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NUMERICAL SOLUTION OF LORD-SHULMAN
THERMOPIEZOELECTRICITY FORCED
VIBRATIONS PROBLEM

V.V.STELMASHCHUK, H. A. SHYNKARENKO

PE3IOME. Mu po3srasmaemo Mozess Tepmorn €3oesektpuku Jlopaa-Ilymsmana
(LS). Odma nmowarkoBo-kpaiiosoi 3amaai LS-repmon’e3oerekrpukn dbopmystro-
€ThCd BIMOBiIHA BapialiiiHa 3amava. Jlasi po3risaaoThCs BUMYTIEHI KOJIH-
BaHHS MIPOEJEKTPUKA 1 BapiarmiiiHa 3a/1a4a NEPENUCYEThCS Y CHEIlaJIbHOMY
BUIVISl ISl IHOTO OKPEMOro BHUHAKY. [lOBOAUTHCS KOPEKTHICTH OCTAHHBOI
Bapiamiiinol 3amaqi. 3 BUKOpHMCTAHHSAM JucKperum3ariil [ajgpopkina Oymyernes
qrce/IbHA CX€Ma JjIs pO3B‘si3yBaHHs €l Bapiamiiaol 3amaqi. [Iuramms 30ixk-
HOCTI I1i€] CXeMU TaKOXK PO3IJIAHYTI B Lill cTarTi. 3penrTtor, IPOBOAUTHCSH
YKMCE/IbHUN €KCTIEPUMEHT, KUl J100pe 1TI0CTPpy€e BIUIMB TapaMeTpa 'Jacy pe-
makcanii" Ha OTpuMaHi pO3B‘A3KM.

ABSTRACT. We consider the Lord-Shulman (LS) model of thermopiezoelec-
tricity. Variational formulation is constructed for the initial boundary value
problem of LS-thermopiezoelectricity. Then forced vibrations of pyroelectric
specimen are considered and the variational problem is rewritten in the special
form for that particular case. Well-posedness of the latter variational prob-
lem is proved. Then using Galerkin semidiscretization a numerical scheme
for solving this variational problem is built. The questions of convergence of
this scheme are also covered in this article. Finally, a numerical experiment
is performed, which perfectly illustrates the influence of "relaxation time"
parameter on the obtained solutions.

1. INTRODUCTION

Nowadays piezoelectric and pyroelectric materials are widely utilized in vari-
ous modern devices such as sensors, actuators, transducers, etc [14]. The classic
theory of linear thermopiezoelectricity was introduced by Mindlin [12]|. The fur-
ther study of the theory was performed by Nowacki [13]. The main drawback of
the classic theory is the assumption of infinite speed of propagation of thermal
signals in the piezoelectric specimen. To overcome this, Lord and Shulman [10]
proposed a modified theory of thermoelasticity (LS-theory), where the clas-
sic Fourier’ law of heat conduction is replaced by Maxwell-Cattaneo equation
with introduction of so-called "relaxation time". Chandrasekharaiah was the
first researcher to apply the LS-theory to thermopiezoelectricity [5]. Later a
set of generalization theories for thermoelasticity and thermopiezoelectricity
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was developed, for example Green-Lindsay, Chandrasekharaiah-Tzou, Green-
Naghdi, etc. A good review of the existing generalization theories can be found
in [1], [6], [8], [9]. Different methods were used by researchers to obtain the solu-
tions of the generalized thermopiezoelectricity problem, see [2], [3], [7], [15], [20].

Forced vibrations of pyroelectrics is the special case of the thermopiezoelec-
tricity problem and was studied under the classic (Mindlin‘s) theory in [11], [21]
and [22]. In our previous work [19], we utilized our finite-element-based numer-
ical scheme for solving forced vibrations problem under classic thermopiezo-
electricity theory and developed an adaptive algorithm for obtaining solution
with a preset level of accuracy. The goal of the present research is to construct
a similar FEM-based numerical scheme for forced vibrations problem under
LS-thermopiezoelectricity theory.

2. PROBLEM STATEMENT

The theory of thermopiezoelectricity describes the coupled interaction of me-
chanical, electrical and thermal fields in pyroelectric material.

Suppose the piezoelectric specimen occupies a bounded domain €2 in Eu-
clidean space R% d=1,2, or 3 with continuous by Lipschitz boundary I' with
unit external normal vector n = {n;}%,, where n; = cos(n,z;). According
to the classic theory (see [12,13,16,17]), we need to find elastic displacement
vector u = u(z,t), electric potential p = p(zx,t) and temperature increment
6 = 0(x,t), which satisfy the following equations:

puy — oij i = pfis (1)
D;%k + Jk,k =0, (2)
p(TgS/ — w) + Qi = 0, (3)

namely, equation of motion, differentiated Maxwell‘s equation and generalized
heat equation respectively, where f; is a vector of volume mechanical forces
and w represents volume heat forces. Here the constitutive equations for stress
tensor

Oij = Cijkm([€km — Qkm0] — ekij Bk, (4)
electric displacement vector
Dy, = epijcij + XemEm + mi0, (5)
and entropy density
pS = CijkmCkmEij + T Er + %9 (6)

are used.

Vector Ji is the electrical current density, generated by a free electrical charge
density. We assume that pyroelectric material is not an ideal dielectric, and the
electric current runs through the pyroelectric specimen and satisfies standard
Ohm‘s law, i.e.

Jk = ZikmEm (D). (7)
Heat flux vector ¢ = q(z,t) is assumed to satisfy the standard Fouriers law:
G = —Aijt ;- (8)
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Strain tensor e, and electrical field vector Ej are assumed to satisfy the
relations
Ekm = Ekm(U) = %(uk,m + Um,k), (9)
Ey = Ex(p) = —pu;
where comma, in the subscript stands for the partial derivative by the spatial
variable, i. e. g = —0g/0xy.

The other symbols in the above equations represent the material properties
of pyroelectric medium: c¢;jxn, is an elasticity coefficients tensor with common
properties of symmetry and ellipticity, that is:

Cijkm = Cjikm = Ckmigj, (10)
CijkmKijKkm > CoKijKkm, CO = const > 0, V/ﬁj = Kj; € R,

«j is a thermal expansion tensor with similar properties

Qij = Qji,

11
;&5 = i, = const > 0, V§; € R, (11)
ekij ia a piezoelectricity tensor with properties:
€kij = Ckjis (12)
Xij is a dielectric permittivity tensor with properties

Xij&i&j = Xo&iis Xo = const >0, V¢ € R,
i, are the pyroelectric coefficients, which are assumed to satisfy the following
inequality, mentioned in [13]

XkmYkYm + 2Tyeé + pco€® >0, Y€y € R, (14)

Zkm 18 the electrical conductivity tensor with common properties of symmetry
and ellipticity, A;; is a symmetrical elliptic heat conductivity tensor, p, ¢, and
Ty represent a mass density, specific heat and a fixed uniform reference tem-
perature of a piezoelectric specimen, respectively. Here and everywhere below
the ordinary summation by repetitive indices is expected.

To take into account a viscosity effect in pyroelectric materials, we modify
the constitutive equation (4) for stress o;; by adding the term proportional to
strain velocity. Therefore, the stress-relation now looks in the following way:

0ij = Cijkm[Ekm — Uemb] — ekij i + GijkmElpm» (15)
where a;jkm, is a viscosity coefficients tensor with common properties of sym-
metry and ellipticity.

To characterize the interaction of piezoelectric specimen with the environ-

ment, we must consider the boundary conditions. The boundary conditions for
mechanical and heat fields are:

u;=0 on Ty x][0,T], Ty CT,mes(Iy) >0, (16)
04515 = 5‘@ on Fo‘ X [O,T],Fg =T \ Fu,

0=0 on Tyx][0,T], Ty C T mes(Ty) >0, (17)
qin; = Q on Fq X [O,T],Fq =T \ Fg.
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Note that nonuniform boundary conditions on parts I'y, and 'y can be always
transformed into uniform ones.

Similarly, the boundary conditions at the interface between the pyroelectric
specimen and an ideal dielectric can be described in the following way:

(D}, + Jg] k=0 on Ty, Iy CT. (18)
Many pyroelectric materials and devices are operated under high electric field,
which is applied through surface electrodes. We suppose that the electrode
has a constant electric potential p. on its surface, and is soft enough, so that it

does not transfer any mechanical loadings. In this case we consider the following
boundary conditions

p=0 on T, x[0,T], T, CT,mes(I'y) >0 (grounded electrode), (19)
and
Te (20)
p=const on I'e;, T.=T\(TzNT,),
where I defines the external electrical current.

In order to terminate the formulation of initial boundary value problem of
classic piezothermoelectricity, we consider the initial conditions

{ J Dy, + Ji] nidy =1,

uli—o = wo, u'|i=0 = vo,pli=0 =po, Oli=o =00 in Q. (21)

The aforementioned mathematical model of thermopiezoelectricity was consid-
ered in [16,17], where its well-posedness is proved. Also a finite element based
numerical scheme for solving this problem was constructed and the results of
numerical experiments are described in [4,18].

In present work, instead of (8), we use modified Fourier‘s law (also known as
Maxwell-Cattaneo equation):

TG + ¢ = —Xijf 5. (22)

Here the parameter 7 > 0 is so-called "relaxation time". This assumption
ensures finite speeds of heat wave propagation and was firstly introduced by
Lord and Shulman in [10] and was firstly applied to thermopiezoelectricity
theory by Chandrasekharaiah in [5]. Also, for convenience, similar to how
Chandrasekharaiah did in [5], we introduce artificial coefficients b;; in the way
that the following condition is held:

TobijAjm = Oim, where 0;, are the elements of the unit matrix, (23)

and they satisfy ellipticity conditions:

bijyiy; >0 Vyi,y; € R. (24)
Then the modified Fouriers law can be rewritten in the following form:
7hijd; + bijai = ~Tg '0,5. (25)

Using Maxwell-Cattaneo equation (22) implies, that for Lord-Shulman theory
a heat flux q is an additional independent variable. Therefore, the initial con-
ditions (21) must be rewritten into:

uli—o = wo, u'|i=0 =vo,pli=0 = po, Oli=0 =06, qli=o =go in Q. (26)
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Thus, the equations (1)-(3), (5)-(7), (9), (15) and (25) together with bound-
ary conditions (16)-(20) and initial conditions (26) define the Lord-Shulman
mathematical model of thermopiezoelectricity (initial boundary value problem
of LS-thermopiezo-electricity).

3. VARIATIONAL PROBLEM
Let us introduce the spaces of admissible elactic displacements, electric po-
tentials, temperature increments and heat fluxes respectively:
V={veH]v=0 on I',},
X = {§ € H'(Q)]¢=0 on I'y, £=const on Fe}

Y ={ne H(Q)n=0 on Ty}, (27)
z ={¢e[L* )]},
and notations
P=VxXxYxZ & =VxXxY, G=L*Q), H=G"% (28)

Here symbol H™(€2) means a standard Sobolev space.
After applying the principle of virtual works to initial boundary value prob-
lem of LS-thermopiezoelectricity, we obtain the following variational problem:

given Yo = (uo, po, o, q0) € ®, vo € H and (I,r,p) € L*(0,T; ®);
find = (u,p,0,q) € L?(0,T;®) such that
m(u(t),v) + a(u'(t),v) + c(u(t),v) — e(p(t),v)—
—(0(t),v) =<1(t),v >,

xX(P'(t),8) +e(§, (1) + 2(p(t), &) + m (0 '(t),ﬁ) =<r(t),§

s(0'(t),n) +m(n,p'(t)) +v(n,u' () — =< u(t),m (29)
7b(q'(t),¢) +b(q(t), ¢) + 9(¢, 9(15)):
m(u'(0) —vo,v) =0,  c(u(0) —uo

x(p(0) —po,§) =0 V€ X,

s(0(0) —bo,n) =0 Vney,
b(q(0) —qo,¢) =0 VCeZ

The introduced bilinear and linear forms are as follows:

m(u,v) fpu,vzdx = fpu vdz, a(u,v) f%gkm&g( Yerm (v)dz,
c(u,v) fcljkmslj( )skm( Ydz, <lv>:= fpfividx—I— [ Gividr,

V(&) = ?f@jkmakmﬁijv)dw, ' ”

e(§,v) == ?ekijEk(ﬁ)Ez’j(U)diU Vu,v €V,

X0.6) = X BB, () = [ 5n B0 B, (30)

<r,&>=I&pr, Vp&elX,
m(n,€) = [nmpEp(€)dz, s(0,n) = [ pe,Ty *Onda,
Q Q

<, >i= [Ty pwnde — [ Ty hndy Vi, 0 €Y,
Q r

b(g.¢) = S{bijqz-cjdx, 9(¢,m) = (12“ Ty '¢Gmpdr Vq,¢ € Z.
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Now suppose the harmonic loadings with angular frequency w > 0 are applied
to the piezoelectric specimen:
1(t) = (I +ila)e™ ™",
r(t) = (r1 +irg)e”™", (31)
M(t) = (}ul + i.LLQ)e_ZWt’ Vie (0>T]

Then we can look for approximate solutions of problem (29) in the form of the
following expansions:

u(z,t) = (uq(z) + iua(z))e ™
p(a,t) = (p1(z) + ipa(x))e ™™, (32)
0(z,t) = (01(x) + 162(x ))e_m,
q(z,t) = (qu(2) +iga(z))e ™",
where w1 (x), ua(x), pi(x), pa(x), 61(z), O2(z) and g1(z), g2(x) are the un-

known amplitudes of mechanical displacement, electric potential, temperature
increment and heat flux respectively.

After substitution of (31) and (32) into (29) and neglection of its initial
conditions, we obtain the variational problem for forced harmonic vibrations of
piezoelectric specimen:

given w > 0, (l1,l2,71,72, 11, p2,0,0) € W' = &' x @/;

find 1 = (u1,p1,01,q1,u2,p2,02,q2) € W = ® x ® such that

—wzm(ul,vz) + wa(ug, ’1)2) + c(ul, ’02) — e(pl, ’Uz)*
—y(01,v2) =< l1,v2 >,

—wzm(u2, ’Ul) — wa(ul, 'vl) + C(Uz, ’01) — e(pg, ’Ul)—
—y(02,v1) =< l2,v1 >,

wx(p2,&1) +we(&r, uz) + 2(p1,&1) + wr(f2,61) =< 711,61 >, (33)

—wx(p1,&2) —we(&2,ur) + 2(p2,§2) — wm(01,&) =< 12,82 >,

ws(02,m) + wm(n, p2) +wy(m, uz) — g(qr,m) =< p1,m >,

—ws(01,m2) — wn(n2,p1) — wy(n2, w1) — g(q2,n2) =< p2,m2 >,

wtb(q2,C1) +b(q1,¢1) +9(¢1,601) =0,

—wtb(q1,C2) + b(g2,C2) + 9(C2,602) =0

Vw= (1’1:5177717Cla’v2,§277727C2,) ew.

Having added all the equations of the problem (33), we introduce the bilinear
form II, : W x W — R and linear form x,, : W — R in the following way:

I, (¢, w) = —w?[m(uy, v2) — m(uz,v1)]+
+wla (ul, vl) + a(uz,v2)] + [c(u1,v2) — c(uz,v1)]+
(p2,v1) — e(p1,v2) + e(&1, uz) — e(§2, u1)]+
Y(02,v1) — y(01,v2) + (11, u2) — y(n2, wr)l+
m(02,81) — m(01,&2) + (01, p2) — 7(n2, p1)]+
X(p2,&1) — x(p1,&2)] + w  2(p1, 1) + 2(p2, &2)]+ (34)
[5(927771) — s(61,m2)]+
+w 1 g(¢1,01) + 9(Ca,02) — g(q1,m) — g(g2, m2)]+
+7[b(g2,¢1) — b(g1,C2)] + wtb(gr, C1) + b(Qza ¢2)]
VY = (u1,p1,01,q1,u2,p2,02,92) €
Vw = (v1,&1,m1,C1,v2,82,m2,C2,) €

+le
+|
+|
+|
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< Xy W >= — < lg,v1 > +w < r, & >+ < pr,m >+
+ <li,v9 > +w_1[< ro, &9 > + < U2,M2 >] (35)
Vw = (v1,§1,m,C1,v2,82,m2,C2,) € W.
Then variational problem for forced harmonic vibrations of pyroelectric can
be rewritten as follows:
givenw >0, x, € W =@ x &/;
find = (u1,p1,01,q1,u2,p2,02,q2) € W = ® x ® such that (36)
(¥, w) =< xw,w > ¥V w=(v1,&1,M,C1,v2,82,7m2,C2) € W.

4. WELL-POSEDNESS OF THE VARIATIONAL PROBLEM
Theorem 1. Let us define the bilinear form k(-,-) as follows:

k(6,n) = / Ty ' AVOVndz, (37)
Q
where A = {\;;} is matriz of thermal conductivity coefficients. Then the below
equality is held:
(1+w*r?)[b(q1, q1) + b(gz, g2)] = k(61,61) + k(62,62), (38)

where qi1,qz2,61,02 are the solutions of variational problems (33) and (36),
defining amplitudes of heat flur and temperature increment correspondingly.

Proof.
The modified Fourier law
7q +q=—AV0o (39)
is rewritten for the case of harmonic vibrations:
—iwr(q1 +ig2)e ™ 4 (q1 +iga)e ™ = —A(VO; +iVhs)e ™ (40)

The expression (40) is then splitted into real and imaginary parts. As a result,

we obtain:
q1 +wTq2 = _Aveh (41)
g2 —WTq1 = —AVGZ.
After multiplying equations of (41) by T, V6, and Ty 1V, respectively and
integration over the domain ) we get;:

9(q1 +wTqz2,01) = —k(01,61), (42)
9(q2 —wTq1,02) = —k(02,62).

Then two last equations of the variational problem (33) are considered and
a substitution of admissible functions {1 = g1 + w7rq2 and (2 = g2 — wTqy is
performed respectively:

wtb(q2,¢1) +b(q1,¢1) +9(¢1,01) =0, ¢1 = q1 + wrq2, (43)
—wtb(q1,¢2) +b(q2,¢2) + 9(¢2,02) =0, {2 = g2 —wTqs.

After simplifying the first equation of (43) with taking into account the relations
(42) we obtain:

wtb(q2,q1 + wrq2) + b(q1,91 +wTq2) + g(g1 + wTq2,01) = 0, (44)
b(q1 + wTq2,q1 + wTq2) = k(61,61).
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Similarly, simplifying the second equation of (43) with taking into account the
relations (42) we get:

—wrb(q1,q2 —wTq1) + b(q2, g2 — wTq1) + (g2 — wTq1,02) = 0,
b(g2 — wTq1,q2 —wTq1) = k(62,02).
The last equations of the relations (44) and (45) can be rewritten in the fol-
lowing way:

b(q1,q1) + 2wTb(q1, g2) + W2T2b(q2, g2) = k(01,61),

(45)

46

W*T?b(q1, q1) — 2wTb(g1, 2) + b(q2, g2) = K(62,62). (46)
After summarizing these 2 equations of (46) we obtain:

(1+w?72)[b(q1, q1) + (g2, g2)] = k(61,61) + (02, 62). (47)

O

Let us introduce a scalar product on the space W in the following way:

2

((y7 ’LU)) Zl[a(u'u U’L) + Z(p27 gl) + b<q17 CZ) mk<97” 7’]Z>]
Ny 48
Vy = (u1,p1,01,q1,u2,p2,02,q2) € W, (48)

Vw= (’UlaflvnhClav2,§2;772,C27) ew.
We also introduce a norm generated by the scalar product (48):
Iyl = (v,y) Vy € W. (49)

Then the following estimations are easy noticed:

T (y, w)| < My (w)|[[yll] - [lwl]];
Mi(w) = C maz{w™1,w,w?}, Yy,w € W,
and
| < Xy w > | < Ma(w)|[xwll« - [[[w]]],
Ms(w) = C maz{w™' 1}, Yw € W.
Here and everywhere the symbol C means a positive constant value, which is
not dependent on solutions of variational problem (36).
Consider now the expression for I, (w, w):

(51)

H (w,w) = —w?[m(ug, uz) — m(uz, uy)]+
twla(ur, u1) + a(uz, uz)] + [c(ur, u2) — c(uz, u1)|+

+le(p2, u1) — e(p1,uz) + e(p1,uz) — e(p2, u1)]+

+[y(02, 1) — v(01,u2) + (01, u2) — (02, u1)]+

+[m (02, p1) — 7(01,p2) + (01, p2) — 7(02,p1)]+
+[x (p2,p1) X (p1,p2)]+
+w L z(p1,p1) + 2(p2, p2)] + [8(02,01) — s(61, 02)]+
+w ' g(q1,01) + 9(g2,02) — g(q1,01) — g(qa, 02)]+ (52)
—1—7[219(612, q1) — b(q1,q2)] +w[b(gr, q1) + b(g2. q2)] =

= > lwa(us,u;) + w ™ 2(pi, pi) + W b(qi, qi)] =

1=

—_

2

= Z [wa(uia u'L) + w_lz(pia pl)+
=1

0 (5b(gi: @2) + gk (0, 0))] 2 alw) - [[[w]]?,
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where a(w) = min{w™t,w} Vw e W.
Since the statements (50 - 52) are held and they are actually the conditions
of Lions-Lax-Milgram theorem, the following theorem is then proved:

Theorem 2. For each w > 0 and 7 > 0 variational problem (36 ) has a unique
solution ¢ € W, which satisfy the relation:

1911 < o™ (w) Ma(w)l [ |+- (53)

5. GALERKIN DISCRETIZATION
Galerkin scheme makes a transition of the solution of variational problem
(33) from space W := ® x & to its finite-dimensional subspace W, := ®j, x &y,
¢y, C @, dim Wy, = N(h) < +oo. Thus, discretized variational problem (36)
looks in the following way:

giwen angular frequency w >0, X, € W,

approzimations space Wy C W, dim W), < 4-00;

find vector vy = (U1p, Uz, P1n, P2n, O1h, O2n, Q1n, G2n) € Wh
such that TL,(Yp, @) =< Xw,p > V p € W),

(54)

Since problem (36) is well-posed, the same applies to its discretized counterpart
(54).

In the space W we select some basis functions {w;};~,. For each natural
number m > 1, h = 1/m a sequence of approximation spaces W}, and operators
of orthogonal projection Prj, : W — W}, are defined so that a set {w;};~, is a
base of Wj,, (¢ — Prpv,w)) =0V ¢ € W,V w, € Wy

Now variational problem (36) is replaced by a sequence of the following
problems:

given w >0, x, € Wand h >0, Wy, C W, dim W}, = m < 4o0;

find vector vy, € Wp, such that (55)
I, (Yn, w) =< Xw,w > Yw € W

Theorem 3. Let ¢ € W be a solution of problem (36) with parameter w >
0. Then a sequence of Galerkin approzimations {1pp} C W is unambiguously
defined by the solutions of problems (55) and has the following properties:

o= dllw < @~ M) inf |[¢ = wllw ¥ b >0 (56)
weWp,
lim [ — ¢l = 0. (57

Proof. The correctness of the inequality (56) is based on the fact that
I, (¢ = ¢p, w) =0V w € Wy,

and the estimation

O[Hw - 1/)h|‘12/1/ S Hw(1/1 - ¢h71/} - @bh) = Hw(w - 1/)h71/1 - w) S
< My(W)[l = dullw |l — wilw ¥V w € W
Taking into account the density of sequence of spaces {W}} in the separable
space W
}lbir%Hw — Pryw|lw =0V we W.
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Therefore, basing on the equality
inf — =|lv—-P
a1 = wllw =11 = Prohw
and (56) we can conclude the correctness of (57), when w > 0. O

Theorem 4. on the convergence of FEM approximations.

Let 1 € W be a solution of problem (36) and exists a natural number k > 1
such that € WN[HF Q)2 | Let approzimations 1y, be defined by solving
problem (55) in the spaces Wy, C W, which are constructed with making use of
piecewise-polynomial functions of FEM and have the following property:

for each ¢ € W N [HFY(Q)PHD & > 1 there exist ¢, € W), and C =
const > 0 such that || — opllma < C - KEFL"™0llkr1.0, 0 < m < k, where
h s the diameter of finite element mesh and k is the greatest degree of full
polynomial of d variables, which is precisely defined by basis functions of Wp,
on each finite element.

Then the convergence of sequence ¥y C W is characterized by the estimation

1 = wnll < C - RE[|¢llksr.0, (58)
where C' = const > 0 is not dependent on values we are looking for.

Proof. The estimation (58) is implied from the inequality (56), the equiva-
lence of norms || - ||w and || - ||1,0 on W and the density properties defined in
the theorem body.

14 = ¥nllw < o™ Mi(w) 1 —wl = [[¥ —wlle < C-h¥|[Y]k10

inf
weWy,
O
Let us now pay a deeper attention to the aforementioned selection of finite-
dimensional subspace Wj, € W. Taking into account the definition of W}, that
iSWh:VhXXhXYhXZhXVhXXhXYhXZh,WheI‘e

VicV, XpCX, YyCY, Z, C Z,

dimVy, < +o0, dimX; < 400, dimY), < +oo, dimZ, < +oo. (59)
we can write the expansions of solution amplitudes as following:
X v
Uagh = Z Ua¢i (x)v
/=0
N X
Pah = Z Pa(bz (.I),
v (60)

N

hot = 5 @) (1),
5

qdoh = Z Qa(bZZ(.T}),Oé - 17 27
=0

where @) (z), ¢ (), ¢} (x) and ¢Z (z) are the basis functions of spaces V, X, Y
and Z respectively. Then we obtain the system of linear equations for finding
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nodal values of the unknown amplitudes:

wA —[~w?M + C] 0 ET 0 YT 0 0
[~w?M + C] wA -ET 0 -YT 0 0 0

0 E wlz wX 0 i gl 0 0
—-E 0 -X wlz -—-nr 0 0 0

0 Y 0 I 0 S —w IGT 0
-Y 0 —II 0 -S 0 0 —w IGT

0 0 0 0 w i@ 0 w B B

0 0 0 0 0 wl@ —rB w 1B

[U1,Us, Py, P2,01,03,Q1,Q2]" =
= [—Lz, Lq, w_lRl, w_1R2, w_lFl, w_le, 0, O]T .
Here the elements of the matrices and vectors are computed using the bilin-
ear and linear forms defined in (30), for example A = {a;;} = {a(qﬁy,d)}/)}.
The matrix of the system of equations (61) is positively defined, but not the
symmetric one. More precisely, it can be represented as the sum of positively
defined symmetric matrix and a skew-symmetric one.

(61)

6. NUMERICAL EXPERIMENTS
We consider a piezoelectric bar with length L = 1078%m made of PZT-4
ceramics.A harmonic thermal loading with angular frequency w = 3 - 10%rad/s

is applied to the right edge of the bar. So, the boundary conditions for thermal
field are:

61(0) = 0K, 61(L) = 273K, 65(0) = 0K, 65(L) = 0K. (62)

On the left edge of the bar the boundary conditions for mechanical and electric
fields are homogeneous and of Dirichlet type :

u1(0) = 0m, uz(0) = 0m, p1(0) =0V, pa(0) = OV. (63)

On the right edge of the bar the boundary conditions for mechanical and electric
fields are homogeneous and of Neumann type :

o1(L) =0N -m~2, 0o(L) = 0N -m~2, J1(L) =04, Jo(L) =0A.  (64)

116



NUMERICAL SOLUTION OF LS-THERMOPIEZOELECTRICITY ...

o N S (=2}
T T T

2,
T=10"s r=10"s

px107°, Jm4st

Lx10°m

Fic. 3. Amplitude of heat flux component go for the PZT-4 bar
for relaxation times 7 = 10719,8.10~1 5.107 10711, 10~ 25

We take the coefficients of PZT-4 as in [20]:

p = 7500[kg/m?] e = 15.1[C/m?

c, = 350[J /kg - K] T =27x107%C/K - m?]
A=11[W/m- K] X = 6.46 x 107?[C? /N - m?]
c =115 x 10°[N/m?] a=3.13 x 107°[K 1]

Also we take z = 5 x 10712[Q~! - m™1], @ = 40[m? - s71] and Ty = 298[K].
As mentioned in [20], the value of the relaxation time 7 for PZT-4 cannot
be found in the literature. However, the relation time 7 is determined for
different type of materials, ranging from 10719 for gases to 107!* for metals.
Therefore, in our numerical experiments we will use the values of relaxation
time 7 = 10710,8 . 10711, 5. 107,10, 10725, For discretization by spatial
variable we divide the interval [0, L] into N = 256 finite elements with piecewise
linear solution approximations on them.

Fig. 1 shows that under these boundary conditions and angular frequency
w = 3-10% ad-s~! the calculated temperature increment ; is changing linearly
along the bar, regardless of the value of relaxation time 7. Fig. 2 depicts the
calculated amplitude 05 of the temperature increment. It is also not dependent
on the value of relaxation time 7.

On the other hand, as Fig.3 shows, the amplitude of heat flux g2 is depen-
dent on the parameter 7. It worth mentioning, that the amplitude calculated
with 7 = 10725 is almost identical to the one obtained as a solution of the
classical thermopiezoelectricity problem for forced harmonic vibrations (when
no modified Fourier law is taken into account).

7. CONCLUSIONS
The harmonic vibrations of the pyroelectric materials have been studied un-
der generalized Lord-Shulman thermopiezoelectricity theory. The variational
problem for this special case has been formulated and its well-posedness has
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been proved. Then the discretization of the problem using Galerkin-method has
been performed. The finite element method has been utilized to construct the
bases of approximation spaces of the discretized problem. The rate of conver-
gence of FEM-approximations has been determined. After the discretization we
obtain the system of linear algebraic equations with positively defined matrix in
its left part. Therefore, we can be sure that the solution of that system always
exists. The numerical experiment of applying a harmonic thermal loading to
the pyroelectric bar has been set up and studied. The results of the experi-
ment showed the significant influence of the "relaxation time" parameter on
the nodal values of solution amplitudes.
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