4
5ρ

δ =
2
5ρ

δ√
αM

.

It is remain to estimate ‖T1‖. Due to (14), we rewrite T1 as follows
T1 = αM (αMI + A∗A)−1 (A∗A−A∗nAn) (αMI + A∗nAn)−1 = T 1 + T 2,

where
T 1 := αM (αMI + A∗A)−1 A∗ (A−An) (αMI + A∗nAn)−1 ,

T 2 := αM (αMI + A∗A)−1 (A∗ −A∗n) An (αMI + A∗nAn)−1 .

Further, we estimate the norms of T 1 and T 2. Owing to (13), (19) and (17) the
norm of T 1 is immediately bounded as

‖T 1‖ ≤ 2
5ρ

δ√
αM

.

Now, we are going to estimate the norm of T 2. By (14) we have
T 2 = αM (αMI + A∗A)−1 (A∗ −A∗n) (αMI + AnA∗n)−1 An.

Applying (13), (19) and (17), we obtain

‖T 2‖ ≤ 2
5ρ

δ√
αM

.

Hence,
‖T1‖ ≤ ‖T 1‖+ ‖T 2‖ ≤ 4

5ρ

δ√
αM

.

Thus,
‖xαM − xαM ,n‖ ≤ 6

5
δ√
αM

.

Summing up the above bounds we �nally get

‖x† − xδ
αM ,n‖ ≤ ξ ln−p 1/δ +

6
5

δ√
αM

+
1
2

δ√
αM

≤ ξ ln−p 1/δ +
17
10

δ√
αM

.

Further, if αM is chosen as in (20) and the inequality αM ≥ δ holds then for
su�ciently small δ we have

‖x† − xδ
αM ,n‖ ≤ ξ ln−p 1/δ +

17
10

√
δ ≤ c̃1 ln−p 1/δ,

with c̃1 = ξ + 17
10 .

Otherwise, if αM ≤ δ then by Lemma 2 and Lemma 6 we get
d1δ ≤ ‖AxαM − f‖ ≤ γ−1

0 ρ
√

αM ln−p 1/αM ≤ γ−1
0 ρ

√
αM ln−p 1/δ.
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Thus,

‖x† − xδ
αM ,n‖ ≤ ξ ln−p 1/δ +

17
10

γ−1
0 ρ

d1
ln−p 1/δ = c̃2 ln−p 1/δ,

where c̃2 = ξ + 17
10

γ−1
0 ρ
d1

. The theorem is proved with c̃ = max{c̃1, c̃2}. 2

6. Minimal radius of Galerkin's information. Optimal order
estimate

Theorem 2. For su�ciently small δ the estimate

RN,δ

(Hr,s
γ ,M(A)

) ≤ eδ

(
Hr,s

γ M(A),P ‘
)
≤ cp ln−p N2s

is ful�lled, where cp > 0 depends only on γ, r, s, d1, d2, ρ and p. Moreover,

card(Γa
n) ³





δ−
1
r (ln δ−1)1+ 1

2r , r = s,

delta−
1
s , r > s.

Proof. Rewrite the right-hand side of (26) by N, where

N =





c′1n22n, r = s,

c′22
2an, r > s,

1 < c′1 ≤ 2, 1 + 1−23(1−a)

1−21−a ≤ c′2 ≤ 2−21−a

1−21−a (see Lemma 5). Further, we
consider two cases.

First, let r = s. Owing to (16),(19) we have

δ−1 =
4

5ρc1
n−1/222rn =

4(c′1)
−r

5ρc1
N rn−

1
2
−r, (28)

with c1 = γ12r+1/2. It is easy to see that ln N = ln c′1 + 2n ln 2 + lnn. It follows
n ≤ ln N

2 ln 2 . Kipping in the mind the last inequality, from (28) we obtain the
lower bound of δ−1

δ−1 ≥ 4(c′1)
−r(2 ln 2)1/2+r

5ρc1
N r(lnN)−1/2−r.

For any µ > 0 there are some N0 that for all N ≥ N0 it holds lnN ≤ Nµ.
Hence,

δ−1 ≥ 4(c′1)
−r(2 ln 2)1/2+r

5ρc1
N rNµ(−1/2−r) =

=
4(c′1)

−r(2 ln 2)1/2+r

5ρc2
N (1−µ)r− 1

2
µ.

There are always exist µ such that (1 − µ)r − 1
2µ > 0, and the estimate (26)

we can rewrite as follows
‖x† − xδ

αM ,n‖ ≤ cp,1 ln−p N2r. (29)
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Now, we are going to consider the case r > s. Using the same arguments as
above, by (16) and (19) we have

δ−1 =
4

5ρc2
22asn =

4(c′2)
−s

5ρc2
N s, (30)

where
c2 = γ1

(
1 +

2r

1− 2as−r

)
.

In this case the estimate (26) we rewrite as follows
‖x† − xδ

αM ,n‖ ≤ cp,2 ln−p N2s. (31)
Taking into account the de�nition RN,δ (Hr,s

γ ,M(A)) , and also the relations
(29) and (31) we have

RN,δ

(Hr,s
γ ,M(A)

) ≤ ‖x† − xδ
αM ,n‖ ≤ cp ln−p N2s,

where cp = max{cp,1, cp,2}.
It is remain to express the amount card(Γa

n) by δ. Let consider the two cases.
First let r = s, then

card(Γ1
n) := N ³ 22nn = (

√
n2−2sn)−

1
s n1+ 1

2s ³ δ−
1
s (ln δ−1)1+ 1

2s .

2) Now let r > s, then
card(Γa

n) := N ³ 22an = (2−2asn)−
1
s ³ δ−

1
s .

Thus, summing up obtained estimates of card(Γa
n), we have

card(Γa
n) ³





δ−
1
r (ln δ−1)1+ 1

2r , r = s

δ−
1
s , r > s

.

The statement of the theorem is completely proved. 2

Below we formulate a result giving the order estimate of the minimal radius
of the Galerkin information.

Theorem 3. The two-side estimate
1

2p+1
ln−p N2s ≤ RN,δ

(Hr,s
γ , M(A)

) ≤ cp ln−p N2s

holds. The indicate optimal order is achieved under the algorithm P ‘ (10),
(18)�(21).

The lower bound for RN,δ is established in [26], and the upper estimate was
obtained in Theorem 2.
Remark 4. Comparing results of Theorem 3 to that of [26], where the balancing
principle was applied as stop rule, we can conclude that both approaches are
achieved an optimal order of accuracy. Moreover, the proposed algorithm allows
to provide order estimates on more wide classes of problems. Herewith, we
reduce the amount of the Galerkin information (on the logarithmic multiplier)
when r = s.
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