
Æóðíàë îá÷èñëþâàëüíî¨ 2016
òà ïðèêëàäíî¨ ìàòåìàòèêè �2 (122)

Journal of Numerical
& Applied Mathematics

UDC 519.6

NUMERICAL SOLUTION OF LORD-SHULMAN
THERMOPIEZOELECTRICITY FORCED

VIBRATIONS PROBLEM

V.V. Stelmashchuk, H.A. Shynkarenko

Ðåçþìå. Ìè ðîçãëÿäà¹ìî ìîäåëü òåðìîï'¹çîåëåêòðèêè Ëîðäà-Øóëüìàíà
(LS). Äëÿ ïî÷àòêîâî-êðàéîâî¨ çàäà÷i LS-òåðìîï'¹çîåëåêòðèêè ôîðìóëþ-
¹òüñÿ âiäïîâiäíà âàðiàöiéíà çàäà÷à. Äàëi ðîçãëÿäàþòüñÿ âèìóøåíi êîëè-
âàííÿ ïiðîåëåêòðèêà i âàðiàöiéíà çàäà÷à ïåðåïèñó¹òüñÿ ó ñïåöiàëüíîìó
âèãëÿäi äëÿ öüîãî îêðåìîãî âèïàäêó. Äîâîäèòüñÿ êîðåêòíiñòü îñòàííüî¨
âàðiàöiéíî¨ çàäà÷i. Ç âèêîðèñòàííÿì äèñêðåòèçàöi¨ Ãàëüîðêiíà áóäó¹òüñÿ
÷èñåëüíà ñõåìà äëÿ ðîçâ`ÿçóâàííÿ öi¹¨ âàðiàöiéíî¨ çàäà÷i. Ïèòàííÿ çáiæ-
íîñòi öi¹¨ ñõåìè òàêîæ ðîçãëÿíóòi â öié ñòàòòi. Çðåøòîþ, ïðîâîäèòüñÿ
÷èñåëüíèé åêñïåðèìåíò, ÿêèé äîáðå iëþñòðó¹ âïëèâ ïàðàìåòðà "÷àñó ðå-
ëàêñàöi¨" íà îòðèìàíi ðîçâ`ÿçêè.
Abstract. We consider the Lord-Shulman (LS) model of thermopiezoelec-
tricity. Variational formulation is constructed for the initial boundary value
problem of LS-thermopiezoelectricity. Then forced vibrations of pyroelectric
specimen are considered and the variational problem is rewritten in the special
form for that particular case. Well-posedness of the latter variational prob-
lem is proved. Then using Galerkin semidiscretization a numerical scheme
for solving this variational problem is built. The questions of convergence of
this scheme are also covered in this article. Finally, a numerical experiment
is performed, which perfectly illustrates the in�uence of "relaxation time"
parameter on the obtained solutions.

1. Introduction
Nowadays piezoelectric and pyroelectric materials are widely utilized in vari-

ous modern devices such as sensors, actuators, transducers, etc [14]. The classic
theory of linear thermopiezoelectricity was introduced by Mindlin [12]. The fur-
ther study of the theory was performed by Nowacki [13]. The main drawback of
the classic theory is the assumption of in�nite speed of propagation of thermal
signals in the piezoelectric specimen. To overcome this, Lord and Shulman [10]
proposed a modi�ed theory of thermoelasticity (LS-theory), where the clas-
sic Fourier' law of heat conduction is replaced by Maxwell-Cattaneo equation
with introduction of so-called "relaxation time". Chandrasekharaiah was the
�rst researcher to apply the LS-theory to thermopiezoelectricity [5]. Later a
set of generalization theories for thermoelasticity and thermopiezoelectricity

Key words. generalized thermopiezoelectricity; Lord-Shulman model; PZT-4 ceramics;
thermoelectromechanical waves; harmonic forced vibrations; Galerkin method; �nite element
method.
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was developed, for example Green-Lindsay, Chandrasekharaiah-Tzou, Green-
Naghdi, etc. A good review of the existing generalization theories can be found
in [1], [6], [8], [9]. Di�erent methods were used by researchers to obtain the solu-
tions of the generalized thermopiezoelectricity problem, see [2], [3], [7], [15], [20].

Forced vibrations of pyroelectrics is the special case of the thermopiezoelec-
tricity problem and was studied under the classic (Mindlin`s) theory in [11], [21]
and [22]. In our previous work [19], we utilized our �nite-element-based numer-
ical scheme for solving forced vibrations problem under classic thermopiezo-
electricity theory and developed an adaptive algorithm for obtaining solution
with a preset level of accuracy. The goal of the present research is to construct
a similar FEM-based numerical scheme for forced vibrations problem under
LS-thermopiezoelectricity theory.

2. Problem statement
The theory of thermopiezoelectricity describes the coupled interaction of me-

chanical, electrical and thermal �elds in pyroelectric material.
Suppose the piezoelectric specimen occupies a bounded domain Ω in Eu-

clidean space Rd, d = 1, 2, or 3 with continuous by Lipschitz boundary Γ with
unit external normal vector n = {ni}d

i=1, where ni = cos(n, xi). According
to the classic theory (see [12, 13, 16, 17]), we need to �nd elastic displacement
vector u = u(x, t), electric potential p = p(x, t) and temperature increment
θ = θ(x, t), which satisfy the following equations:

ρu′′i − σij,j = ρfi, (1)
D′

k,k + Jk,k = 0, (2)
ρ(T0S

′ − w) + qi,i = 0, (3)
namely, equation of motion, di�erentiated Maxwell`s equation and generalized
heat equation respectively, where fi is a vector of volume mechanical forces
and w represents volume heat forces. Here the constitutive equations for stress
tensor

σij = cijkm[εkm − αkmθ]− ekijEk, (4)
electric displacement vector

Dk = ekijεij + χkmEm + πkθ, (5)
and entropy density

ρS = cijkmαkmεij + πkEk + ρcv

T0
θ (6)

are used.
Vector Jk is the electrical current density, generated by a free electrical charge

density. We assume that pyroelectric material is not an ideal dielectric, and the
electric current runs through the pyroelectric specimen and satis�es standard
Ohm`s law, i.e.

Jk = zkmEm(p). (7)
Heat �ux vector q = q(x, t) is assumed to satisfy the standard Fourier`s law:

qi = −λijθ,j . (8)
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Strain tensor εkm and electrical �eld vector Ek are assumed to satisfy the
relations

εkm = εkm(u) = 1
2(uk,m + um,k),

Ek = Ek(p) = −p,k,
(9)

where comma in the subscript stands for the partial derivative by the spatial
variable, i. e. g,k = −∂g/∂xk.

The other symbols in the above equations represent the material properties
of pyroelectric medium: cijkm is an elasticity coe�cients tensor with common
properties of symmetry and ellipticity, that is:

cijkm = cjikm = ckmij ,
cijkmκijκkm ≥ c0κijκkm, c0 = const > 0, ∀κij = κji ∈ R,

(10)

αij is a thermal expansion tensor with similar properties
αij = αji,
αijξiξj ≥ α0ξiξj , α0 = const > 0, ∀ξi ∈ R,

(11)

ekij ia a piezoelectricity tensor with properties:
ekij = ekji, (12)

χij is a dielectric permittivity tensor with properties
χij = χji,
χijξiξj ≥ χ0ξiξi, χ0 = const > 0, ∀ξi ∈ R,

(13)

πk are the pyroelectric coe�cients, which are assumed to satisfy the following
inequality, mentioned in [13]

χkmykym + 2πkykξ + ρcvξ
2 ≥ 0, ∀ξ, yk ∈ R, (14)

zkm is the electrical conductivity tensor with common properties of symmetry
and ellipticity, λij is a symmetrical elliptic heat conductivity tensor, ρ, cv and
T0 represent a mass density, speci�c heat and a �xed uniform reference tem-
perature of a piezoelectric specimen, respectively. Here and everywhere below
the ordinary summation by repetitive indices is expected.

To take into account a viscosity e�ect in pyroelectric materials, we modify
the constitutive equation (4) for stress σij by adding the term proportional to
strain velocity. Therefore, the stress-relation now looks in the following way:

σij = cijkm[εkm − αkmθ]− ekijEk + aijkmε′km, (15)
where aijkm is a viscosity coe�cients tensor with common properties of sym-
metry and ellipticity.

To characterize the interaction of piezoelectric specimen with the environ-
ment, we must consider the boundary conditions. The boundary conditions for
mechanical and heat �elds are:{

ui = 0 on Γu × [0, T ], Γu ⊂ Γ,mes(Γu) > 0,
σijnj = σ̂i on Γσ × [0, T ], Γσ := Γ \ Γu,

(16)
{

θ = 0 on Γθ × [0, T ], Γθ ⊂ Γ,mes(Γθ) > 0,
qini = q̂ on Γq × [0, T ], Γq := Γ \ Γθ.

(17)

108



NUMERICAL SOLUTION OF LS-THERMOPIEZOELECTRICITY ...

Note that nonuniform boundary conditions on parts Γu and Γθ can be always
transformed into uniform ones.

Similarly, the boundary conditions at the interface between the pyroelectric
specimen and an ideal dielectric can be described in the following way:[

D′
k + Jk

]
nk = 0 on Γd, Γd ⊂ Γ. (18)

Many pyroelectric materials and devices are operated under high electric �eld,
which is applied through surface electrodes. We suppose that the electrode
has a constant electric potential pe on its surface, and is soft enough, so that it
does not transfer any mechanical loadings. In this case we consider the following
boundary conditions

p = 0 on Γp × [0, T ], Γp ⊂ Γ,mes(Γp) > 0 (grounded electrode), (19)
and { ∫

Γe

[D′
k + Jk] nkdγ = I,

p = const on Γe, Γe = Γ \ (Γd ∩ Γp),
(20)

where I de�nes the external electrical current.
In order to terminate the formulation of initial boundary value problem of

classic piezothermoelectricity, we consider the initial conditions
u|t=0 = u0, u′|t=0 = v0, p|t=0 = p0, θ|t=0 = θ0 in Ω. (21)

The aforementioned mathematical model of thermopiezoelectricity was consid-
ered in [16,17], where its well-posedness is proved. Also a �nite element based
numerical scheme for solving this problem was constructed and the results of
numerical experiments are described in [4, 18].

In present work, instead of (8), we use modi�ed Fourier`s law (also known as
Maxwell-Cattaneo equation):

τq′i + qi = −λijθ,j . (22)
Here the parameter τ > 0 is so-called "relaxation time". This assumption
ensures �nite speeds of heat wave propagation and was �rstly introduced by
Lord and Shulman in [10] and was �rstly applied to thermopiezoelectricity
theory by Chandrasekharaiah in [5]. Also, for convenience, similar to how
Chandrasekharaiah did in [5], we introduce arti�cial coe�cients bij in the way
that the following condition is held:

T0bijλjm = δim, where δim are the elements of the unit matrix, (23)
and they satisfy ellipticity conditions:

bijyiyj ≥ 0 ∀yi, yj ∈ R. (24)
Then the modi�ed Fourier`s law can be rewritten in the following form:

τbijq
′
i + bijqi = −T−1

0 θ,j . (25)
Using Maxwell-Cattaneo equation (22) implies, that for Lord-Shulman theory
a heat �ux q is an additional independent variable. Therefore, the initial con-
ditions (21) must be rewritten into:

u|t=0 = u0, u′|t=0 = v0, p|t=0 = p0, θ|t=0 = θ0, q|t=0 = q0 in Ω. (26)
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Thus, the equations (1)-(3), (5)-(7), (9), (15) and (25) together with bound-
ary conditions (16)-(20) and initial conditions (26) de�ne the Lord-Shulman
mathematical model of thermopiezoelectricity (initial boundary value problem
of LS-thermopiezo-electricity).

3. Variational problem
Let us introduce the spaces of admissible elactic displacements, electric po-

tentials, temperature increments and heat �uxes respectively:
V =

{
v ∈ [H1(Ω)]d|v = 0 on Γu

}
,

X =
{
ξ ∈ H1(Ω)|ξ = 0 on Γp, ξ = const on Γe

}
Y =

{
η ∈ H1(Ω)|η = 0 on Γθ

}
,

Z =
{
ζ ∈ [L2(Ω)]d

}
,

(27)

and notations
Φ = V ×X × Y × Z, Φ1 = V ×X × Y, G = L2(Ω), H = Gd. (28)

Here symbol Hm(Ω) means a standard Sobolev space.
After applying the principle of virtual works to initial boundary value prob-

lem of LS-thermopiezoelectricity, we obtain the following variational problem:



given ψ0 = (u0, p0, θ0, q0) ∈ Φ, v0 ∈ H and (l, r, µ) ∈ L2(0, T ; Φ′);
�nd ψ = (u, p, θ, q) ∈ L2(0, T ; Φ) such that
m(u′′(t), v) + a(u′(t), v) + c(u(t), v)− e(p(t), v)−

−γ(θ(t), v) =< l(t), v >,
χ(p′(t), ξ) + e(ξ,u′(t)) + z(p(t), ξ) + π(θ′(t), ξ) =< r(t), ξ >,
s(θ′(t), η) + π(η, p′(t)) + γ(η, u′(t))− g(q(t), η) =< µ(t), η >,
τb(q′(t), ζ) + b(q(t), ζ) + g(ζ, θ(t)) = 0 ∀ t ∈ (0, T ] ,
m(u′(0)− v0, v) = 0, c(u(0)− u0, v) = 0 ∀v ∈ V,
χ(p(0)− p0, ξ) = 0 ∀ξ ∈ X,
s(θ(0)− θ0, η) = 0 ∀η ∈ Y,
b(q(0)− q0, ζ) = 0 ∀ζ ∈ Z

(29)

The introduced bilinear and linear forms are as follows:
m(u, v) :=

∫
Ω

ρuividx =
∫
Ω

ρu.vdx, a(u,v) :=
∫
Ω

aijkmεij(u)εkm(v)dx,

c(u, v) :=
∫
Ω

cijkmεij(u)εkm(v)dx, < l,v >:=
∫
Ω

ρfividx +
∫
Γσ

σ̂ividγ,

γ(ξ,v) :=
∫
Ω

ξcijkmαkmεijv)dx,

e(ξ, v) :=
∫
Ω

ekijEk(ξ)εij(v)dx ∀u, v ∈ V,

χ(p, ξ) :=
∫
Ω

χkmEk(p)Em(ξ)dx, z(p, ξ) :=
∫
Ω

zkmEk(p)Em(ξ)dx,

< r, ξ >:= Iξ|Γe ∀p, ξ ∈ X,
π(η, ξ) =

∫
Ω

ηπkEk(ξ)dx, s(θ, η) =
∫
Ω

ρcvT
−1
0 θηdx,

< µ, η >:=
∫
Ω

T−1
0 ρwηdx− ∫

Γh

T−1
0 ĥηdγ ∀η, θ ∈ Y,

b(q, ζ) =
∫
Ω

bijqiζjdx, g(ζ, η) =
∫
Ω

T−1
0 ζkη,kdx ∀q, ζ ∈ Z.

(30)
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Now suppose the harmonic loadings with angular frequency ω > 0 are applied
to the piezoelectric specimen:

l(t) = (l1 + il2)e−iωt,
r(t) = (r1 + ir2)e−iωt,
µ(t) = (µ1 + iµ2)e−iωt, ∀ t ∈ (0, T ].

(31)

Then we can look for approximate solutions of problem (29) in the form of the
following expansions:

u(x, t) ∼= (u1(x) + iu2(x))e−iωt,
p(x, t) ∼= (p1(x) + ip2(x))e−iωt,
θ(x, t) ∼= (θ1(x) + iθ2(x))e−iωt,
q(x, t) ∼= (q1(x) + iq2(x))e−iωt,

(32)

where u1(x), u2(x), p1(x), p2(x), θ1(x), θ2(x) and q1(x), q2(x) are the un-
known amplitudes of mechanical displacement, electric potential, temperature
increment and heat �ux respectively.

After substitution of (31) and (32) into (29) and neglection of its initial
conditions, we obtain the variational problem for forced harmonic vibrations of
piezoelectric specimen:





given ω > 0, (l1, l2, r1, r2, µ1, µ2, 0, 0) ∈ W ′ = Φ′ × Φ′;
�nd ψ = (u1, p1, θ1, q1, u2, p2, θ2, q2) ∈ W = Φ× Φ such that
−ω2m(u1,v2) + ωa(u2,v2) + c(u1, v2)− e(p1, v2)−

−γ(θ1,v2) =< l1, v2 >,
−ω2m(u2,v1)− ωa(u1,v1) + c(u2, v1)− e(p2, v1)−

−γ(θ2,v1) =< l2, v1 >,
ωχ(p2, ξ1) + ωe(ξ1,u2) + z(p1, ξ1) + ωπ(θ2, ξ1) =< r1, ξ1 >,
−ωχ(p1, ξ2)− ωe(ξ2, u1) + z(p2, ξ2)− ωπ(θ1, ξ2) =< r2, ξ2 >,
ωs(θ2, η1) + ωπ(η1, p2) + ωγ(η1, u2)− g(q1, η1) =< µ1, η1 >,
−ωs(θ1, η2)− ωπ(η2, p1)− ωγ(η2, u1)− g(q2, η2) =< µ2, η2 >,
ωτb(q2, ζ1) + b(q1, ζ1) + g(ζ1, θ1) = 0,
−ωτb(q1, ζ2) + b(q2, ζ2) + g(ζ2, θ2) = 0

∀ w = (v1, ξ1, η1, ζ1, v2, ξ2, η2, ζ2, ) ∈ W.

(33)

Having added all the equations of the problem (33), we introduce the bilinear
form Πω : W ×W → R and linear form χω : W → R in the following way:

Πω(ψ, w) = −ω2[m(u1, v2)−m(u2,v1)]+
+ω[a(u1, v1) + a(u2, v2)] + [c(u1, v2)− c(u2, v1)]+
+[e(p2,v1)− e(p1, v2) + e(ξ1, u2)− e(ξ2, u1)]+
+[γ(θ2, v1)− γ(θ1, v2) + γ(η1, u2)− γ(η2, u1)]+
+[π(θ2, ξ1)− π(θ1, ξ2) + π(η1, p2)− π(η2, p1)]+
+[χ(p2, ξ1)− χ(p1, ξ2)] + ω−1[z(p1, ξ1) + z(p2, ξ2)]+
+[s(θ2, η1)− s(θ1, η2)]+
+ω−1[g(ζ1, θ1) + g(ζ2, θ2)− g(q1, η1)− g(q2, η2)]+
+τ [b(q2, ζ1)− b(q1, ζ2)] + ω−1[b(q1, ζ1) + b(q2, ζ2)]

∀ ψ = (u1, p1, θ1, q1,u2, p2, θ2, q2) ∈ W,
∀ w = (v1, ξ1, η1, ζ1,v2, ξ2, η2, ζ2, ) ∈ W.

(34)
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< χω, w >= − < l2, v1 > +ω−1[< r1, ξ1 > + < µ1, η1 >]+
+ < l1,v2 > +ω−1[< r2, ξ2 > + < µ2, η2 >]

∀ w = (v1, ξ1, η1, ζ1, v2, ξ2, η2, ζ2, ) ∈ W.
(35)

Then variational problem for forced harmonic vibrations of pyroelectric can
be rewritten as follows:




given ω > 0, χω ∈ W ′ = Φ′ × Φ′;
�nd ψ = (u1, p1, θ1, q1, u2, p2, θ2, q2) ∈ W = Φ× Φ such that
Πω(ψ, w) =< χω, w > ∀ w = (v1, ξ1, η1, ζ1,v2, ξ2, η2, ζ2) ∈ W.

(36)

4. Well-posedness of the variational problem
Theorem 1. Let us de�ne the bilinear form k(·, ·) as follows:

k(θ, η) =
∫

Ω

T−1
0 Λ∇θ∇ηdx, (37)

where Λ = {λij} is matrix of thermal conductivity coe�cients. Then the below
equality is held:

(1 + ω2τ2)[b(q1, q1) + b(q2, q2)] = k(θ1, θ1) + k(θ2, θ2), (38)
where q1, q2, θ1, θ2 are the solutions of variational problems (33) and (36),
de�ning amplitudes of heat �ux and temperature increment correspondingly.

Proof.
The modi�ed Fourier law

τq′ + q = −Λ∇θ (39)
is rewritten for the case of harmonic vibrations:

−iωτ(q1 + iq2)e−iwt + (q1 + iq2)e−iwt = −Λ(∇θ1 + i∇θ2)e−iwt. (40)
The expression (40) is then splitted into real and imaginary parts. As a result,
we obtain:

q1 + ωτq2 = −Λ∇θ1,
q2 − ωτq1 = −Λ∇θ2.

(41)

After multiplying equations of (41) by T−1
0 ∇θ1 and T−1

0 ∇θ2 respectively and
integration over the domain Ω we get:

g(q1 + ωτq2, θ1) = −k(θ1, θ1),
g(q2 − ωτq1, θ2) = −k(θ2, θ2).

(42)

Then two last equations of the variational problem (33) are considered and
a substitution of admissible functions ζ1 = q1 + ωτq2 and ζ2 = q2 − ωτq1 is
performed respectively:

ωτb(q2, ζ1) + b(q1, ζ1) + g(ζ1, θ1) = 0, ζ1 = q1 + ωτq2,
−ωτb(q1, ζ2) + b(q2, ζ2) + g(ζ2, θ2) = 0, ζ2 = q2 − ωτq1.

(43)

After simplifying the �rst equation of (43) with taking into account the relations
(42) we obtain:

ωτb(q2, q1 + ωτq2) + b(q1, q1 + ωτq2) + g(q1 + ωτq2, θ1) = 0,
b(q1 + ωτq2, q1 + ωτq2) = k(θ1, θ1).

(44)
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Similarly, simplifying the second equation of (43) with taking into account the
relations (42) we get:

−ωτb(q1, q2 − ωτq1) + b(q2, q2 − ωτq1) + g(q2 − ωτq1, θ2) = 0,
b(q2 − ωτq1, q2 − ωτq1) = k(θ2, θ2).

(45)

The last equations of the relations (44) and (45) can be rewritten in the fol-
lowing way:

b(q1, q1) + 2ωτb(q1, q2) + ω2τ2b(q2, q2) = k(θ1, θ1),
ω2τ2b(q1, q1)− 2ωτb(q1, q2) + b(q2, q2) = k(θ2, θ2).

(46)

After summarizing these 2 equations of (46) we obtain:
(1 + ω2τ2)[b(q1, q1) + b(q2, q2)] = k(θ1, θ1) + k(θ2, θ2). (47)

2

Let us introduce a scalar product on the space W in the following way:

((y, w)) =
2∑

i=1
[a(ui, vi) + z(pi, ξi) + 1

2b(qi, ζi) + 1
2(1+ω2τ2)

k(θi, ηi)]

∀ y = (u1, p1, θ1, q1, u2, p2, θ2, q2) ∈ W,
∀ w = (v1, ξ1, η1, ζ1,v2, ξ2, η2, ζ2, ) ∈ W.

(48)

We also introduce a norm generated by the scalar product (48):
|||y|||2 = (y, y) ∀y ∈ W. (49)

Then the following estimations are easy noticed:
|Πω(y, w)| ≤ M1(ω)|||y||| · |||w|||,
M1(ω) = C max{ω−1, 1, ω, ω2}, ∀y, w ∈ W,

(50)

and
| < χω, w > | ≤ M2(ω)||χω||∗ · |||w|||,
M2(ω) = C max{ω−1, 1}, ∀w ∈ W.

(51)

Here and everywhere the symbol C means a positive constant value, which is
not dependent on solutions of variational problem (36).

Consider now the expression for Πω(w,w):
Πω(w,w) = −ω2[m(u1, u2)−m(u2, u1)]+
+ω[a(u1,u1) + a(u2, u2)] + [c(u1, u2)− c(u2, u1)]+
+[e(p2, u1)− e(p1, u2) + e(p1, u2)− e(p2,u1)]+
+[γ(θ2, u1)− γ(θ1,u2) + γ(θ1, u2)− γ(θ2, u1)]+
+[π(θ2, p1)− π(θ1, p2) + π(θ1, p2)− π(θ2, p1)]+
+[χ(p2, p1)− χ(p1, p2)]+
+ω−1[z(p1, p1) + z(p2, p2)] + [s(θ2, θ1)− s(θ1, θ2)]+
+ω−1[g(q1, θ1) + g(q2, θ2)− g(q1, θ1)− g(q2, θ2)]+
+τ [b(q2, q1)− b(q1, q2)] + ω−1[b(q1, q1) + b(q2, q2)] =

=
2∑

i=1
[ωa(ui, ui) + ω−1z(pi, pi) + ω−1b(qi, qi)] =

=
2∑

i=1
[ωa(ui, ui) + ω−1z(pi, pi)+

+ω−1(1
2b(qi, qi) + 1

2(1+ω2τ2)
k(θi, θi))] ≥ α(ω) · |||w|||2,

(52)
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where α(ω) = min{ω−1, ω} ∀w ∈ W.
Since the statements (50 - 52) are held and they are actually the conditions

of Lions-Lax-Milgram theorem, the following theorem is then proved:
Theorem 2. For each w > 0 and τ > 0 variational problem (36 ) has a unique
solution ψ ∈ W , which satisfy the relation:

|||ψ||| ≤ α−1(ω)M2(ω)||χω||∗. (53)

5. Galerkin discretization
Galerkin scheme makes a transition of the solution of variational problem

(33) from space W := Φ×Φ to its �nite-dimensional subspace Wh := Φh×Φh,
Φh ⊂ Φ, dimWh = N(h) < +∞. Thus, discretized variational problem (36)
looks in the following way:




given angular frequency ω > 0, χω ∈ W
′
,

approximations space Wh ⊂ W, dimWh < +∞;
�nd vector ψh = (u1h, u2h, p1h, p2h, θ1h, θ2h, q1h, q2h) ∈ Wh

such that Πω(ψh, ϕ) =< χω, ϕ > ∀ ϕ ∈ Wh.

(54)

Since problem (36) is well-posed, the same applies to its discretized counterpart
(54).

In the space W we select some basis functions {wi}∞i=1. For each natural
number m ≥ 1, h = 1/m a sequence of approximation spaces Wh and operators
of orthogonal projection Prh : W → Wh are de�ned so that a set {wi}m

i=1 is a
base of Wh, ((ψ − Prh ψ,w)) = 0 ∀ ψ ∈ W , ∀ wh ∈ Wh.

Now variational problem (36) is replaced by a sequence of the following
problems:




given ω > 0, χω ∈ W ′and h > 0, Wh ⊂ W, dimWh = m < +∞;
�nd vector ψh ∈ Wh such that
Πω(ψh, w) =< χω, w > ∀w ∈ Wh.

(55)

Theorem 3. Let ψ ∈ W be a solution of problem (36) with parameter ω >
0. Then a sequence of Galerkin approximations {ψh} ⊂ W is unambiguously
de�ned by the solutions of problems (55) and has the following properties:

||ψ − ψh||W ≤ α−1M1(ω) inf
w∈Wh

||ψ − w||W ∀ h > 0; (56)

lim
h→0

||ψ − ψh||W = 0. (57)

Proof. The correctness of the inequality (56) is based on the fact that
Πω(ψ − ψh, w) = 0 ∀ w ∈ Wh,

and the estimation
α||ψ − ψh||2W ≤ Πω(ψ − ψh, ψ − ψh) = Πω(ψ − ψh, ψ − w) ≤
≤ M1(ω)||ψ − ψh||W ||ψ − w||W ∀ w ∈ Wh.

Taking into account the density of sequence of spaces {Wh} in the separable
space W

lim
h→0

||w − Prhw||W = 0 ∀ w ∈ W.
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Therefore, basing on the equality

inf
w∈Wh

||ψ − w||W = ||ψ − Pr
h

ψ||W

and (56) we can conclude the correctness of (57), when ω > 0. 2

Theorem 4. on the convergence of FEM approximations.
Let ψ ∈ W be a solution of problem (36) and exists a natural number k ≥ 1

such that ψ ∈ W ∩[Hk+1(Ω)]2(d+1). Let approximations ψh be de�ned by solving
problem (55) in the spaces Wh ⊂ W , which are constructed with making use of
piecewise-polynomial functions of FEM and have the following property:

for each ϕ ∈ W ∩ [Hk+1(Ω)]2(d+1), k ≥ 1 there exist ϕh ∈ Wh and C =
const > 0 such that ‖ϕ − ϕh‖m,Ω ≤ C · hk+1−m‖ϕ‖k+1,Ω, 0 ≤ m ≤ k, where
h is the diameter of �nite element mesh and k is the greatest degree of full
polynomial of d variables, which is precisely de�ned by basis functions of Wh

on each �nite element.
Then the convergence of sequence ψh ⊂ W is characterized by the estimation

‖ψ − ψh‖ ≤ C · hk||ψ||k+1,Ω, (58)

where C = const > 0 is not dependent on values we are looking for.

Proof. The estimation (58) is implied from the inequality (56), the equiva-
lence of norms || · ||W and || · ||1,Ω on W and the density properties de�ned in
the theorem body.

‖ψ − ψh‖W ≤ α−1M1(ω) inf
w∈Wh

‖ψ − w‖ = ‖ψ − w‖1,Ω ≤ C · hk||ψ||k+1,Ω

2

Let us now pay a deeper attention to the aforementioned selection of �nite-
dimensional subspace Wh ∈ W . Taking into account the de�nition of Wh that
is Wh = Vh ×Xh × Yh × Zh × Vh ×Xh × Yh × Zh, where

Vh ⊂ V, Xh ⊂ X, Yh ⊂ Y, Zh ⊂ Z,
dimVh < +∞, dimXh < +∞, dimYh < +∞, dimZh < +∞.

(59)

we can write the expansions of solution amplitudes as following:

uαh '
N∑

i=0
UαφV

i (x),

pαh '
N∑

i=0
PαφX

i (x),

θαh '
N∑

i=0
ΘαφY

i (x),

qαh '
N∑

i=0
QαφZ

i (x), α = 1, 2,

(60)

where φV
i (x), φX

i (x), φY
i (x) and φZ

i (x) are the basis functions of spaces V, X, Y
and Z respectively. Then we obtain the system of linear equations for �nding
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nodal values of the unknown amplitudes:



ωA −[−ω2M + C] 0 ET 0 Y T 0 0

[−ω2M + C] ωA −ET 0 −Y T 0 0 0

0 E ω−1Z ωX 0 ΠT 0 0

−E 0 −X ω−1Z −ΠT 0 0 0

0 Y 0 Π 0 S −ω−1GT 0

−Y 0 −Π 0 −S 0 0 −ω−1GT

0 0 0 0 ω−1G 0 ω−1B τB

0 0 0 0 0 ω−1G −τB ω−1B




·

· [U1,U2, P1, P2,Θ1,Θ2, Q1, Q2]T =
=

[−L2, L1, ω−1R1, ω−1R2, ω−1F1, ω−1F2, 0, 0
]T

.
(61)

Here the elements of the matrices and vectors are computed using the bilin-
ear and linear forms de�ned in (30), for example A = {aij} = {a(φV

i , φV
j )}.

The matrix of the system of equations (61) is positively de�ned, but not the
symmetric one. More precisely, it can be represented as the sum of positively
de�ned symmetric matrix and a skew-symmetric one.

6. Numerical experiments
We consider a piezoelectric bar with length L = 10−8m made of PZT-4

ceramics.A harmonic thermal loading with angular frequency ω = 3 · 106rad/s
is applied to the right edge of the bar. So, the boundary conditions for thermal
�eld are:

θ1(0) = 0K, θ1(L) = 273K, θ2(0) = 0K, θ2(L) = 0K. (62)
On the left edge of the bar the boundary conditions for mechanical and electric
�elds are homogeneous and of Dirichlet type :

u1(0) = 0m, u2(0) = 0m, p1(0) = 0V, p2(0) = 0V. (63)
On the right edge of the bar the boundary conditions for mechanical and electric
�elds are homogeneous and of Neumann type :

σ1(L) = 0N ·m−2, σ2(L) = 0N ·m−2, J1(L) = 0A, J2(L) = 0A. (64)
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Fig. 3. Amplitude of heat �ux component q2 for the PZT-4 bar
for relaxation times τ = 10−10, 8 · 10−11, 5 · 10−11, 10−11, 10−12s

We take the coe�cients of PZT-4 as in [20]:

ρ = 7500[kg/m3]
cv = 350[J/kg ·K]
λ = 1.1[W/m ·K]
c = 115× 109[N/m2]

e = 15.1[C/m2]
π = 2.7× 10−4[C/K ·m2]
χ = 6.46× 10−9[C2/N ·m2]
α = 3.13× 10−5[K−1]

Also we take z = 5 × 10−12[Ω−1 ·m−1], a = 40[m2 · s−1] and T0 = 298[K].
As mentioned in [20], the value of the relaxation time τ for PZT-4 cannot
be found in the literature. However, the relation time τ is determined for
di�erent type of materials, ranging from 10−10 for gases to 10−14 for metals.
Therefore, in our numerical experiments we will use the values of relaxation
time τ = 10−10, 8 · 10−11, 5 · 10−11, 10−11, 10−12s. For discretization by spatial
variable we divide the interval [0, L] into N = 256 �nite elements with piecewise
linear solution approximations on them.

Fig. 1 shows that under these boundary conditions and angular frequency
ω = 3 ·106rad ·s−1 the calculated temperature increment θ1 is changing linearly
along the bar, regardless of the value of relaxation time τ . Fig. 2 depicts the
calculated amplitude θ2 of the temperature increment. It is also not dependent
on the value of relaxation time τ .

On the other hand, as Fig.3 shows, the amplitude of heat �ux q2 is depen-
dent on the parameter τ . It worth mentioning, that the amplitude calculated
with τ = 10−12s is almost identical to the one obtained as a solution of the
classical thermopiezoelectricity problem for forced harmonic vibrations (when
no modi�ed Fourier law is taken into account).

7. Conclusions
The harmonic vibrations of the pyroelectric materials have been studied un-

der generalized Lord-Shulman thermopiezoelectricity theory. The variational
problem for this special case has been formulated and its well-posedness has
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been proved. Then the discretization of the problem using Galerkin-method has
been performed. The �nite element method has been utilized to construct the
bases of approximation spaces of the discretized problem. The rate of conver-
gence of FEM-approximations has been determined. After the discretization we
obtain the system of linear algebraic equations with positively de�ned matrix in
its left part. Therefore, we can be sure that the solution of that system always
exists. The numerical experiment of applying a harmonic thermal loading to
the pyroelectric bar has been set up and studied. The results of the experi-
ment showed the signi�cant in�uence of the "relaxation time" parameter on
the nodal values of solution amplitudes.
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