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ON A BOUNDARY INTEGRAL EQUATION METHOD
FOR ELASTOSTATIC CAUCHY PROBLEMS
IN ANNULAR PLANAR DOMAINS

R.S. CHAPKO, B. T. JOHANSSON, M. V. SHKOLYK

PE3IOME. Posrnaayro 3amaay Komri pekoncrpykmil moss 3cyBy (mepemimen-
H#) IUIAHAPHOIO KiAbUenoaiGHOro JiHIKHOrO HPY2KHOrO Tija, KOJIH BiJOMO
BEKTOD IIepeMilleHHs Ta HAIPYyKeHb Ha 30BHiMHIN rpanuni. [llykane 3Haven-
Hsl IPEeACTaBJIeHE Y BUIJISl €JaCTOCTATUYIHOIO MOTEHIHa/y MIPOCTOrO IIapy
10 BOX T'PAHMUIAX TiIa, IO MICTUTH Bl HeBimoMmi ryctuan. BukopucroByioun
3aJaHi TPAaHUYHI YMOBH, OTPHUMAHO CHUCTEMY iHTerpajIbHUX DIBHAHD IJId 3HA-
XO/IZKEHHS TUX I'yCTUH. JJ0CIiI7KeHO BJIaCTUBOCTI CHCTEMU, 3IIHCHEHO TUCKPe-
Tu3anio 3a cxemoio Hucrtroma ta perynsipusarnio Tixonosa. Haseneni uncemnn-
Hi pe3y/JIbTATU NOKA3YIOTh, IO IepeMillleHHd Ta BiAIIOBigHE IOJIe HAIPYyKeHb
Ha TPAHUI, € He 3aJaHO0 IOYATKOBUX 3HAYEHb, MOXKHA JIOCTATHHO TOYHO
PEKOHCTPYIOBATH #K /ISt TOYHUX BX/AIHUX JAHUX, TaK 1 /I JaHUX 3 [IOXUOKOIO.
ABsTRACT. The Cauchy problem of reconstructing the displacement field of a
planar annular linear elastic body from knowledge of the displacement vector
and normal stress (traction) on the outer boundary is considered. The sought
field is represented in terms of a single-layer elastic potential over the two
boundary curves of the body involving two unknown densities. These densities
are found by imposing the given boundary conditions, rendering a system of
two boundary integrals to be solved for the densities. Properties of this system
is investigated, and discretisation is done via a Nystrom scheme together with
Tikhonov regularization. Numerical results are included showing that the
displacement can be accurately reconstructed in a stably way both for exact
and noisy data together with the corresponding stress field on the boundary
part where no information is initially given.

1. INTRODUCTION

Let D C R? be an annular planar domain with sufficiently smooth boundaries
I'y and I's. Each boundary part is a simple closed curve, and I'; is contained
in the bounded interior of I'y. The domain D is then the bounded region in-
between I'y and I'e as illustrated in Fig. 1. We consider D to be a representative
for a planar linear isotropic elastic body.

In some applications it is not possible to take measurements throughout the
boundary of D. There can be a hostile environment or the body can be partly
buried making only a part of the boundary accessible for measurements.

We assume that the external boundary I's is accessible for measurements
but not I'y. Our aim is to reconstruct the missing data on I'y. We work in
the setting of elastostatics (static elastic deformation), and, as mentioned, D is

Key words. Elastostatics, Cauchy problem, boundary integral equation method, trigono-
metrical quadrature method.
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considered as a planar linear isotropic material. The displacement vector u =
(u1,u2) € C%(D)NCY(D) describes the deformation of D. Under the standard
assumptions of elastostatics (in particular small deformations of an isotropic
and homogeneous linear elastic material) the displacement field satisfies the
Navier equation

pAu+ (A + p)grad divu =0 in D, (1)

with the constants g and A (u > 0,\ > —pu) being the Lamé coefficients
characterizing physical properties of the body.

We assume that the displacement and normal stress (the traction field) can
be measured on I'y, giving respectively the Dirichlet boundary condition

u=f on Iy (2)
and Neumann boundary condition
Tu=g on Ts. (3)

The vector functions f and g are given, and are commonly termed as Cauchy
data. The element T'u is the stress tensor (due to molecular interactions from
the deformation) in the outward unit normal direction to the boundary and is
denoted as the traction. The traction can be expressed as

Tu= Mivuv + 2u(v - grad)u + pdiv(Qu)Qv,

where v is the outward unit normal vector to the boundary, and the matrix Q)

01
-1 0
way to express the last term in the right-hand side in the definition of T'u in
the planar case, which otherwise has to be written in terms of a projection of
a rotational field.

The Cauchy problem in elastostatics is then to solve (1)-(3), and in particu-
lar to find the displacement and traction on the boundary part I';. Uniqueness
is clear from standard results of elliptic equations such as the Holmgren the-
orem. However, the solution will not in general depend continuously on the
data, that is the Cauchy problem is ill-posed. We tactically assume that the
data are compatibly such that there exists a displacement field u.

In [3], an overview is given of a regularizing method based on a single-layer
approach for the stable numerical solution to the corresponding classical Cauchy
problem for the Laplace equation (for both two and three dimensional regions).
The method surveyed builds on ideas given in [6] and [1]. We continue the work
of [3], by extending the single-layer approach to the above Cauchy problem in
elastostatics.

The Cauchy problem for elliptic equations is classical, and it is not possible
in this work to give adequate overview and references. To at least guide the
reader to some works, see the introduction in [2]. It is stationary heat trans-
fer problems that make up the majority of the works on numerical methods
for Cauchy problems, the corresponding results for elasticity is more limited.
However, the first and third author of the work [8] have been active on inverse
problems in elasticity, see for example [8,9] and references therein (there are

is given by Q) = ( . The introduction of the matrix () makes for an easy
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plenty more from these authors). However, the numerics is via the boundary
element method or the method of fundamental solutions for simply connected
domains. In [4] an iterative regularizing method is developed for the Cauchy
problem of elastostatics in a half-plane containing a bounded inclusion.

For the outline of the work, in Section 2, we recall the fundamental solution
to the Navier equation and discuss some classical integral formulations. In
Section 3, the Cauchy problem is reduced to a system of boundary integral
equations by representing the solution in terms of a single-layer solution over
the boundary curves giving two unknown densities to determine. Furthermore,
by parameterising the boundary curves, a parameterised system of integral
equations is obtained. Properties of system is stated, see Theorem 1. Then,
in Section 4, the parameterised system is discretised using a Nystrom scheme.
The discrete linear system obtained is ill-conditioned due to the ill-posedness of
the Cauchy problem, hence Tikhonov regularization is invoked for its solution.
In Section 5, numerical examples are presented for two different planar regions,
showing that accurate and stable numerical results can be obtained both for
the displacement and traction on the boundary part I';. Some conclusions are
given in the final section, Section 6.

x2

Iy

Fic. 1. Example of an annular planar domain D with boundary
parts I'; and T's

2. REDUCTION TO INTEGRAL EQUATIONS BY BETTI’'S FORMULA

Reduction of the Cauchy problem (1)-(3) to a system of integral equations
involves the use of the fundamental solution to the equation (1). In this section,
we recall that fundamental solution, and for the sake of completeness, we state
some direct representation formulas for the solution of (1)—(3). However, these
representation formulas will not be further used, instead, in the next section,
we introduce an alternative single-layer approach.
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It is known [7] that the fundamental solution of the Navier equation (1) is
given by

O Cy
where
A+ 3p A+ p
Cr=—F—-- 2= o
(A + 2p) (A + 2p)
and )
U(z,y) =In , Ty eR® xz#y.
[z -y
Here, I is identity matrix (of size 2 x 2), J is defined by the formula
T
ww 9\ (=

An analogue of the Green’s formula for the Laplace equation is the so-called
Betti’s formula for the Navier equation; details and derivation of this formula

can be found in for example [7|. Using Betti’s formula, we seek the solution of
(1)~(3) in the form

u(w) = [ B2 0] 01(y) ~ B y)valy) dsy) + B@), we D, (5)
I

where

B() = [ 2@ 0)9(w) - 1,0 0)]" £0)ds(v).

I

The unknown vector-densities ¥; and 1o represent the sought values (Cauchy
data) on the inner inaccessible boundary I'1, that is

Y1(z) =u(x) and to(x) =Tu(z), =€l

The representation (5) is then matched against the Cauchy data, that is
against the displacement u(x) respectively traction Tu(x) on I's. Using classical
jump relations for the potentials in (5), we obtain the following system of
integral equations of the second kind,

301 = [ I )] ) dsty) + [ @ y)iaty) dsty) = B,

T I'a
3020~ To [ [1,8(00))T a(0) ds(o)+ ©
I't
+ / 02, y)bs(y) ds(y) = TB(x),
I'a

where z € T';.

The described method of reducing the problem (1)—(3) to the above system
of integral equations (IE) is naturally denoted the direct integral equation ap-
proach. We do not employ this but consider a related alternative strategy based
on single-layer potentials.
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3. REDUCTION TO INTEGRAL EQUATIONS BY POTENTIAL THEORY
To reduce the Cauchy problem (1)—(3) to a the system of integral equations,
we apply what is termed as an indirect integral equations approach based on
potential theory.
We seek the solution of (1)-(3) as a single-layer elastic potential

u(z) = / B (2, )1 (y) ds(y) + / (e, y)pr(y)ds(y), z€D  (7)
I Iy

with unknown vector-densities 1 and ¢2. We have the following result.

Proposition 1. The single-layer potential (7) is the solution of the Cauchy
problem (1)—(3) provided that the densities 1 and a2 are solutions of the fol-
lowing system of integral equations

/‘P(fr,y)sm(y) dS(y)+/<1>(w7y)s02(y) ds(y) = f(z), =z €Ty,

T 1)
/Tx‘b(x,y)sol(y) ds(y) + %wz(ﬂf)Jr 8)
Iy
+ [ Tblay)ea) dsty) = g(a), @€ T
1)

A proof of the proposition is obtained by matching the representation against
the given Cauchy data involving classical jump relations for elastic single-layer
potentials (for formulas, see [5,7]).

There are singularities present in kernels in the above system. It is advan-
tageous, both for theoretical and numerical investigations, to parameterise the
system and make the singularities explicit. For the parameterisation, assume
that the boundary curves I'y and I'y each have a parametric representation

I = {xz(t) = (:cil(t),xig(t)) 1t e [0,271’]}, 1=1,2,

where x;; and x;2 are both 2n—periodic and twice continuously differentiable.
Using the representation of the boundary curves, we obtain from (8) the
parameterised system of integral equations,

L zf’TKm(t, P (r)dr + zer?Q(t,T)ug(r) dr = (1)
)

2w 2m
9 J Naw(t,7)pa(7) dr + 5 mt + 57 [ Naa(t, )pa(7) dr = g(1),
0 0

2 [z (t)

where
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M2 (t,7) = — (xi(fliztfj_(;)j)(}ﬁf;(t) CsI + Oy (wilt), z5(7)) |,

t %17 when =y},
J(i(t), mj(r)) = J(2i(t) — ;(7)), t#7 when i=j,
and
7 ) )"
J(zi(t), zi(t)) = TEOP
We have used the notation
f(t) = flxa(t), g(t) = g(x2(t), pilr) = @i(wi(7))|23(7)], i=1,2,
and defined

2u 4N+ p)
C3 = — d Cp=——7—.
5T T hta2n MMOMET N
The kernels Koo and Noo (to be precise the component Mj,) have singu-

larities that can be written in an additive way using special weight functions.
Put

~ C 4 t—
Kii(t,7) = Ki(t,7) — Al g2 I, i=1,2, (10)
2 e 2
where
Kii(t,7)+%ln{451n2u}l t#£T,

Ki(t,7) =

%ln PFAC )‘QI—i— CQJ(ZU@( ), xi(t)), t=rT.

Similar manipulations can be done for the kernels N1; and Noo. Denote by

t—T1

C
MA(t,7) = M3(t,7) + = cot

5 5@ i=12
Then,
Mili(taT) - St 5RQ,  t#T,
M3(t,7) =
6123 Z |2 Q, t =T.
As a result of these expressions, we obtaln
~ 03 t—T
N;i(t, 7) = N;(t t 1 =1,2 11
ll( )T) Z( 7T)+ 2|x;(t)’C0 2 Q) 1 <~ ( )
where
Cs t—r1
Nii(t,T) 2|:c 6] cot - Q, t 75 T,

Ni(t,’r) =
M){M?’(t t) + MA(t, t)} t=r.

Using for example L’Hopital’s rule, it is straightforward to verify that the
components MZ% are at least continuous across t = 7:
(1) - Q1)

2 _
Mt === o

[031 + O T (24(t), xi(t))} L i=1,2.
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Introduce the integral operators:

2m -
(Siipi)(t) = % [Kl‘(tﬂ') — %ln {% sin? &5 T}I} wi(r)dr, i=1,2,
0
2
(Siju)(t) = 5= [ Kij(t,7)pj (1) dr, 4,5 =1,2, i # ],
0
2m -
(Lii/li)(t) = % J [Ni(tﬂ') + 22 (D] ( )] cot 55T TQ} Mz( )d 1=1,2,
2

(Lijp)(t) = 5= Of Nij(t, T)py(T)dr, 0,5 =1,2, i#j.

Taking into account the above expressions for the singularities in the kernels,
the system of integral equations (9) can be written in operator form:

{ (S2111) () + (S22p12) (t) = f(2), (12)
(Loypn)(t) + ((31 + Lo2) p2) (t) = g(t).

It can then be shown that for the operator corresponding to this system, the
following holds.

Theorem 1. The operator M : Lo[0,27] x L9[0,27] — L2|0,27] X L2|0, 27]

defined as
So1 So2
M =
(L21 I+ L22>

15 injective and has a dense range.

This follows in the same way as for the corresponding theorem for the Laplace
operator; for details in the case of the Laplace operator, see [3].

4. FULL DISCRETIZATION AND TIKHONOV REGULARIZATION

For the discretization of the system (12) of integral equations, we use quadra-
tures rules that are based on trigonometric interpolation. The quadrature rules
presume introducing an equidistant mesh of nodal points,

tj:%j’ j=0,2n—-1, neN. (13)

The operator Sag in (12) contains a logarithmic singularity. We therefore use
the quadrature
2n—1

1 4
27T/ln{esm } )dr ~ Z R;(t) (14)

where R;(t) is a weight function given by

1 Q — 1.
e sl )
k=
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For a singularity of the kind contained in the operator Lgs in (12), we apply
instead the quadrature formula

1 27 ¢ 2n—1
27T/cot 5 f(r),dr =~ Z T;(t) f(t5), (15)
0 =0

with a weight function

n—1

1 1
Ty(t) == —— > sink(t —t;) - 5 sinn(t —t;).
k=1

Since we work with 27-periodic functions, it natural to use the trapezoidal rule

2n—1

2
;[mmw;zym. (16)
0 J=

Derivation of the quadrature formulas (14)-(16), and proof of their order of
convergence can be found in [5].

For a partial discretization of the system of integral equations (12), we apply
the quadrature formulas (14)-(16) on the equidistant nodal points (13). After
then also collocating at these points, we obtain a system of linear equations
) 2n—1 2n—1 1~ c
b ZO Kor(ti, t)pj + ZO [%Kﬂtmfj) - %Rj(ti)f] poj = f(ti),

- j=

J
2n—1

o ZO Noi (ti, t) paj+ (17)
]:

2n—1
- o~
{2wél(ti)l+ J;o {ﬁ]\@(ti?tj) - 2|x’2€ti)|j-‘j(ti>Q:| } p2; = g(ti),

where i = 0,2n — 1, and
g = pe(t;), k=1,2, j=0,2n—1.
In a matrix-vector form, the system (17) can be written as
Aji=F. (18)

As noted earlier, the problem (1)-(3) is ill-posed (there is no continuous
dependence with respect to the input data). Hence, the system (12) is also
ill-posed. A consequence of this is that the discrete linear system (17) is ill-
conditioned, since it is obtained from (12). In order to obtain a stable numerical
solution to (12), a regularizing method is needed. One such method is, for
example, the classical Tikhonov regularization.

Tikhonov regularization for a linear system Ax = b is based on minimizing
the functional

min | Az — B[ + afl«|3,

where the number a > 0 is the regularization parameter to be appropriately
chosen.
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The minimization problem is reduced to the approximation of z, from the
equality
(ol + A*A)zy = A™D,
where A* is adjoint operator of A.
In the case of a discrete system as (17), the usual transposed matrix AT acts
as an adjoint operator to the matrix A. Therefore, the regularization for (17)
consists in finding ji, from the system

(ol + ATA)ji, = A'F, (19)

where the matrix A and vector F are determined in accordance with (17).

Taking into account the representation (7) of the solution to the Cauchy
problem (1)—(3) and classical properties of the single-layer potential, the dis-
placement vector v and traction Tu can be constructed on the inner boundary
Ty by the formulas

u(z) = (S1p1)(w) + (S122)(z), =€l

T () a) @ . s

We generate an approximation to the quantities in discrete form by the formulas

2n—1 1 C 2n—1
1
wor(t) ~ 3 | et = SR st 5 3 Kialtinty
=0 =0 (20)
i=02n—1
and
2n—1 C
.~
Tu(z1(t:)) ~ + Z [ Ni(ti,t;) MTJ(E)Q] P+
7= o 21
1 2n—1 ( )
7n Z N12(ti7tj)u2j7 ’LZO,QTL—I,
=0

where 5 is the solution of the regularized system (19).

5. NUMERICAL EXPERIMENTS
We shall present numerical results for two different configurations.
Example 1. Consider the annular domain of Fig. 2 having boundary curves

I, = {xl(t) = (1.2 cost, 1.61/0.4sin2¢ + cos?tsint): t € [0,271]},

Iy = {:L‘z(t) = (3 cost, 4v/0.45in2 t + cos? tsin t): telo, 277]} .
As the exact solution to compare our numerical reconstructions with, we take
Uez () = P1(x,y"), x €D,
where @1 is the first column of the matrix constituting the fundamental solution

® in (4), and y* is an arbitrary point which does not belong to the domain D.
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Then boundary values of the solution u., can be calculated exactly by the

FiG. 2. Domain in Example 1

formulas
fem_i(ac) =®y(x,y*) and gm_i(m) =T (x,y"), xely i=1,2.
(4) (B)

« 6=0 « 6 =0.03 6 =0.05
E-10 | 3.94E4 E-2| 3.97E-2 4.18E-2
E-11 9.37E-5 E-3 2.81E-2 4.92E-2
E-12 2.92E-5 E-4| 3.65E—-3 | 5.36E — 3
E-13 | 2.59E - 5 E-5| 7.39E-3 8.56E-3
E-14 1.49E-4 E-6 1.02E-2 1.76E-2
E-15 1.33E-3 E-7 3.32E-2 5.33E-2

TABL. 1. Error in the reconstructed element fi; compared with
the exact solution, for different parameters « in the case of (A)
exact and (B) noisy data with noise level §

Let the Cauchy data (2) and (3) be generated as f = fez 2 and g = gex 2,
respectively. Concerning parameters, we use y* = (0,0), the Lamé coefficients
are A =2, u =1, and the discretization parameter n = 32 in (13).
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Fi1G. 3. Approximated (——) and exact (- --) solutions of fi;

(left) and fi2 (right) for noise level §

Due to the ill-posedness of the Cauchy problem, we apply Tikhonov regu-
larization as mentioned in the previous section. The regularizing parameter «
is chosen by trial and error. The optimal regularization parameter used is as
given in Table 1 for exact data and for noisy data having 3% and 5% random
pointwise error added into the data, respectively.
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Fia. 4. Approximated ( ) and exact (- - -) solutions of g11
(left) and g12 (right) for noise level &

The number in bold is the value chosen for a.
To be more precise about noisy data, we point out that noisy data gs is
generated from the exact value g as follows

g5 =9+62n—1)9llr,»
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with noise level § and a random value n € (0,1).

The approximation of the displacement fi = (fi1, fi2) and traction g1 =
(911, 912) on the inner boundary I'1, are calculated according to the formu-
las (20) and (21). The obtained results are shown in the Fig. 3 and Fig. 4.

As expected, the displacement vector is more accurately reconstructed than
the traction. However, it is pleasing to see that also with noisy data, the
reconstructions of the traction components follow the exact values. When more
noise is added, the accuracy decreases but in a stable manner meaning that the
results still resembles the exact values.

To convince the reader that the results presented are not optimised but are
of the form to be expected for other configurations and data, we present results
for a different domain and set of Cauchy data.

Example 2. In this example, we consider the doubly connected planar
domain shown in Fig. 5. The boundary curves have parametric representation
given by:

Iy = {z1(t) = (0.7cost,0.72sint + 0.6 cos’t) : t €0, 2m)},
Ty = {22(t) = (1.8 cost, 1.68sint + 1.4cos’t) : ¢ € [0,27]}

) 'D\/' g T

Fic. 5. Domain in Example 2

To have some data to compare against, we generate the Cauchy data artifi-
cially. This means that we first solve a Dirichlet boundary value problem, with
values on the boundary curves as

. [ x1+t 2 . . .
fi(z) = <5$1 - 952) , = (xr1,me) €Ty, =12

Let the Lamé parameters be A = 2, u = 2, and the discretization parameter is
set to n =32 in (13).
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(4) (B)

a 5=0 a | §=0.03 | §=0.05
E-7 | 6.47E-5 E-1| 1.52E-1 2.11E-1
E-8 | 1.42E-5 E-2 | 245E-1 2.97E-1
E-9 | 4.27E-6 E-3 | 3.78E-2 5.66E-2
E-10 | 1.22E - 6 E-4 | 2.55E —2 | 3.13E — 2
E-11 | 2.61E-6 E-5| 8.57E-2 8.01E-2
E-12 | 2.59E-5 E-6 | 1.71E-1 2.08E-1

TABL. 2. Error in the reconstructed element fio compared with
the exact solution, for different parameters « in the case of (a)
exact and (b) noisy data with noise level ¢

Let the solution of the above Dirichlet problem be given as a single-layer
elastic potential (7). After performing the similar manipulations that have
been described for the Cauchy problem (that is parameterisation of the obtained
system, making singularities explicit and then discretize), we obtain a system
of linear equations
2n—1 2n—1

1 ~ Ch 1
Z [%Km(tutj) - 2Rj(ti>I] Hmjts Z Ko (tis tj) g = fin(zm (L),
7=0 7=0
i=0,2n—1,

m=1,2, [=3—m.

Solving for pi,;, we can then calculate the Neumann boundary values by the
formula

Im(Tm(ti)) =

2n—1
L i ~ Cs ~
~ (1) + [N (tit)) — ————Ti(t:)Q| pimj+
2 |zt ()] ; on” "V ol ()] " (22)
1 2n—1
+%2le(ti,tj)mj, i=0,2n—1, m=12 [=3—m.
§=0

The Cauchy data in (2) and (3) is then generated as f = fo and g = g¢o.

As in the previous example, we have to choose a regularization parameter a.
The values used are given in bold in Table 2.

The numerical approximation of the Cauchy data on the inner boundary
I'1 is found via the formulas (20) and (21). The results obtained are shown in
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Fi1G. 6. Approximated ( ) and exact (- - -) solutions of f11
(left) and fi2 (right) for noise level ¢

Fig. 6 and Fig. 7. It should be noted that in this example what is denoted as the
exact Neumann data in the Cauchy problem is in fact an approximation since
it is generated via solving the Dirichlet problem as explained above. But since
the direct Dirichlet problem is well-posed and the discretization parameter is
sufficiently large (n = 32), a high-order accuracy of the data generated by (22)
is expected.
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Fi1G. 7. Generated (- - -) and approximated ( ) solutions of

g11 (left) and g1 (right) for noise level §

The obtained results are similar to those found in the previous example.
The traction vector is also here reconstructed with less accuracy than the

placement as expected but follows the exact solution.

6. CONCLUSION
A regularizing method based on the elastic single-layer potential was derived
for the Cauchy problem in elastostatics. The Cauchy data in the form of the
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displacement and traction is given on the outer boundary curve of a planar an-
nular and linear isotropic body. From the single-layer representation, a system
of boundary integrals to be solve for two unknown densities were obtained by
matching against the data. It was shown that the system has at most one solu-
tion, and that there exists a solution for a dense set of square integrable data.
Discretisation was done via a Nystrom scheme in conjunction with Tikhonov
regularization. Special care was taken to handle the various singularities in
the kernels. The suggested approach performs well as verified by two numeri-
cal examples. The reconstructions corroborated well both for the displacement
vector and traction with the sought solutions, also in the case of noisy data.
The traction vector is naturally found with less accuracy. Overall, the outlined
approach is a lightweight and flexible method for elastostatic Cauchy prob-
lems, and generalizes naturally earlier work [3] on a single-layer approach for
the Cauchy problem for the Laplace equation.
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