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ON THE APPLICATION OF MULTIPARAMETER INVERSE
EIGENVALUE PROBLEM AND NUMERICAL METHODS
FOR FINDING ITS SOLUTION

O.S. YAROSHKO

PE3IOME. Y po0oTi 3/1i#iCHEHO OTJIsi/T BITOMUX MTPUKJIA B IPAKTUIHAX 3aCTO-
CyBaHb 00epHEHOI 3aati Ha BJIACHI 3HAYEHHS Y PI3HUX HAYKOBUX Ta IH2KEHED-
Hux cdepax gociaimkersb. KpiM TOro, mpeacTaBieHo iCHy04l YHCeIbHI MeTOI
Ta pI3HOMAHITHI TeXHIKM BiJIIyKaHHS PO3B'SI3Ky 0DEpPHEHOI CIIEKTPAJIHHOI 3a-
nadi.

ABSTRACT. This survey collects the known examples of practical application
of inverse eigenvalue problems in different scientific and engineering areas.
It also provides an overview of the existing numerical methods and different
techniques for finding the solution of the inverse eigenvalue problem.

1. INTRODUCTION
An inverse eigenvalue problem is a subject of interest of different authors.
There are numerous examples of practical application of this problem and of
the analysis of its partial cases. In this article we try to make an overview of
the most known and interesting examples of practical application of this type
of problems.
Let A (c) be an afinne family

n
Ae) = Ao+ ) crAr, (1)
k=1
where ¢ € R", and {Ax} are real symmetric matrices of dimension n x n.
Let’s also denote the eigenvalues of the matrix A (c) as {\; (¢)}], where
AL () < ... < A\ (o).
The following problem is known as the general inverse eigenvalue problem:
Problem 1. Provided real numbers A\] < ... < X} find c € R" such that the
eigenvalues of (1) satisfy the condition X (c) =X, i=1,...,n.
One of the partial cases of the Problem 1 is the additive inverse eigenvalue

problem:
Problem 2. Let the linear family (1) be defined as Ay = exe}, k=1,...,n
where ey 18 a k-th unit vector such, that

A(c) = Ay + D,whereD = diag (cx,) (2)
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Provided the real values \] < ... < X} find ¢ € R"™ such, that the eigenvalues of
the matriz (2) satisfy the condition \; (¢) = Xf,i=1,...,n.

Another partial case of general problem, that is considered in this survey, is
the multiplicative inverse eigenvalue problem:

Problem 3. Given a real symmetric matriz A and its eigenvalues \] < ... <
XY, find an additive diagonal matriz D = diag (cx), ¢ € R"™, such that the result
matriz AD has the given eigenvalues.

Both additive and multiplicative inverse eigenvalue problems have been for-
mulated by Downing and Householder (1956).

It is known that the inverse eigenvalue problems arise in different scien-
tific areas, including systems of identification, seismic topography, geophysics,
molecular spectroscopy, structural analysis, mechanic systems simulation and
so on. Some of the partial cases of inverse eigenvalue problem appear in factor
analysis, educational testing problem, etc (see [1] and the cited references).

2. EXAMPLES AND PRACTICAL APPLICATION OF THE INVERSE
EIGENVALUE PROBLEMS

The classical example of inverse eigenvalue problem is the problem of finding
a solution of inverse Sturm-Liouville problem. The continuous problem has been
investigated by, for example, Borh, Gelfand, Levitan and Hald. The discrete
analog can be found in the survey [3], a more detailed overview is presented
below.

Let’s consider a boundary problem [3]:

—u’ (2) +p () u(z) = Mu(z),

u(0) =u(mw) =0.

The task is to find the potential p (x) by using the given spectrum {\!}7°. In
order to build the discrete analog, the authors [3] use a uniform mesh, defining
h = 4, up = u(kh), pr = p(kh), k =1,...,n, and make a suggestion that the
values {\}}]° are known. By using the finite differences for the approximation
u”, the following equation is received:

—Ug+1 + 2up — Ug—1
2
where A¥ is an eigenvalue from the set {Af}7.

Thus,it is obtained the additive inverse eigenvalue problem (2) with the ma-

trix

+ Drur = )\;Uk,k = ]-7 sy MUY = Up+1 = 07

Ao = (3)

and D = diag (pg).

Another well known example is the inverse spectral problem which arises in
the analysis of string vibrations. A reference to this example can be found, for
example, in [1], [3]. Let’s briefly explain the content of this problem.
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Consider the corresponding boundary problem |[3]:

—u" () = Ap (2) u (),
u(0) =u(m) =0.

It is needed to find the density function p (x) > 0, under the condition that
the fixed eigenvalues {\; }7° are known. In order to proceed to the discrete ana-
log of this problem, the transformations, similar to the case of Sturm-Liouville
problem, are performed. As a result, the following equation is obtained:

Au = X/Du,i=1,...,n,
or, if reformulating a bit:
D7 Au = Nu,i=1,...,n,

where D = diag (p (kh)) > 0, and the matrix A is defined by the correlation
(3).

It can be easily seen that the obtained problem is the multiplicative inverse
eigenvalue problem.

It is also possible to rewrite this problem in the form (1), where Ay = 0,
A = ekag, k=1,...,n, and the a;‘g is a k-th row if the matrix A.

There are several inverse spectral problems with a matrix of a specific struc-
ture. For example, the problem of reconstructing the Jacobi matrix from the
given spectral data. Briefly speaking, the inverse eigenvalue problem with the
Jacobi matrix consists in defining the elements of the matrix from the given
spectral data. This problem plays an important role in different applications,
including vibration theory and structural design [10]. In some cases only a
limited number of eigenvalues of the Jacobi matrix is provided. For example,
four or five, as in the problem, presented in [10].

An interesting partial case of the general inverse spectral problem is the
inverse Toeplitz problem (see [6]). According to the author, it is important,
that although the Toeplitz matrices have such special structure, the question
of solvability is opened for the case n > 5.

An inverse eigenvalue problem with a symmetrix matrix arises, for example,
in the applied physics and the theory of control. This problem is investigated
in the survey [9] and the cited references.

The other areas where the Problem 1 arises are nuclear spectroscopy and
molecular spectroscopy. In practice the formulation of such problem often in-
cludes less parameters that there are eigenvalues. In such cases it makes sense
to consider the problem formulation in least squares:

min > (A (¢) = A2,
cER™ 4
=1
An important type of problems arising in the engineer researches can be
described with the following formula

mince gm f(C) by <N (C) <wu,i=1,...,m,

161



0.S. YAROSHKO

where f (c) is a real-valued function of purpose, [ and u are fixed lower and
upper boundaries of eigenvalues of matrix A (c¢), which is defined by the cor-
relation (1). It’s interesting to mention that the solution of the given problem
often includes multiple eigenvalues, because the minimization of the function
of purpose can simultaneously conduct several eigenvalues to the same bound-
ary. This is why it’s very important to choose the numerical method of solving
the inverse spectral problem so that it correctly handles the case of multiple
eigenvalues.

3. NUMERICAL METHODS FOR SOLVING THE INVERSE
EIGENVALUE PROBLEMS

There is the rich literature dedicated to the question of numerical methods
for finding an approximate solution of the inverse spectral problem. One of
the creators of this theory is Friendland, who developed four quadratically
convergent numerical methods together with his colleagues [3]. One of the
methods, presented in [3], is, basically, the Newton method for solving the
following system of nonlinear equations:

Ar(e) = Af
fc)= =0,
An (€) = A,
where M = [\, \5]T € R, and A(¢) = [M(¢), ..., A (€))7 is the vector of

unique eigenvalues of the matrix A (c). Each \; (¢) is a real-valued function,
differentiable in some neighborhood of the point ¢*, if ¢* is the solution of
Problem 1.

Note, that each iteration of this method involves solving a full spectral prob-
lem for the matrix A (c).

Two other methods from [3] are considered to be the modifications of the
Newton method, where the calculation of eigenvectors is simplified. This means
that instead of calculating the exact eigenvectors, or in other words, solving
the corresponding spectral problem, the approximation of these eigenvectors
is calculated. The fourth method from [3] originally is based on the work of
Biegler-Konig, (see [4] and the cited references), and uses the idea of calculating
the determinant.

Based on the methods developed by Friedland and others [3], there have
been constructed new methods for solving some inverse eigenvalue problems
by other scientists. For example, in the paper [6] there are presented two
methods for finding the solution of an inverse singular problem: one of the
methods is continuous, the other — discrete. The discrete method generalizes
the iteration process, originally proposed by Friedland for solving an inverse
spectral problem. The new method converges locally under the condition of
existence of the problem’s solution.

Different authors have investigated this methods. Ones of the firsts who
used it, where Downing and Householder — for solving the additive and the
multiplicative inverse spectral problems. For a long time this method was also
used by the physics in the nuclear spectroscopy calculations.
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Instead of calculating the exact eigenvectors of the matrix A (¢) on each iter-
ation of the method, it is possible to approximate them by using, for example,
the inverse iteration. On this idea the Method II [3] is based.

The Method III is built on the idea of using a matrix of exponentials and
the Cayley transform.

As explained by the authors in the survey [6], from the geometric point of
view, the Method III [3] can be interpreted as the classical Newton method.
This means that the geometry which is involved in the Method III, is closely
bound to the geometry of the Newton method for the nonlinear equations with
one variable. Consequently, the Method III can be generalized to the iteration
process for calculation the approximate solution of the inverse singular problem.

Investigation of the methods, described in [3|, can be found in other various
articles, for example —in [1|. As it is stated by the author [1], in case of a matrix
of big dimensions, the Method IIT has an obvious disadvantage: constructing
an inverse matrix on each step is an expensive operation. These expenses can
be decreased by using the iteration procedures (inner iterations). Because of it,
usually the Method III, as the other methods of this type, is too expensive in
such sense that the number of performed iterations (inner iterations) is much
bigger then the number of iterations needed for convergence of the Newton
method (outer iterations).

In order to calculate the solution of the classic additive and multiplicative
inverse eigenvalue problems the Newton-like methods are also fine to use.

Among the known methods of this type it is worth mentioning the algorithm
suggested by Kublanovskaya [2]. This algorithm calculates the solution as a
zero of the function

)\1 (C) — )\1
H(c) = : ;
An (€) = An

where A1 (¢) < ... < A\, (c¢) are the eigenvalues of the matrix A (c), and A\; <
... < Ay are the given eigenvalues.

As an alternative to the Kublanovskaya method, there is another algorithm
presented in [2]. This one is also a Newton-like method and it calculates the
solution of the initial problem, as the zeros of the function

det (A (c) — M\ 1)
P(o)= z
det (A (c) — A1)

In order to reduce extra expenses of the exact iteration methods and to in-
crease the effectiveness, the scientists Chan, Chung and Xu (see [1] and the
cited references) suggested in inexact Newton-like method, which is used for
the matrices of big dimensions. The inexact Newton method stops the inner
iteration process before it converges. Thus, it is possible to decrease the total
number of both, inner and outer, iterations, by choosing a proper stop condi-
tion.
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In the paper [1] another approach is put forward — an inexact method of Cay-
ley transform for the inverse eigenvalue probelm. This methods also minimizes
the extra expenses and increases the productivity.

Based on the differentiation theory and on the @ R-decomposition of a matrix,
Li suggested a numerical method for solving the inverse spectral problems,
which works for the case of unique eigenvalues (see [4] and the cited references).

In the same paper [4] there is examined the formulation and local convergence
of a quadratically convergent method for solving the general inverse eigenvalue
problem provided that its solution exists. The proposed method is based on
the mentioned (JR-decomposition of a matrix and the ideas of Li and Dai
(see |4] and the cites references). As it is stated by the authors, this method is
applicable for the case of unique eigenvalues as well as for multiple eigenvalues
of the matrix.

One more approach to building a numerical method for solving an inverse
spectral problem is suggested in the survey [9]. This approach is based on the
analysis of analyticity of eigenvalues and eigenvectors of matrix of the prob-
lem. The examination of analyticity of spectral problems has a long history
(see [9] and the cited references). However, according to the author, relatively
small attention has been paid to the examination of analyticity of matrix spec-
tra in the case when the matrix analytically depends on several parameters.
Thereby, in [9] a new method is proposed. This is another modification of
the known Newton method and allows to find the approximate solution of an
inverse eigenvalue problem with a real symmetric matrix, which depends on
several parameters.

Recently another approach type of methods — the gradient methods — gained
the attention of scientists. For example, a variation-gradient method for solv-
ing multiparameter eigenvalue problems has been developed by Klobystov and
Podlevkyi (see [5], [7]). The proposed method was later modified and extended
to the inverse spectral problem by Podlevskyi and Yaroshko (see [8]). The
idea of these methods, for both direct and inverse multiparameter eigenvalue
problems, is to replace the spectral problem with an equivalent variation prob-
lem and applying the iterative method to find the solution of this variation
problem. The mentioned method is based on the gradient procedure and the
Newton method.

Let’s consider the following multiparameter spectral problem in the Euclidian
space E":

TNzx=Ar—MBiz—- — ApBnzx =0, (4)

where A = {1, ..., \p, } € E™ — are spectral parameters, ¢ = (x1,...,2,) € E",
and A, By, ..., B, — are some linear operators that act in the Euclidian space
E",

Let’s place in correspondence to the spectral problem (4) the variation prob-
lem of minimization of a functional:

F(u) = 3 IT ()l Yu={r,\} € H. (5)
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The problem (5) consists in finding such set of parameters A = {\1, ..., A, } €
E™ and the corresponding vector z € E™ \ {0} on which the functional F (u
reaches its minimal value:

F(u) - min,u e U C H, (6)

where U is a set of points u = {x, A}, that satisfies the equation (4), H is an
Fuclidian space.

It can be shown that the spectral problem (4) and the variation problem (6)
are equivalent. This means that each eigenpair {z, A} of the problem (4) is a
point of minimum u = {x, A} of the functional (5), and vice versa.

This result allows us to build the gradient procedure for the numerical solving
of the problem (6) and, therefore, the problem (4):

U1 = up — v (ug) VF (ug), k=0,1,2,... (7)

The formula (7) describes the whole class of methods, which differ one from
another only by the choice of the step v (ug).

In our method we suggest calculating the value v, = v (ug) on each step of
the iteration process by the formula:

= )
IVE (ur)ll7
To conclude, the iteration process can be written in the form:
F (ug)
U1 = U — —————— VF (ug) . (8)
IVE (ur)

So far we have described the method for solving the direct eigenvalue prob-
lem. Let’s explain the algorithm of solving the inverse spectral problem, which
is based on the described gradient procedure.

Consider the inverse eigenvalue problem (1) with the real matrices Ay,
Ay, ..., Ay € E™", and where the pairs {)\k,azk};nzl are the eigenpairs of the
matrix A (p). Here A = {\1,.., A} € E™ 2F € H = E"\ {0}, k = 1,...,m,
and F is a real Euclidian space.

Using the definition of the eigenvalue and the corresponding eigenvector, we
can build the system of m equations for finding the parameters p1, ..., pm:

(Ao = MI) 4+ p1As + .. + pmAm) 2 =0,

9)
((Ag — A\ d) + p1Ar + ... + P Ap) 2™ = 0.

Now lets transform this system by introducing the matrix operators A, B; :
H-H H=0 E"" (i=1,..,m.),
(Ao — M) 0 —A; 0
A= ;. Bi= -
0 (Ag — A\ 1) 0 —A;

T
Lox?, ,:Um) € H, we get

Ax = (Ao — M)z, (Ao — XaI) 22, ..., (Ao — M) 2™)

In case x = (a:
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BiX = (—Ai.’L'l, —Aia:z, veey —AZ{L'm) .
Now it is possible to pass from the problem (9) to the problem in the form
(4) in the space H

T(p)=Ax —p1Bix— ... — pBpx = 0. (10)

Therefore, we retrieved the problem of finding the set of parameters py, ..., pm,
such that the equation (10) has a non-trivial solution x € H\ {0}.
In correspondence to the problem (10) we put the variation problem:

F (u) — min,u € U C H,
u

where F(u) = 3 |T () x|}, Yu={x,p}€ H=Ho E™.

As expected, the task is to find the set of parameters p = {p1,...,pm} € E™
and the corresponding vector x € H\{0}, on which the functional F' (u) reaches
its minimal value.

In order to solve the variation problem we use the iteration process (8).
Consequently, we obtain the solution of the initial inverse eigenvalue problem.
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