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ON THE APPLICATION OF MULTIPARAMETER INVERSE
EIGENVALUE PROBLEM AND NUMERICAL METHODS

FOR FINDING ITS SOLUTION

O. S.Yaroshko

Ðåçþìå. Ó ðîáîòi çäiéñíåíî îãëÿä âiäîìèõ ïðèêëàäiâ ïðàêòè÷íèõ çàñòî-
ñóâàíü îáåðíåíî¨ çàäà÷i íà âëàñíi çíà÷åííÿ ó ðiçíèõ íàóêîâèõ òà iíæåíåð-
íèõ ñôåðàõ äîñëiäæåíü. Êðiì òîãî, ïðåäñòàâëåíî iñíóþ÷i ÷èñåëüíi ìåòîäè
òà ðiçíîìàíiòíi òåõíiêè âiäøóêàííÿ ðîçâ'ÿçêó îáåðíåíî¨ ñïåêòðàëüíî¨ çà-
äà÷i.
Abstract. This survey collects the known examples of practical application
of inverse eigenvalue problems in di�erent scienti�c and engineering areas.
It also provides an overview of the existing numerical methods and di�erent
techniques for �nding the solution of the inverse eigenvalue problem.

1. Introduction
An inverse eigenvalue problem is a subject of interest of di�erent authors.

There are numerous examples of practical application of this problem and of
the analysis of its partial cases. In this article we try to make an overview of
the most known and interesting examples of practical application of this type
of problems.

Let A (c) be an a�nne family

A (c) = A0 +
n∑

k=1

ckAk, (1)

where c ∈ Rn, and {Ak} are real symmetric matrices of dimension n× n.
Let's also denote the eigenvalues of the matrix A (c) as {λi (c)}n

1 , where
λ1 (c) ≤ ... ≤ λn (c).

The following problem is known as the general inverse eigenvalue problem:
Problem 1. Provided real numbers λ∗1 ≤ ... ≤ λ∗n �nd c ∈ Rn such that the

eigenvalues of (1) satisfy the condition λi (c) = λ∗i , i = 1, ..., n.
One of the partial cases of the Problem 1 is the additive inverse eigenvalue

problem:
Problem 2. Let the linear family (1) be de�ned as Ak = eke

T
k , k = 1, ..., n

where ek is a k-th unit vector such, that
A (c) = A0 + D, whereD = diag (ck) (2)

Key words. Inverse eigenvalue problem; inverse spectral problem; Sturm-Liouville problem;
eigenvalue; eigenvector; numerical method; iteration procedure; Newton-like methods.

159



O. S.YAROSHKO

Provided the real values λ∗1 ≤ ... ≤ λ∗n �nd c ∈ Rn such, that the eigenvalues of
the matrix (2) satisfy the condition λi (c) = λ∗i , i = 1, ..., n.

Another partial case of general problem, that is considered in this survey, is
the multiplicative inverse eigenvalue problem:
Problem 3. Given a real symmetric matrix A and its eigenvalues λ∗1 ≤ ... ≤

λ∗n, �nd an additive diagonal matrix D = diag (ck), c ∈ Rn, such that the result
matrix AD has the given eigenvalues.

Both additive and multiplicative inverse eigenvalue problems have been for-
mulated by Downing and Householder (1956).

It is known that the inverse eigenvalue problems arise in di�erent scien-
ti�c areas, including systems of identi�cation, seismic topography, geophysics,
molecular spectroscopy, structural analysis, mechanic systems simulation and
so on. Some of the partial cases of inverse eigenvalue problem appear in factor
analysis, educational testing problem, etc (see [1] and the cited references).

2. Examples and practical application of the inverse
eigenvalue problems

The classical example of inverse eigenvalue problem is the problem of �nding
a solution of inverse Sturm-Liouville problem. The continuous problem has been
investigated by, for example, Borh, Gelfand, Levitan and Hald. The discrete
analog can be found in the survey [3], a more detailed overview is presented
below.

Let's consider a boundary problem [3]:

−u
′′
(x) + p (x) u (x) = λu (x) ,

u (0) = u (π) = 0.

The task is to �nd the potential p (x) by using the given spectrum {λ∗i }∞1 . In
order to build the discrete analog, the authors [3] use a uniform mesh, de�ning
h = π

n+1 , uk = u (kh), pk = p (kh), k = 1, ..., n, and make a suggestion that the
values {λ∗i }∞1 are known. By using the �nite di�erences for the approximation
u
′′ , the following equation is received:

−uk+1 + 2uk − uk−1

h2
+ pkuk = λ∗juk, k = 1, ..., n, u0 = un+1 = 0,

where λ∗j is an eigenvalue from the set {λ∗i }n
1 .

Thus,it is obtained the additive inverse eigenvalue problem (2) with the ma-
trix

A0 =
1
h2




2 −1
−1 2 −1

. . .
2


 (3)

and D = diag (pk).
Another well known example is the inverse spectral problem which arises in

the analysis of string vibrations. A reference to this example can be found, for
example, in [1], [3]. Let's brie�y explain the content of this problem.
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Consider the corresponding boundary problem [3]:

−u
′′
(x) = λp (x) u (x) ,

u (0) = u (π) = 0.

It is needed to �nd the density function p (x) > 0, under the condition that
the �xed eigenvalues {λ∗i }∞1 are known. In order to proceed to the discrete ana-
log of this problem, the transformations, similar to the case of Sturm-Liouville
problem, are performed. As a result, the following equation is obtained:

Au = λ∗i Du, i = 1, ..., n,

or, if reformulating a bit:

D−1Au = λ∗i u, i = 1, ..., n,

where D = diag (p (kh)) > 0, and the matrix A is de�ned by the correlation
(3).

It can be easily seen that the obtained problem is the multiplicative inverse
eigenvalue problem.

It is also possible to rewrite this problem in the form (1), where A0 = 0,
Ak = eka

T
k , k = 1, ..., n, and the aT

k is a k-th row if the matrix A.
There are several inverse spectral problems with a matrix of a speci�c struc-

ture. For example, the problem of reconstructing the Jacobi matrix from the
given spectral data. Brie�y speaking, the inverse eigenvalue problem with the
Jacobi matrix consists in de�ning the elements of the matrix from the given
spectral data. This problem plays an important role in di�erent applications,
including vibration theory and structural design [10]. In some cases only a
limited number of eigenvalues of the Jacobi matrix is provided. For example,
four or �ve, as in the problem, presented in [10].

An interesting partial case of the general inverse spectral problem is the
inverse Toeplitz problem (see [6]). According to the author, it is important,
that although the Toeplitz matrices have such special structure, the question
of solvability is opened for the case n ≥ 5.

An inverse eigenvalue problem with a symmetrix matrix arises, for example,
in the applied physics and the theory of control. This problem is investigated
in the survey [9] and the cited references.

The other areas where the Problem 1 arises are nuclear spectroscopy and
molecular spectroscopy. In practice the formulation of such problem often in-
cludes less parameters that there are eigenvalues. In such cases it makes sense
to consider the problem formulation in least squares:

min
c∈Rn

m∑

i=1

(λi (c)− λ∗i )
2 .

An important type of problems arising in the engineer researches can be
described with the following formula

minc∈Rm f (c) by l ≤ λi (c) ≤ u, i = 1, ..., n,

161



O. S.YAROSHKO

where f (c) is a real-valued function of purpose, l and u are �xed lower and
upper boundaries of eigenvalues of matrix A (c), which is de�ned by the cor-
relation (1). It's interesting to mention that the solution of the given problem
often includes multiple eigenvalues, because the minimization of the function
of purpose can simultaneously conduct several eigenvalues to the same bound-
ary. This is why it's very important to choose the numerical method of solving
the inverse spectral problem so that it correctly handles the case of multiple
eigenvalues.

3. Numerical methods for solving the inverse
eigenvalue problems

There is the rich literature dedicated to the question of numerical methods
for �nding an approximate solution of the inverse spectral problem. One of
the creators of this theory is Friendland, who developed four quadratically
convergent numerical methods together with his colleagues [3]. One of the
methods, presented in [3], is, basically, the Newton method for solving the
following system of nonlinear equations:

f (c) =




λ1 (c)− λ∗1
...

λn (c)− λ∗n


 = 0,

where λ∗ = [λ∗1, ..., λ
∗
n]T ∈ R, and λ (c) = [λ1 (c) , ..., λn (c)]T is the vector of

unique eigenvalues of the matrix A (c). Each λi (c) is a real-valued function,
di�erentiable in some neighborhood of the point c∗, if c∗ is the solution of
Problem 1.

Note, that each iteration of this method involves solving a full spectral prob-
lem for the matrix A (c).

Two other methods from [3] are considered to be the modi�cations of the
Newton method, where the calculation of eigenvectors is simpli�ed. This means
that instead of calculating the exact eigenvectors, or in other words, solving
the corresponding spectral problem, the approximation of these eigenvectors
is calculated. The fourth method from [3] originally is based on the work of
Biegler-Konig, (see [4] and the cited references), and uses the idea of calculating
the determinant.

Based on the methods developed by Friedland and others [3], there have
been constructed new methods for solving some inverse eigenvalue problems
by other scientists. For example, in the paper [6] there are presented two
methods for �nding the solution of an inverse singular problem: one of the
methods is continuous, the other � discrete. The discrete method generalizes
the iteration process, originally proposed by Friedland for solving an inverse
spectral problem. The new method converges locally under the condition of
existence of the problem's solution.

Di�erent authors have investigated this methods. Ones of the �rsts who
used it, where Downing and Householder � for solving the additive and the
multiplicative inverse spectral problems. For a long time this method was also
used by the physics in the nuclear spectroscopy calculations.
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Instead of calculating the exact eigenvectors of the matrix A (c) on each iter-
ation of the method, it is possible to approximate them by using, for example,
the inverse iteration. On this idea the Method II [3] is based.

The Method III is built on the idea of using a matrix of exponentials and
the Cayley transform.

As explained by the authors in the survey [6], from the geometric point of
view, the Method III [3] can be interpreted as the classical Newton method.
This means that the geometry which is involved in the Method III, is closely
bound to the geometry of the Newton method for the nonlinear equations with
one variable. Consequently, the Method III can be generalized to the iteration
process for calculation the approximate solution of the inverse singular problem.

Investigation of the methods, described in [3], can be found in other various
articles, for example � in [1]. As it is stated by the author [1], in case of a matrix
of big dimensions, the Method III has an obvious disadvantage: constructing
an inverse matrix on each step is an expensive operation. These expenses can
be decreased by using the iteration procedures (inner iterations). Because of it,
usually the Method III, as the other methods of this type, is too expensive in
such sense that the number of performed iterations (inner iterations) is much
bigger then the number of iterations needed for convergence of the Newton
method (outer iterations).

In order to calculate the solution of the classic additive and multiplicative
inverse eigenvalue problems the Newton-like methods are also �ne to use.

Among the known methods of this type it is worth mentioning the algorithm
suggested by Kublanovskaya [2]. This algorithm calculates the solution as a
zero of the function

H (c) =




λ1 (c)− λ1
...

λn (c)− λn


 ,

where λ1 (c) < ... < λn (c) are the eigenvalues of the matrix A (c), and λ1 ≤
... ≤ λn are the given eigenvalues.

As an alternative to the Kublanovskaya method, there is another algorithm
presented in [2]. This one is also a Newton-like method and it calculates the
solution of the initial problem, as the zeros of the function

F (c) =




det (A (c)− λ1I)
...

det (A (c)− λnI)


 .

In order to reduce extra expenses of the exact iteration methods and to in-
crease the e�ectiveness, the scientists Chan, Chung and Xu (see [1] and the
cited references) suggested in inexact Newton-like method, which is used for
the matrices of big dimensions. The inexact Newton method stops the inner
iteration process before it converges. Thus, it is possible to decrease the total
number of both, inner and outer, iterations, by choosing a proper stop condi-
tion.
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In the paper [1] another approach is put forward � an inexact method of Cay-
ley transform for the inverse eigenvalue probelm. This methods also minimizes
the extra expenses and increases the productivity.

Based on the di�erentiation theory and on theQR-decomposition of a matrix,
Li suggested a numerical method for solving the inverse spectral problems,
which works for the case of unique eigenvalues (see [4] and the cited references).

In the same paper [4] there is examined the formulation and local convergence
of a quadratically convergent method for solving the general inverse eigenvalue
problem provided that its solution exists. The proposed method is based on
the mentioned QR-decomposition of a matrix and the ideas of Li and Dai
(see [4] and the cites references). As it is stated by the authors, this method is
applicable for the case of unique eigenvalues as well as for multiple eigenvalues
of the matrix.

One more approach to building a numerical method for solving an inverse
spectral problem is suggested in the survey [9]. This approach is based on the
analysis of analyticity of eigenvalues and eigenvectors of matrix of the prob-
lem. The examination of analyticity of spectral problems has a long history
(see [9] and the cited references). However, according to the author, relatively
small attention has been paid to the examination of analyticity of matrix spec-
tra in the case when the matrix analytically depends on several parameters.
Thereby, in [9] a new method is proposed. This is another modi�cation of
the known Newton method and allows to �nd the approximate solution of an
inverse eigenvalue problem with a real symmetric matrix, which depends on
several parameters.

Recently another approach type of methods � the gradient methods � gained
the attention of scientists. For example, a variation-gradient method for solv-
ing multiparameter eigenvalue problems has been developed by Klobystov and
Podlevkyi (see [5], [7]). The proposed method was later modi�ed and extended
to the inverse spectral problem by Podlevskyi and Yaroshko (see [8]). The
idea of these methods, for both direct and inverse multiparameter eigenvalue
problems, is to replace the spectral problem with an equivalent variation prob-
lem and applying the iterative method to �nd the solution of this variation
problem. The mentioned method is based on the gradient procedure and the
Newton method.

Let's consider the following multiparameter spectral problem in the Euclidian
space En:

T (λ) x ≡ Ax− λ1B1x− · · · − λmBmx = 0, (4)

where λ = {λ1, ..., λm} ∈ Em � are spectral parameters, x = (x1, . . . , xn) ∈ En,
and A,B1, ..., Bm � are some linear operators that act in the Euclidian space
En.

Let's place in correspondence to the spectral problem (4) the variation prob-
lem of minimization of a functional:

F (u) =
1
2
‖T (λ) x‖2

H ,∀u = {x, λ} ∈ H. (5)
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The problem (5) consists in �nding such set of parameters λ = {λ1, ..., λm} ∈
Em and the corresponding vector x ∈ En \ {0} on which the functional F (u)
reaches its minimal value:

F (u) → min
u

, u ∈ U ⊂ H, (6)

where U is a set of points u = {x, λ}, that satis�es the equation (4), H is an
Euclidian space.

It can be shown that the spectral problem (4) and the variation problem (6)
are equivalent. This means that each eigenpair {x, λ} of the problem (4) is a
point of minimum u = {x, λ} of the functional (5), and vice versa.

This result allows us to build the gradient procedure for the numerical solving
of the problem (6) and, therefore, the problem (4):

uk+1 = uk − γ (uk)∇F (uk) , k = 0, 1, 2, .... (7)
The formula (7) describes the whole class of methods, which di�er one from

another only by the choice of the step γ (uk).
In our method we suggest calculating the value γk = γ (uk) on each step of

the iteration process by the formula:

γk =
F (uk)

‖∇F (uk)‖2
H

.

To conclude, the iteration process can be written in the form:

uk+1 = uk − F (uk)
‖∇F (uk)‖2

H

∇F (uk) . (8)

So far we have described the method for solving the direct eigenvalue prob-
lem. Let's explain the algorithm of solving the inverse spectral problem, which
is based on the described gradient procedure.

Consider the inverse eigenvalue problem (1) with the real matrices A0,
A1, ..., Am ∈ En×n, and where the pairs

{
λk, x

k
}m

k=1
are the eigenpairs of the

matrix A (p). Here λ = {λ1, ..., λm} ∈ Em, xk ∈ H = En \ {0}, k = 1, ..., m,
and E is a real Euclidian space.

Using the de�nition of the eigenvalue and the corresponding eigenvector, we
can build the system of m equations for �nding the parameters p1, ..., pm:




((A0 − λ1I) + p1A1 + ... + pmAm) x1 = 0,
. . .

((A0 − λmI) + p1A1 + ... + pmAm) xm = 0.
(9)

Now lets transform this system by introducing the matrix operators A,Bi :
H→ H, H = ⊕m

k=1E
n×n (i = 1, ...,m.),

A =




(A0 − λ1I) 0
. . .

0 (A0 − λmI)


 , Bi =



−Ai 0

. . .
0 −Ai


 ,

In case x =
(
x1, x2, ..., xm

)T ∈ H, we get
Ax =

(
(A0 − λ1I)x1, (A0 − λ2I) x2, ..., (A0 − λmI)xm

)
,
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Bix =
(−Aix

1,−Aix
2, ...,−Aix

m
)
.

Now it is possible to pass from the problem (9) to the problem in the form
(4) in the space H

T (p) ≡ Ax− p1B1x− ...− pmBmx = 0. (10)
Therefore, we retrieved the problem of �nding the set of parameters p1, ..., pm,

such that the equation (10) has a non-trivial solution x ∈ H \ {0}.
In correspondence to the problem (10) we put the variation problem:

F (u) → min
u

,u ∈ U ⊂ H,

where F (u) = 1
2 ‖T (p)x‖2

H , ∀u = {x, p} ∈ H = H⊕ Em.
As expected, the task is to �nd the set of parameters p = {p1, ..., pm} ∈ Em

and the corresponding vector x ∈ H\{0}, on which the functional F (u) reaches
its minimal value.

In order to solve the variation problem we use the iteration process (8).
Consequently, we obtain the solution of the initial inverse eigenvalue problem.
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