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Ðåçþìå. Ðîçãëÿíóòî çàäà÷ó Êîøi ðåêîíñòðóêöi¨ ïîëÿ çñóâó (ïåðåìiùåí-
íÿ) ïëàíàðíîãî êiëüöåïîäiáíîãî ëiíiéíîãî ïðóæíîãî òiëà, êîëè âiäîìî
âåêòîð ïåðåìiùåííÿ òà íàïðóæåíü íà çîâíiøíié ãðàíèöi. Øóêàíå çíà÷åí-
íÿ ïðåäñòàâëåíå ó âèãëÿäi åëàñòîñòàòè÷íîãî ïîòåíöiàëó ïðîñòîãî øàðó
ïî äâîõ ãðàíèöÿõ òiëà, ùî ìiñòèòü äâi íåâiäîìi ãóñòèíè. Âèêîðèñòîâóþ÷è
çàäàíi ãðàíè÷íi óìîâè, îòðèìàíî ñèñòåìó iíòåãðàëüíèõ ðiâíÿíü äëÿ çíà-
õîäæåííÿ öèõ ãóñòèí. Äîñëiäæåíî âëàñòèâîñòi ñèñòåìè, çäiéñíåíî äèñêðå-
òèçàöiþ çà ñõåìîþ Íèñòüîìà òà ðåãóëÿðèçàöiþ Òiõîíîâà. Íàâåäåíi ÷èñåëü-
íi ðåçóëüòàòè ïîêàçóþòü, ùî ïåðåìiùåííÿ òà âiäïîâiäíå ïîëå íàïðóæåíü
íà ãðàíèöi, äå íå çàäàíî ïî÷àòêîâèõ çíà÷åíü, ìîæíà äîñòàòíüî òî÷íî
ðåêîíñòðóþâàòè ÿê äëÿ òî÷íèõ âõäiíèõ äàíèõ, òàê i äëÿ äàíèõ ç ïîõèáêîþ.
Abstract. The Cauchy problem of reconstructing the displacement �eld of a
planar annular linear elastic body from knowledge of the displacement vector
and normal stress (traction) on the outer boundary is considered. The sought
�eld is represented in terms of a single-layer elastic potential over the two
boundary curves of the body involving two unknown densities. These densities
are found by imposing the given boundary conditions, rendering a system of
two boundary integrals to be solved for the densities. Properties of this system
is investigated, and discretisation is done via a Nystr�om scheme together with
Tikhonov regularization. Numerical results are included showing that the
displacement can be accurately reconstructed in a stably way both for exact
and noisy data together with the corresponding stress �eld on the boundary
part where no information is initially given.

1. Introduction
Let D ⊂ R2 be an annular planar domain with su�ciently smooth boundaries

Γ1 and Γ2. Each boundary part is a simple closed curve, and Γ1 is contained
in the bounded interior of Γ2. The domain D is then the bounded region in-
between Γ1 and Γ2 as illustrated in Fig. 1. We consider D to be a representative
for a planar linear isotropic elastic body.

In some applications it is not possible to take measurements throughout the
boundary of D. There can be a hostile environment or the body can be partly
buried making only a part of the boundary accessible for measurements.

We assume that the external boundary Γ2 is accessible for measurements
but not Γ1. Our aim is to reconstruct the missing data on Γ1. We work in
the setting of elastostatics (static elastic deformation), and, as mentioned, D is

Key words. Elastostatics, Cauchy problem, boundary integral equation method, trigono-
metrical quadrature method.
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considered as a planar linear isotropic material. The displacement vector u =
(u1, u2) ∈ C2(D)∩C1(D) describes the deformation of D. Under the standard
assumptions of elastostatics (in particular small deformations of an isotropic
and homogeneous linear elastic material) the displacement �eld satis�es the
Navier equation

µ∆u + (λ + µ)grad divu = 0 in D, (1)
with the constants µ and λ (µ > 0, λ > −µ) being the Lam�e coe�cients
characterizing physical properties of the body.

We assume that the displacement and normal stress (the traction �eld) can
be measured on Γ2, giving respectively the Dirichlet boundary condition

u = f on Γ2 (2)
and Neumann boundary condition

Tu = g on Γ2. (3)
The vector functions f and g are given, and are commonly termed as Cauchy
data. The element Tu is the stress tensor (due to molecular interactions from
the deformation) in the outward unit normal direction to the boundary and is
denoted as the traction. The traction can be expressed as

Tu = λdivu ν + 2µ(ν · grad)u + µdiv(Qu)Qν,

where ν is the outward unit normal vector to the boundary, and the matrix Q

is given by Q =
(

0 1
−1 0

)
. The introduction of the matrix Q makes for an easy

way to express the last term in the right-hand side in the de�nition of Tu in
the planar case, which otherwise has to be written in terms of a projection of
a rotational �eld.

The Cauchy problem in elastostatics is then to solve (1)�(3), and in particu-
lar to �nd the displacement and traction on the boundary part Γ1. Uniqueness
is clear from standard results of elliptic equations such as the Holmgren the-
orem. However, the solution will not in general depend continuously on the
data, that is the Cauchy problem is ill-posed. We tactically assume that the
data are compatibly such that there exists a displacement �eld u.

In [3], an overview is given of a regularizing method based on a single-layer
approach for the stable numerical solution to the corresponding classical Cauchy
problem for the Laplace equation (for both two and three dimensional regions).
The method surveyed builds on ideas given in [6] and [1]. We continue the work
of [3], by extending the single-layer approach to the above Cauchy problem in
elastostatics.

The Cauchy problem for elliptic equations is classical, and it is not possible
in this work to give adequate overview and references. To at least guide the
reader to some works, see the introduction in [2]. It is stationary heat trans-
fer problems that make up the majority of the works on numerical methods
for Cauchy problems, the corresponding results for elasticity is more limited.
However, the �rst and third author of the work [8] have been active on inverse
problems in elasticity, see for example [8, 9] and references therein (there are
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plenty more from these authors). However, the numerics is via the boundary
element method or the method of fundamental solutions for simply connected
domains. In [4] an iterative regularizing method is developed for the Cauchy
problem of elastostatics in a half-plane containing a bounded inclusion.

For the outline of the work, in Section 2, we recall the fundamental solution
to the Navier equation and discuss some classical integral formulations. In
Section 3, the Cauchy problem is reduced to a system of boundary integral
equations by representing the solution in terms of a single-layer solution over
the boundary curves giving two unknown densities to determine. Furthermore,
by parameterising the boundary curves, a parameterised system of integral
equations is obtained. Properties of system is stated, see Theorem 1. Then,
in Section 4, the parameterised system is discretised using a Nystr�om scheme.
The discrete linear system obtained is ill-conditioned due to the ill-posedness of
the Cauchy problem, hence Tikhonov regularization is invoked for its solution.
In Section 5, numerical examples are presented for two di�erent planar regions,
showing that accurate and stable numerical results can be obtained both for
the displacement and traction on the boundary part Γ1. Some conclusions are
given in the �nal section, Section 6.

Fig. 1. Example of an annular planar domain D with boundary
parts Γ1 and Γ2

2. Reduction to integral equations by Betti's formula
Reduction of the Cauchy problem (1)�(3) to a system of integral equations

involves the use of the fundamental solution to the equation (1). In this section,
we recall that fundamental solution, and for the sake of completeness, we state
some direct representation formulas for the solution of (1)�(3). However, these
representation formulas will not be further used, instead, in the next section,
we introduce an alternative single-layer approach.
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It is known [7] that the fundamental solution of the Navier equation (1) is
given by

Φ(x, y) =
C1

2π
Ψ(x, y)I +

C2

2π
J(x− y), (4)

where
C1 =

λ + 3µ

µ(λ + 2µ)
, C2 =

λ + µ

µ(λ + 2µ)
,

and
Ψ(x, y) = ln

1
|x− y| , x, y ∈ R2, x 6= y.

Here, I is identity matrix (of size 2× 2), J is de�ned by the formula

J(ω) =
ωω>

|ω|2 , ω ∈ R2 \ {0}.

An analogue of the Green's formula for the Laplace equation is the so-called
Betti's formula for the Navier equation; details and derivation of this formula
can be found in for example [7]. Using Betti's formula, we seek the solution of
(1)�(3) in the form

u(x) =
∫

Γ1

[TyΦ(x, y)]> ψ1(y)− Φ(x, y)ψ2(y) ds(y) + B(x), x ∈ D, (5)

where
B(x) =

∫

Γ2

Φ(x, y)g(y)− [TyΦ(x, y)]> f(y) ds(y).

The unknown vector-densities ψ1 and ψ2 represent the sought values (Cauchy
data) on the inner inaccessible boundary Γ1, that is

ψ1(x) = u(x) and ψ2(x) = Tu(x), x ∈ Γ1.

The representation (5) is then matched against the Cauchy data, that is
against the displacement u(x) respectively traction Tu(x) on Γ2. Using classical
jump relations for the potentials in (5), we obtain the following system of
integral equations of the second kind,

1
2
ψ1(x)−

∫

Γ1

[TyΦ(x, y)]> ψ1(y) ds(y) +
∫

Γ2

Φ(x, y)ψ2(y) ds(y) = B(x),

1
2
ψ2(x)− Tx

∫

Γ1

[TyΦ(x, y)]> ψ1(y) ds(y)+

+
∫

Γ2

TxΦ(x, y)ψ2(y) ds(y) = TB(x),

(6)

where x ∈ Γ1.
The described method of reducing the problem (1)�(3) to the above system

of integral equations (IE) is naturally denoted the direct integral equation ap-
proach. We do not employ this but consider a related alternative strategy based
on single-layer potentials.
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3. Reduction to integral equations by potential theory
To reduce the Cauchy problem (1)�(3) to a the system of integral equations,

we apply what is termed as an indirect integral equations approach based on
potential theory.

We seek the solution of (1)�(3) as a single�layer elastic potential

u(x) =
∫

Γ1

Φ(x, y)ϕ1(y) ds(y) +
∫

Γ2

Φ(x, y)ϕ2(y) ds(y), x ∈ D (7)

with unknown vector-densities ϕ1 and ϕ2. We have the following result.
Proposition 1. The single-layer potential (7) is the solution of the Cauchy
problem (1)�(3) provided that the densities ϕ1 and ϕ2 are solutions of the fol-
lowing system of integral equations∫

Γ1

Φ(x, y)ϕ1(y) ds(y) +
∫

Γ2

Φ(x, y)ϕ2(y) ds(y) = f(x), x ∈ Γ2,

∫

Γ1

TxΦ(x, y)ϕ1(y) ds(y) +
1
2
ϕ2(x)+

+
∫

Γ2

TxΦ(x, y)ϕ2(y) ds(y) = g(x), x ∈ Γ2.

(8)

A proof of the proposition is obtained by matching the representation against
the given Cauchy data involving classical jump relations for elastic single-layer
potentials (for formulas, see [5, 7]).

There are singularities present in kernels in the above system. It is advan-
tageous, both for theoretical and numerical investigations, to parameterise the
system and make the singularities explicit. For the parameterisation, assume
that the boundary curves Γ1 and Γ2 each have a parametric representation

Γi := {xi(t) = (xi1(t), xi2(t)) : t ∈ [0, 2π]}, i = 1, 2,

where xi1 and xi2 are both 2π�periodic and twice continuously di�erentiable.
Using the representation of the boundary curves, we obtain from (8) the

parameterised system of integral equations,




1
2π

2π∫
0

K21(t, τ)µ1(τ) dτ + 1
2π

2π∫
0

K22(t, τ)µ2(τ) dτ = f(t),

1
2π

2π∫
0

N21(t, τ)µ1(τ) dτ + 1
2

µ2(t)
|x′2(t)| +

1
2π

2π∫
0

N22(t, τ)µ2(τ) dτ = g(t),
(9)

where
Kij(t, τ) = 2πΦ(xi(t), xj(τ)), i, j = 1, 2,

Nij(t, τ) =
1

|x′i(t)|
{

M1
ij(t, τ) + M2

ij(t, τ)
}

, i, j = 1, 2,

M1
ij(t, τ) = C3

(xi(t)− xj(τ)) · x′i(t)
|xi(t)− xj(τ)|2 Q, i 6= j,
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M2
ij(t, τ) =− (xi(t)− xj(τ)) ·Qx′i(t)

|xi(t)− xj(τ)|2
[
C3I + C4J̃(xi(t), xj(τ))

]
,

t 6= τ when i = j,

J̃(xi(t), xj(τ)) = J(xi(t)− xj(τ)), t 6= τ when i = j,

and

J̃(xi(t), xi(t)) =
x′i(t) [x′i(t)]

>

|x′i(t)|2
.

We have used the notation
f(t) = f(x2(t)), g(t) = g(x2(t)), µi(τ) = ϕi(xi(τ))|x′i(τ)|, i = 1, 2,

and de�ned
C3 = − 2µ

λ + 2µ
and C4 =

4(λ + µ)
λ + 2µ

.

The kernels K22 and N22 (to be precise the component M1
22) have singu-

larities that can be written in an additive way using special weight functions.
Put

Kii(t, τ) = K̃i(t, τ)− C1

2
ln

{
4
e

sin2 t− τ

2

}
I, i = 1, 2, (10)

where

K̃i(t, τ) =





Kii(t, τ) + C1
2 ln

{
4
e sin2 t−τ

2

}
I, t 6= τ,

C1
2 ln 1

e|x′i(t)|2 I + C2J̃(xi(t), xi(t)), t = τ.

Similar manipulations can be done for the kernels N11 and N22. Denote by

M1
ii(t, τ) = M3

i (t, τ) +
C3

2
cot

t− τ

2
Q, i = 1, 2.

Then,

M3
i (t, τ) =





M1
ii(t, τ)− C3

2 cot t−τ
2 Q, t 6= τ,

−C3
2

x′i(t)·x′′i (t)

|x′i(t)|2 Q, t = τ.

As a result of these expressions, we obtain

Nii(t, τ) = Ñi(t, τ) +
C3

2|x′i(t)|
cot

t− τ

2
Q, i = 1, 2, (11)

where

Ñi(t, τ) =





Nii(t, τ)− C3
2|x′i(t)| cot t−τ

2 Q, t 6= τ,

1
|x′i(t)|

{
M3

i (t, t) + M2
ii(t, t)

}
, t = τ.

Using for example L'Hopital's rule, it is straightforward to verify that the
components M2

ii are at least continuous across t = τ :

M2
ii(t, t) = −x′i(t) ·Qx′′i (t)

2|x′i(t)|2
[
C3I + C4J̃(xi(t), xi(t))

]
, i = 1, 2.
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Introduce the integral operators:

(Siiµi)(t) = 1
2π

2π∫
0

[
K̃i(t, τ)− C1

2 ln
{

4
e sin2 t−τ

2

}
I
]
µi(τ) dτ, i = 1, 2,

(Sijµj)(t) = 1
2π

2π∫
0

Kij(t, τ)µj(τ) dτ, i, j = 1, 2, i 6= j,

(Liiµi)(t) = 1
2π

2π∫
0

[
Ñi(t, τ) + C3

2|x′i(t)| cot t−τ
2 Q

]
µi(τ) dτ, i = 1, 2,

(Lijµj)(t) = 1
2π

2π∫
0

Nij(t, τ)µj(τ) dτ, i, j = 1, 2, i 6= j.

Taking into account the above expressions for the singularities in the kernels,
the system of integral equations (9) can be written in operator form:

{
(S21µ1)(t) + (S22µ2)(t) = f(t),
(L21µ1)(t) +

((
1
2I + L22

)
µ2

)
(t) = g(t). (12)

It can then be shown that for the operator corresponding to this system, the
following holds.

Theorem 1. The operator M : L2[0, 2π] × L2[0, 2π] → L2[0, 2π] × L2[0, 2π]
de�ned as

M =
(

S21 S22

L21
1
2I + L22

)

is injective and has a dense range.

This follows in the same way as for the corresponding theorem for the Laplace
operator; for details in the case of the Laplace operator, see [3].

4. Full discretization and Tikhonov regularization
For the discretization of the system (12) of integral equations, we use quadra-

tures rules that are based on trigonometric interpolation. The quadrature rules
presume introducing an equidistant mesh of nodal points,

tj =
π

n
j, j = 0, 2n− 1, n ∈ N. (13)

The operator S22 in (12) contains a logarithmic singularity. We therefore use
the quadrature

1
2π

2π∫

0

ln
{

4
e

sin2 t− τ

2

}
f(τ) dτ ≈

2n−1∑

j=0

Rj(t)f(tj), (14)

where Rj(t) is a weight function given by

Rj(t) := − 1
2n

{
1 + 2

n−1∑

k=1

cos k(t− tj)
k

+
cosn(t− tj)

n

}
.
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For a singularity of the kind contained in the operator L22 in (12), we apply
instead the quadrature formula

1
2π

2π∫

0

cot
τ − t

2
f(τ), dτ ≈

2n−1∑

j=0

T̃j(t)f(tj), (15)

with a weight function

T̃j(t) := − 1
n

n−1∑

k=1

sin k(t− tj)− 1
2n

sinn(t− tj).

Since we work with 2π-periodic functions, it natural to use the trapezoidal rule

1
2π

2π∫

0

f(τ) dτ ≈ 1
2n

2n−1∑

j=0

f(tj). (16)

Derivation of the quadrature formulas (14)�(16), and proof of their order of
convergence can be found in [5].

For a partial discretization of the system of integral equations (12), we apply
the quadrature formulas (14)�(16) on the equidistant nodal points (13). After
then also collocating at these points, we obtain a system of linear equations





1
2n

2n−1∑
j=0

K21(ti, tj)µ1j +
2n−1∑
j=0

[
1
2nK̃2(ti, tj)− C1

2 Rj(ti)I
]
µ2j = f(ti),

1
2n

2n−1∑
j=0

N21(ti, tj)µ1j+
{

1
2|x′2(ti)|I +

2n−1∑
j=0

[
1
2nÑ2(ti, tj)− C3

2|x′2(ti)| T̃j(ti)Q
]}

µ2j = g(ti),

(17)

where i = 0, 2n− 1, and
µkj ≈ µk(tj), k = 1, 2, j = 0, 2n− 1.

In a matrix-vector form, the system (17) can be written as
Aµ̄ = F. (18)

As noted earlier, the problem (1)�(3) is ill-posed (there is no continuous
dependence with respect to the input data). Hence, the system (12) is also
ill-posed. A consequence of this is that the discrete linear system (17) is ill-
conditioned, since it is obtained from (12). In order to obtain a stable numerical
solution to (12), a regularizing method is needed. One such method is, for
example, the classical Tikhonov regularization.

Tikhonov regularization for a linear system Ax = b is based on minimizing
the functional

min
x
‖Ax− b‖2

2 + α‖x‖2
2,

where the number α > 0 is the regularization parameter to be appropriately
chosen.
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The minimization problem is reduced to the approximation of xα from the
equality

(αI + A∗A)xα = A∗b,
where A∗ is adjoint operator of A.

In the case of a discrete system as (17), the usual transposed matrix A> acts
as an adjoint operator to the matrix A. Therefore, the regularization for (17)
consists in �nding µ̄α from the system

(αI + A>A)µ̄α = A>F, (19)
where the matrix A and vector F are determined in accordance with (17).

Taking into account the representation (7) of the solution to the Cauchy
problem (1)�(3) and classical properties of the single-layer potential, the dis-
placement vector u and traction Tu can be constructed on the inner boundary
Γ1 by the formulas

u(x) = (S11ϕ1)(x) + (S12ϕ2)(x), x ∈ Γ1

and
Tu(x) =

((
−1

2
I + L11

)
ϕ1

)
(x) + (L12ϕ2)(x), x ∈ Γ1.

We generate an approximation to the quantities in discrete form by the formulas

u(x1(ti)) ≈
2n−1∑

j=0

[
1
2n

K̃1(ti, tj)− C1

2
Rj(ti)I

]
µ1j+

1
2n

2n−1∑

j=0

K12(ti, tj)µ2j ,

i = 0, 2n− 1

(20)

and

Tu(x1(ti)) ≈ −1
2

µ1i

|x′1(ti)|
+

2n−1∑

j=0

[
1
2n

Ñ1(ti, tj)− C3

2|x′1(ti)|
T̃j(ti)Q

]
µ1j+

1
2n

2n−1∑

j=0

N12(ti, tj)µ2j , i = 0, 2n− 1,

(21)

where µkj is the solution of the regularized system (19).

5. Numerical experiments
We shall present numerical results for two di�erent con�gurations.
Example 1. Consider the annular domain of Fig. 2 having boundary curves

Γ1 =
{

x1(t) = (1.2 cos t, 1.6
√

0.4 sin2 t + cos2 t sin t) : t ∈ [0, 2π]
}

,

Γ2 =
{

x2(t) = (3 cos t, 4
√

0.4 sin2 t + cos2 t sin t) : t ∈ [0, 2π]
}

.

As the exact solution to compare our numerical reconstructions with, we take
uex(x) = Φ1(x, y∗), x ∈ D,

where Φ1 is the �rst column of the matrix constituting the fundamental solution
Φ in (4), and y∗ is an arbitrary point which does not belong to the domain D.
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Fig. 2. Domain in Example 1

Then boundary values of the solution uex can be calculated exactly by the
formulas

fex_i(x) = Φ1(x, y∗) and gex_i(x) = TΦ1(x, y∗), x ∈ Γi, i = 1, 2.

(a)

α δ = 0

E-10 3.94E-4

E-11 9.37E-5

E-12 2.92E-5

E-13 2.59E− 5

E-14 1.49E-4

E-15 1.33E-3

(b)

α δ = 0.03 δ = 0.05

E-2 3.97E-2 4.18E-2

E-3 2.81E-2 4.92E-2

E-4 3.65E− 3 5.36E− 3

E-5 7.39E-3 8.56E-3

E-6 1.02E-2 1.76E-2

E-7 3.32E-2 5.33E-2

Tabl. 1. Error in the reconstructed element f11 compared with
the exact solution, for di�erent parameters α in the case of (A)
exact and (B) noisy data with noise level δ

Let the Cauchy data (2) and (3) be generated as f = fex_2 and g = gex_2,
respectively. Concerning parameters, we use y∗ = (0, 0), the Lam�e coe�cients
are λ = 2, µ = 1, and the discretization parameter n = 32 in (13).
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(a) δ = 0

(b) δ = 0.03

(c) δ = 0.05

Fig. 3. Approximated ( ) and exact ( ) solutions of f11

(left) and f12 (right) for noise level δ

Due to the ill-posedness of the Cauchy problem, we apply Tikhonov regu-
larization as mentioned in the previous section. The regularizing parameter α
is chosen by trial and error. The optimal regularization parameter used is as
given in Table 1 for exact data and for noisy data having 3% and 5% random
pointwise error added into the data, respectively.
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(a) δ = 0

(b) δ = 0.03

(c) δ = 0.05

Fig. 4. Approximated ( ) and exact ( ) solutions of g11

(left) and g12 (right) for noise level δ

The number in bold is the value chosen for α.
To be more precise about noisy data, we point out that noisy data gδ is

generated from the exact value g as follows
gδ = g + δ(2η − 1)‖g‖L2 ,
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with noise level δ and a random value η ∈ (0, 1).
The approximation of the displacement f1 = (f11, f12) and traction g1 =

(g11, g12) on the inner boundary Γ1, are calculated according to the formu-
las (20) and (21). The obtained results are shown in the Fig. 3 and Fig. 4.

As expected, the displacement vector is more accurately reconstructed than
the traction. However, it is pleasing to see that also with noisy data, the
reconstructions of the traction components follow the exact values. When more
noise is added, the accuracy decreases but in a stable manner meaning that the
results still resembles the exact values.

To convince the reader that the results presented are not optimised but are
of the form to be expected for other con�gurations and data, we present results
for a di�erent domain and set of Cauchy data.
Example 2. In this example, we consider the doubly connected planar

domain shown in Fig. 5. The boundary curves have parametric representation
given by:

Γ1 =
{
x1(t) = (0.7 cos t, 0.72 sin t + 0.6 cos2 t) : t ∈ [0, 2π]

}
,

Γ2 =
{
x2(t) = (1.8 cos t, 1.68 sin t + 1.4 cos2 t) : t ∈ [0, 2π]

}
.

Fig. 5. Domain in Example 2

To have some data to compare against, we generate the Cauchy data arti�-
cially. This means that we �rst solve a Dirichlet boundary value problem, with
values on the boundary curves as

fi(x) =
(

x1 + x2

5x1 − x2

)
, x = (x1, x2) ∈ Γi, i = 1, 2.

Let the Lam�e parameters be λ = 2, µ = 2, and the discretization parameter is
set to n = 32 in (13).
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(a)

α δ = 0

E-7 6.47E-5

E-8 1.42E-5

E-9 4.27E-6

E-10 1.22E− 6

E-11 2.61E-6

E-12 2.59E-5

(b)

α δ = 0.03 δ = 0.05

E-1 1.52E-1 2.11E-1

E-2 2.45E-1 2.97E-1

E-3 3.78E-2 5.66E-2

E-4 2.55E− 2 3.13E− 2

E-5 8.57E-2 8.01E-2

E-6 1.71E-1 2.08E-1

Tabl. 2. Error in the reconstructed element f12 compared with
the exact solution, for di�erent parameters α in the case of (a)
exact and (b) noisy data with noise level δ

Let the solution of the above Dirichlet problem be given as a single-layer
elastic potential (7). After performing the similar manipulations that have
been described for the Cauchy problem (that is parameterisation of the obtained
system, making singularities explicit and then discretize), we obtain a system
of linear equations
2n−1∑

j=0

[
1
2n

K̃m(ti, tj)− C1

2
Rj(ti)I

]
µmj+

1
2n

2n−1∑

j=0

Kml(ti, tj)µlj = fm(xm(ti)),

i = 0, 2n− 1, m = 1, 2, l = 3−m.

Solving for µmj , we can then calculate the Neumann boundary values by the
formula

gm(xm(ti)) ≈

≈ (−1)m 1
2

µmi

|x′m(ti)| +
2n−1∑

j=0

[
1
2n

Ñm(ti, tj)− C3

2|x′m(ti)| T̃j(ti)Q
]

µmj+

+
1
2n

2n−1∑

j=0

Nml(ti, tj)µlj , i = 0, 2n− 1, m = 1, 2, l = 3−m.

(22)

The Cauchy data in (2) and (3) is then generated as f = f2 and g = g2.
As in the previous example, we have to choose a regularization parameter α.

The values used are given in bold in Table 2.
The numerical approximation of the Cauchy data on the inner boundary

Γ1 is found via the formulas (20) and (21). The results obtained are shown in
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(a) δ = 0

(b) δ = 0.03

(c) δ = 0.05

Fig. 6. Approximated ( ) and exact ( ) solutions of f11

(left) and f12 (right) for noise level δ

Fig. 6 and Fig. 7. It should be noted that in this example what is denoted as the
exact Neumann data in the Cauchy problem is in fact an approximation since
it is generated via solving the Dirichlet problem as explained above. But since
the direct Dirichlet problem is well-posed and the discretization parameter is
su�ciently large (n = 32), a high-order accuracy of the data generated by (22)
is expected.
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(a) δ = 0

(b) δ = 0.03

(c) δ = 0.05

Fig. 7. Generated ( ) and approximated ( ) solutions of
g11 (left) and g12 (right) for noise level δ

The obtained results are similar to those found in the previous example.
The traction vector is also here reconstructed with less accuracy than the

placement as expected but follows the exact solution.

6. Conclusion
A regularizing method based on the elastic single-layer potential was derived

for the Cauchy problem in elastostatics. The Cauchy data in the form of the
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displacement and traction is given on the outer boundary curve of a planar an-
nular and linear isotropic body. From the single-layer representation, a system
of boundary integrals to be solve for two unknown densities were obtained by
matching against the data. It was shown that the system has at most one solu-
tion, and that there exists a solution for a dense set of square integrable data.
Discretisation was done via a Nystr�om scheme in conjunction with Tikhonov
regularization. Special care was taken to handle the various singularities in
the kernels. The suggested approach performs well as veri�ed by two numeri-
cal examples. The reconstructions corroborated well both for the displacement
vector and traction with the sought solutions, also in the case of noisy data.
The traction vector is naturally found with less accuracy. Overall, the outlined
approach is a lightweight and �exible method for elastostatic Cauchy prob-
lems, and generalizes naturally earlier work [3] on a single-layer approach for
the Cauchy problem for the Laplace equation.
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