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Ðåçþìå. Ìè ðîçãëÿäà¹ìî iòåðàöiéíèé óçàãàëüíåíèé ìåòîä Ëàíäâåáåðà
äëÿ çàäà÷i Êîøi äëÿ ðiâíÿííÿ Ëàïëàñà ó äâîçâ'ÿçíèõ òðèâèìiðíèõ îáëàñ-
òÿõ. Öåé ìåòîä ¹ ðåãóëÿðèçóþ÷îþ ïðîöåäóðîþ äëÿ îòðèìàííÿ ñòàáiëüíîãî
ðîçâ'ÿçêó. Íà êîæíîìó êðîöi iòåðàöiéíîãî ìåòîäó ïîòðiáíî ðîçâ'ÿçàòè
äâi êîðåêòíi ïðÿìi çàäà÷i äëÿ ðiâíÿííÿ Ëàïëàñà. Êîæíà ïðÿìà çàäà÷à
âèðiøó¹òüñÿ ìåòîäîì ãðàíè÷íèõ iíòåãðàëüíèõ ðiâíÿíü iç çàñòîñóâàííÿì
ïðîåêöiéíîãî ìåòîäó Ãàëüîðêiíà äëÿ äèñêðåòèçàöi¨. Íàïðèêiíöi íàâåäåíi
äåÿêi ÷èñåëüíi ðåçóëüòàòè.
Abstract. We consider an iterative generalized Landweber method for the
Cauchy problem for the Laplace equation in doubly connected 3-dimensional
domains. This method is a regularizing procedure for obtaining a stable so-
lution to the Cauchy problem, and consists of solving two well-posed direct
problems for the Laplace equation at each iteration step. Each direct problem
is solved by a boundary integral equations method with a projection Galerkin
method for the discretisation. Some numerical results are given and discussed
as well at the end.

1. Introduction
The Cauchy problem for the Laplace equation has important applications.

For example, it occurs in electrostatics, non-destructive testing, cardiology,
leak identi�cation, etc. This problem belongs to the class of ill-posed linear
inverse problems, since it is unstable with respect to input data [7] (a small
remark here, the input Cauchy data should be compatible [6]). We focus on
the numerical solution of this Cauchy problem in three-dimensional doubly
connected domains.

The Cauchy problem can be solved numerically in a stable way by com-
bining direct methods, such as for example the boundary integral equations
method [4,10�12,15] or the method of fundamental solutions [14] etc, with some
regularization strategy, for example, Tikhonov regularization with an appropri-
ate way of selecting the regularization parameter like the Morozov discrepancy
principle or the L-curve method [4, 12, 15]. Another approach for numerically
solving the Cauchy problem is to use iterative methods, where the choice of the
termination of the iterations is part of the regularization. Numerical examples
show that iterative methods give good results in the case of noisy data, namely,

Key words. Laplace equation, Cauchy problem, Landweber method, Robin boundary
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domains.
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we can calculate an approximation with an error being equal to the noise level
or even smaller, by selecting a good strategy for the numerical implementa-
tion of the iterative approach. Commonly used methods are the alternating
method [5, 8, 12] and the Landweber procedure [12] in combination with the
boundary integral equations method for solving the direct problems needed in
both these iterative algorithms.

In this paper, we apply one recent approach being a generalized Landweber
method proposed in [2], for 3-dimensional doubly connected domains. The main
di�erence from the standard Landweber method is that we do not need to use
any adjoint operator, that is we do not need to involve any adjoint di�erential
equation.

We then describe more on the problem formulation. Let D1 ⊂ R3, D2 ⊂ R3

be simply connected smooth bounded domains with boundary surfaces Γ1 and
Γ2, respectively, that satisfy: D1 ⊂ D2. Let D = D2 \ D1 be the solution
domain and ν = (ν1, ν2, ν3)t the outward unit normal to the boundary of D;
this boundary is denoted by ∂D = Γ1 ∪ Γ2.

The Cauchy problem is then as follows. We need to �nd a classical solution
u ∈ C2(D) ∩ C1(D) of the Laplace equation:

∆u = 0 in D (1)

that satis�es the boundary conditions:

u = f and ∂u

∂ν
= g on Γ2. (2)

It is not the full solution in D that is of prime interest, it is instead to �nd
(reconstruct) the corresponding Cauchy data

{
u,

∂u

∂ν

}
on the interior boundary

surface Γ1.
As mentioned, for the numerical solution of the above problem, we apply

one adjoint-free Landweber method [2] being a regularizing procedure for ob-
taining a stable numerical solution [2]. At each step of the iterative procedure,
we need to solve the Dirichlet respectively the Robin direct problems for the
Laplace equation. We use the boundary integral equations method for solving
the required direct problems in the iterative method, and this choice is based
on good numerical results for domains in R2, see [11,12] as well as for domains
in R3 [4,5], together with advantages such as reduction of the dimension of the
problem and the �exibility in terms of the form of the boundary surfaces. As
a stopping rule for the iterations, the Morozov discrepancy principle is used.

The solution of each direct problem is represented as a combination of poten-
tials [4,9,12]. Based on this representation, we obtain a system of linear integral
equations for �nding the unknown densities by requiring that the given Cauchy
data should be satis�ed. For discretization Wienert's method is applied; it is
a Galerkin discrete projection method, where the unknown densities are rep-
resented as a linear combination of spherical harmonics [1] and the boundary
integrals are rewritten over the unit sphere, and to those obtained integrals
certain cubature rules are then applied [13,16].
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An outline of this work is: in Section 2, we consider the iterative algorithm,
the boundary integral equations method for one of the direct problems in the
procedure (having boundary conditions of Robin type) is given in Section 3 and
in Section 4 some numerical results are shown and discussed.

2. The iterative algorithm
We consider one of the iterative methods proposed in [2], in three-dimensional

doubly connected domains. At each iteration step, we need to solve one Dirich-
let and one Robin boundary value problem for the Laplace equation. The
algorithm is as follows:

� The �rst approximation u0 of the solution u is calculated by solving the
Dirichlet boundary value problem:

∆u0 = 0 in D, (3)
u0 = η0 on Γ1 and u0 = f on Γ2, (4)

where η0 is an arbitrary initial starting approximation on the boundary
Γ1.

� Then the element v0 is obtained by solving the Robin boundary value
problem:

∆v0 = 0 in D, (5)
∂v0

∂ν
+ κv0 = 0 on Γ1 and ∂v0

∂ν
+ κv0 = g − ∂u0

∂ν
on Γ2. (6)

� Having obtained uk−1 and vk−1, the approximation uk is obtained from
the Dirichlet boundary value problem:

∆uk = 0 in D, (7)
uk = ηk on Γ1 and uk = f on Γ2, (8)

where
ηk = ηk−1 + γvk−1|Γ1

, γ > 0. (9)
� Then the solution vk is obtained by solving the following Robin boundary

value problem:
∆vk = 0 in D, (10)

∂vk

∂ν
+ κvk = 0 on Γ1 and ∂vk

∂ν
+ κvk = g − ∂uk

∂ν
on Γ2. (11)

The iterative procedure then continues by iterating in the last two steps. The
stopping rule is the Morozov discrepancy principle. The initial approximation
is arbitrary for linear problems, and we select it as the zero-function.

The parameter κ in the Robin boundary condition is positive: κ > 0. The
parameter γ > 0 in the iterative procedure is a relaxation parameter, which is
needed for convergence of the algorithm [2].

The Dirichlet and Robin boundary value problems are well-posed in L2(D)
for boundary data from L2(Γ1) and L2(Γ2). Moreover, given f, g ∈ L2(Γ2)
one can show that lim

k→∞
‖u− uk‖L2(D) = 0, where uk is the k-th approxima-

tion generated from the above algorithm and u is the solution of the Cauchy
problem (1)�(2). Furthermore, for noisy data

{
f δ, gδ

}
, with δ > 0, we have
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∥∥∥f δ − uδ
k

∥∥∥
L2(Γ2)

≤ τδ, for τ > 1, where uδ
k is the k-th approximation obtained

from the iterative algorithm using the noisy data. For further information and
details on these estimates, see [2].

3. Numerical solution of the boundary value problems
To solve each of the boundary value problems used in the iterative procedure,

we use the boundary integral equations method. In the introduction, we men-
tioned some advantages of this approach such as reducing the dimension of the
problem compared with the dimension of the solution domain, the �exibility of
applying it for domains of di�erent shapes or even to unbounded domains, its
super-algebraic convergence for analytical data etc.

In [3], it is demonstrated how to solve the Dirichlet boundary value problem
using a single-layer representation of the solution. The similar ideas can be
applied to the Dirichlet boundary value problem by instead using a combina-
tion of single- and double-layer potentials to represent the solution, thereby
obtaining an integral equation of the second kind to solve [9].

We then turn to the Robin boundary value problem:
∆u = 0 in D, (12)

∂u

∂ν
+ κu = h on Γ1 and ∂u

∂ν
+ κu = w on Γ2, (13)

where κ > 0, h ∈ L2(Γ1), w ∈ L2(Γ2) are given.
To obtain an integral equation of the second kind, we represent the solution

of (12)�(13) as a sum of two single-layer potentials:

u(x) =
2∑

l=1

∫

Γl

ϕl(y)Φ(x, y) ds(y), x ∈ D, (14)

where Φ(x, y) =
1

4π|x− y| is a fundamental solution of the Laplace equation in

R3 and ϕl ∈ C(Γl), l = 1, 2, are unknown densities.
From the representation of the solution (14) requiring the boundary condi-

tions (13) to be satis�ed, invoking properties of single-layer potentials [9], we
obtain a system of linear integral equations for �nding the unknown densities:



−1

2
ϕ1 + K11ϕ1 + K12ϕ2 + κ (S11ϕ1 + S12ϕ2) = h, on Γ1,

1
2
ϕ2 + K21ϕ1 + K22ϕ2 + κ (S21ϕ1 + S22ϕ2) = w, on Γ2,

(15)

where we used the following boundary integral operators for l, r = 1, 2:

(Slrψ)(x) =
∫

Γr

ψ(y)Φ(x, y) ds(y), x ∈ Γl, ψ ∈ C(Γr), (16)

(Klrψ)(x) =
∫

Γr

ψ(y)
∂Φ(x, y)
∂ν(x)

ds(y), x ∈ Γl, ψ ∈ C(Γr). (17)
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Notice here that for the Robin boundary problem the approximation of the
solution on the internal boundary surface Γ1 needed in the above generalized
Landweber algorithm, can be obtained as

u(x) = (S11ϕ1)(x) + (S12ϕ2)(x), x ∈ Γ1. (18)
We assume that the two boundary surfaces can be smoothly mapped one-

to-one to the unit sphere S2 =
{
x̂ ∈ R3 : |x̂| = 1

}
. In that case there exist

one-to-one mappings ql : S2 → Γl, l = 1, 2, having smoothly varying Jacobian
Jql

, l = 1, 2. Therefore, based on (16) and (17), we can rewrite the system of
integral equations (15) over the unit sphere:



−1

2
φ1 + K̃11φ1 + K̃12φ2 + κ

(
S̃11φ1 + S̃12φ2

)
= h̃, on S2,

1
2
φ2 + K̃21φ1 + K̃22φ2 + κ

(
S̃21φ1 + S̃22φ2

)
= w̃, on S2,

(19)

where φl(x̂) = ϕl(ql(x̂)), l = 1, 2, h̃(x̂) = h(q1(x̂)), w̃(x̂) = w(q2(x̂)) for x̂ ∈ S2

and the parametrised integral operators are for l, r = 1, 2:

(S̃lrψ)(x̂) =
∫

S2

ψ(ŷ)Llr(x̂, ŷ) ds(y), ψ(x̂) ∈ C(S2), x̂ ∈ S2, (20)

and
(K̃lrψ)(x̂) =

∫

S2

ψ(ŷ)Mlr(x̂, ŷ) ds(y), ψ(x̂) ∈ C(S2), x̂ ∈ S2, (21)

with

Llr(x̂, ŷ) =





Jqr(ŷ)Φ(ql(x̂), qr(ŷ)), l 6= r,

Rl(x̂, ŷ)
|x̂− ŷ| , l = r,

Mlr(x̂, ŷ) =





−Jqr(ŷ)
(ql(x̂)− qr(ŷ))T ν(ql(x̂)))

4π|ql(x̂)− qr(ŷ)|3 , l 6= r,

R̃l(x̂, ŷ)
|x̂− ŷ| , l = r,

where

Rl(x̂, ŷ) =
Jql

(ŷ)
4π





|x̂− ŷ|
|ql(x̂)− ql(ŷ)| , x̂ 6= ŷ

1
Jql

(x̂)
, x̂ = ŷ

and

R̃l(x̂, ŷ) = −Rl(x̂, ŷ)





(ql(x̂)− qr(ŷ))T ν(ql(x̂)))
4π|ql(x̂)− qr(ŷ)|2 , x̂ 6= ŷ ,

−
2

3∑
j=1

q
′
jl(x̂)νj(x̂)−

3∑
j=1

q
′′
jl(x̂)νj(x̂)

2J2
ql
(x̂)

, x̂ = ŷ .

From this representation, it can be seen that the integral operators Sll and
Kll, l = 1, 2, each have a weak singularity.
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For the numerical approximation of the integrals in (20) and (21), we next
use the following cubature rules for n

′
> 0, see [13, 16]:

� cubature for integrals with a continuous integrand:
∫

S2

f(ŷ) ds(ŷ) ≈
2n
′
+1∑

p
′
=0

n
′
+1∑

s
′
=1

µ̃p′ ãs′f(ŷs′p′ ); (22)

� cubature for integrals with a weak singularity in the integrand:
∫

S2

f(ŷ)
|x̂− ŷ| ds(ŷ) ≈

2n
′
+1∑

p′=0

n
′
+1∑

s′=1

µ̃p
′ b̃s

′f(T−1
x̂ ŷs

′
p
′ ). (23)

In the cubature rules (22)�(23), we use the following cubature points:

ŷs′p′ =
(
sin θs′ cosϕp′ , sin θs′ sinϕp′ , cos θs′

)
,

with ϕp
′ =

p
′
π

n′ + 1
, θs

′ = arccos zs
′ , where zs

′ are the zeros of the Legendre

polynomials Pn′+1 [1]. The weights of the cubature rules are: µ̃p′ =
π

n′ + 1
,

ãs′ =
2(1− z2

s′
)

((n′ + 1)Pn′ (zs′ ))
2
, b̃s′ = ãs′

n
′∑

l=0

Pl(zs′ ). Following [13], we use an or-

thogonal transformation Tx̂ to move the weak singularity in the integrands to
appear at the north pole of the sphere; it is present in (23). The transformation
Tx̂ is de�ned as follows:

Tx̂ = DF (ϕ)DT (θ)DF (−ϕ), x ∈ S2

with

DF (ψ)




cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


 , DT (ψ)




cos(ψ) 0 − sin(ψ)
0 1 0

sin(ψ) 0 cos(ψ)


 .

The cubatures (22)�(23) have exponential convergence for a su�ciently smooth
integrand f , see [16].

For discretisation of the system (19), we use a Galerkin projection method.
The unknown densities φl, l = 1, 2, are �rst approximated by a linear combi-
nation of real-valued spherical harmonics:

φl ≈ φ̃l =
n∑

k=0

k∑

m=−k

φl
k,mY R

k,m, l = 1, 2, (24)

where φl
k,m are the unknown coe�cients, and the real-valued spherical harmon-

ics are:

Y R
k,m =

{
ImYk,|m|, 0 < m ≤ k,

ReYk,|m|, −k ≤ m ≤ 0

with Yk,m the spherical harmonics [1].
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We consider the following discrete inner product, de�ned from the cubature
rule (22):

(v, d) =
2n+1∑

p=0

n+1∑

s=1

µpasv(ŷsp)d(ŷsp), v, d ∈ C(S2), (25)

where the weights and points are generated from (22) for the parameter n > 0.
After approximating the unknown densities in (19) by (24), and by applying

(n + 1)2 times the inner product (25) to (19) with Y R
k,m, k = 0, . . . , n, m =

−k, . . . , k, taking into account the representation of the integral operators (20)
and (21), we obtain a linear system of equations for �nding the unknown coef-
�cients in the representation (24):





n∑
k=0

k∑
m=−k

(
φ1

k,mA11
kk
′
mm

′ + φ2
k,mA12

kk
′
mm

′

)
=

=
2n+1∑
p=0

n+1∑
s=1

µpash̃(x̂sp)Y R
k,m(x̂sp),

n∑
k=0

k∑
m=−k

(
φ1

k,mA21
kk′mm′ + φ2

k,mA22
kk′mm′

)
=

=
2n+1∑
p=0

n+1∑
s=1

µpasw̃(x̂sp)Y R
k,m(x̂sp),

(26)

for k
′
= 0, . . . , n, m = −k, . . . , k, n = 0, 1, . . . , with coe�cients for l, r = 1, 2

given by:

Alr
kk
′
mm

′ =
2n+1∑
p=0

n+1∑
s=1

2n
′
+1∑

p′=0

n
′
+1∑

s′=1

µp′µpasY
R
k
′
,m
′ (x̂sp)×

×








ã
′
sY

R
k,m(ŷs′p′ )

(
Mlr(x̂sp, ŷs′p′ ) + κLlr(x̂sp, ŷs′p′ )

)
, l 6= r

b̃
′
sY

R
k,m(ŷs

′
p
′

sp )
(

R̃l(x̂sp, ŷ
s
′
p
′

sp ) + κRl(x̂sp, ŷ
s
′
p
′

sp )
)

, l = r

+





0, l 6= r

(−1)l 1
2
Y R

k,m(x̂sp), l = r


 ,

where ŷs
′
p
′

sp = T−1
x̂sp

ŷs′p′ .
Calculation of the coe�cients Alr

kk
′
mm

′ requires many operations. We can
reduce the number of operations by using sequential calculation of smaller ad-
ditional matrices [4, 5]. Employing this strategy, we can reduce the number of
operations from O(n8) to O(n5). The coe�cients Alr

kk′mm′ of the system (26)
need only to be calculated once, and can then be used at each step of the gen-
eralized Landweber iterative algorithm. In fact, we only need to calculate the
right-hand side of the system (26) at each step for di�erent functions h̃ and w̃.

After �nding the unknown coe�cients φl
k,m, l = 1, 2, from (26), we can �nd

an approximation of the unknown densities φ̃l, l = 1, 2, from (24).
The solution of the Robin boundary value problem (12)�(13) on the interior

surface Γ1 is given by (18); using the approximation of the densities (24), the
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cubature rule (22) and the representation of the integral operator (16), an
approximation of the solution on Γ1 is then given by:

u(x̂) ≈
n
′
+1∑

s′=1

2n
′
+1∑

ρ′=0

(
b̃s
′ µ̃ρ

′ φ̃1(T−1
x̂ ŷs

′
ρ
′ )R1(x̂, T−1

x̂ ŷs
′
ρ
′ )+

+ ãs′ µ̃ρ′ φ̃2(ŷs′ρ′ )L12(x̂, ŷs′ρ′ )
)
, x̂ ∈ Γ1.

4. Numerical experiments
In this section, we give some numerical examples. The main example is

the numerical solution of the Cauchy problem (1)�(2) by using the iterative
generalized Landweber algorithm with exact and noisy data. However, we �rst
start by giving results for the Robin boundary value problem (12)�(13) needed
in the iterative algorithm, to see how our proposed boundary integral equations
method and discretisation perform for this direct problem.

Fig. 1. The solution domain D in Ex. 1

Example 1 (Robin problem (12)�(13)). Let the doubly connected do-
main D (see Fig. 1) be bounded by the two surfaces:
Γl = {x(θ, ϕ) = r1(θ, ϕ) (sin θ cosϕ, 2 sin θ sinϕ, cos θ) , θ ∈ [0, π], ϕ ∈ [0, 2π]} ,

where radial function r1 is:

r1(θ, ϕ) =
1

2
√

1 +
√

2

√
cos(2θ) +

√
2− sin2(2θ),

and
Γ2 =

{
x(θ, ϕ) = (sin θ cosϕ, 1.5 sin θ sinϕ, 1.5 cos θ) , θ ∈ [0, π], ϕ ∈ [0, 2π]

}
.

10
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Tabl. 1. L2-errors for the Robin boundary value problem in Ex. 1

n = n′
‖uex − un‖L2(Γ1)

‖uex‖L2(Γ1)

2 5.13-E01
4 1.27-E02
6 6.56-E04
8 2.81-E05
10 1.91-E06
12 1.50-E07

The boundary data needed in the Robin boundary problem are generated
from the exact solution: uex(x) = x2

2 − x2
3 + x1, x = (x1, x2, x3), thus we get:

∂u

∂ν
(x) + κu(x) = ν1(x) + 2x2ν2(x)− 2x3ν3(x)+

+ κ(x2
2 − x2

3 + x1), x ∈ Γl, l = 1, 2.

Values of the relative L2-errors for the Robin boundary value problem (12)�
(13) are presented in Table 1. As we can see from this table, super-algebraic
convergence is present. In Fig. 2 are the exact and the numerical approximation
for the function values on the internal boundary surface Γ1, obtained with the
discretisation parameters being n = n′ = 12.

a). exact solution b). approximate solution

Fig. 2. Exact and numerical approximation for the function values
on the internal boundary Γ1 for the solution of the Robin boundary
problem in Ex. 1

Example 2 (Cauchy problem (1)�(2)). Let the domain D (see Fig. 3)
be bounded by the two surfaces:

Γl =
{
x(θ, ϕ) = rl(θ, ϕ) (sin θ cosϕ, sin θ sinϕ, cos θ) ,

θ ∈ [0, π], ϕ ∈ [0, 2π]
}
, l = 1, 2,

11
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Fig. 3. The solution domain D in Ex. 2

a). exact solution b). approximate solution

Fig. 4. Reconstruction of the solution on the boundary Γ1 in Ex. 2
(exact data)

where the radial functions are as follows:

r1(θ, ϕ) = 0.2
(
0.6 +

√
4.25 + 2 cos(3θ)

)

and
r2(θ, ϕ) =

√
0.8 + 0.2 (cos(2ϕ)− 1) (cos(4θ)− 1) .

We take a harmonic function uex(x) = ex2 cosx1 − ex1 sinx2 as an exact
solution of the Cauchy problem (1)�(2). The necessary data for the Cauchy
problem are generated from the exact solution uex on the external boundary
Γ2, as in Example 1.

12
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a). exact solution b). approximate solution

Fig. 5. Reconstruction of the solution on the boundary Γ1 in Ex. 2
(3% noise)

a). exact data b). 3% noisy data

Fig. 6. L2-errors in Ex. 2

The results of the numerical reconstruction of the function uex by the gen-
eralized Landweber algorithm on the boundary Γ1, for the cases of exact and
noisy data, are shown in Figs. 4�5. Values of the relative L2-errors at each
iteration are presented in Fig. 6. In the case of exact data, after 700 iterations,
we get

‖uex − u700‖L2(Γ1)

‖uex‖L2(Γ1)
= 0.0078

and for noisy data after 88 iterations (noise is 3%) we obtain

‖uex − u88‖L2(Γ1)

‖uex‖L2(Γ1)
= 0.0283,

in both cases the discretisation parameters for the direct boundary value prob-
lems are n′ = n = 10. The relaxation parameter γ for the generalized Landwe-
ber method is selected as 0.5 (both for exact and noisy data).
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5. Conclusion
We employed a generalized iterative Landweber algorithm, which can be ap-

plied to obtain a stable solution to the Cauchy problem, in particular it was
used to �nd a stable approximation of the function values of the solution on
the interior boundary surface of doubly connected three-dimensional domains.
At each iteration step of the algorithm, we need to solve one Dirichlet and one
Robin boundary value problem. Each of these direct boundary problems is
solved by an indirect integral equations method in conjunction with a Galerkin
method for the discretisation. Applicability of proposed algorithm and discreti-
sation are highlighted by some numerical examples both for direct problems as
well as for the Cauchy problem.
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