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AN ITERATIVE METHOD FOR THE CAUCHY
PROBLEM FOR THE LAPLACE EQUATION
IN THREE-DIMENSIONAL DOMAINS

I. V. BORACHOK

PE3IOME. Mwu po3srisimaemo itepartiiiamii y3arajabHeHuit meton JlammBebepa
nns 3amadgi Komri murst pisasians Jlammaca y 1BO3B’I3HUX TPUBUMIPHUX 00.1acC-
Tax. Leil MeTom € peryIsspu3yiod0io IPOIe Iy POIO /IS OTPUMAHHS CTa01IbHOTO
po3p’a3ky. Ha koxuOMY Kpori irepariiioro meTomy moTpibHO pO3B’si3aTh
OBl KOpeKTHI mpaMmi 3azadi g piBHgHHA Jlanmmaca. Koxna mpama 3agaga
BUPINIYETHCA METOIOM T'DAHUYHUX IHTErPAJIbHUX PIBHAHD i3 3aCTOCYBAHHSIM
IpoeKITitHoro MeToay lanmbopkina s auckperusarii. Hampukinmi naBemeni
JedKi 9ucesbHI Pe3yIbTaTH.

ABsSTRACT. We consider an iterative generalized Landweber method for the
Cauchy problem for the Laplace equation in doubly connected 3-dimensional
domains. This method is a regularizing procedure for obtaining a stable so-
lution to the Cauchy problem, and consists of solving two well-posed direct
problems for the Laplace equation at each iteration step. Each direct problem
is solved by a boundary integral equations method with a projection Galerkin
method for the discretisation. Some numerical results are given and discussed
as well at the end.

1. INTRODUCTION

The Cauchy problem for the Laplace equation has important applications.
For example, it occurs in electrostatics, non-destructive testing, cardiology,
leak identification, etc. This problem belongs to the class of ill-posed linear
inverse problems, since it is unstable with respect to input data [7] (a small
remark here, the input Cauchy data should be compatible [6]). We focus on
the numerical solution of this Cauchy problem in three-dimensional doubly
connected domains.

The Cauchy problem can be solved numerically in a stable way by com-
bining direct methods, such as for example the boundary integral equations
method [4,10-12,15] or the method of fundamental solutions [14] etc, with some
regularization strategy, for example, Tikhonov regularization with an appropri-
ate way of selecting the regularization parameter like the Morozov discrepancy
principle or the L-curve method [4,12,15|. Another approach for numerically
solving the Cauchy problem is to use iterative methods, where the choice of the
termination of the iterations is part of the regularization. Numerical examples
show that iterative methods give good results in the case of noisy data, namely,
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we can calculate an approximation with an error being equal to the noise level
or even smaller, by selecting a good strategy for the numerical implementa-
tion of the iterative approach. Commonly used methods are the alternating
method [5,8,12] and the Landweber procedure [12]| in combination with the
boundary integral equations method for solving the direct problems needed in
both these iterative algorithms.

In this paper, we apply one recent approach being a generalized Landweber
method proposed in [2], for 3-dimensional doubly connected domains. The main
difference from the standard Landweber method is that we do not need to use
any adjoint operator, that is we do not need to involve any adjoint differential
equation.

We then describe more on the problem formulation. Let Dy C R3, Dy C R3
be simply connected smooth bounded domains with boundary surfaces I'y and
'y, respectively, that satisfy: D; C Ds. Let D = Dy \ D; be the solution
domain and v = (vq,v9,v3)! the outward unit normal to the boundary of D;
this boundary is denoted by 0D =T'1 UTs.

The Cauchy problem is then as follows. We need to find a classical solution
u € C?(D) N CY(D) of the Laplace equation:

Au=0 inD (1)

that satisfies the boundary conditions:
0
u=f and 8—1::9 on Is. (2)

It is not the full solution in D that is of prime interest, it is instead to find

(reconstruct) the corresponding Cauchy data {u, gZ} on the interior boundary
surface I'y.

As mentioned, for the numerical solution of the above problem, we apply
one adjoint-free Landweber method [2] being a regularizing procedure for ob-
taining a stable numerical solution [2]. At each step of the iterative procedure,
we need to solve the Dirichlet respectively the Robin direct problems for the
Laplace equation. We use the boundary integral equations method for solving
the required direct problems in the iterative method, and this choice is based
on good numerical results for domains in R?, see [11,12] as well as for domains
in R3 [4,5], together with advantages such as reduction of the dimension of the
problem and the flexibility in terms of the form of the boundary surfaces. As
a stopping rule for the iterations, the Morozov discrepancy principle is used.

The solution of each direct problem is represented as a combination of poten-
tials [4,9,12]. Based on this representation, we obtain a system of linear integral
equations for finding the unknown densities by requiring that the given Cauchy
data should be satisfied. For discretization Wienert’s method is applied; it is
a Galerkin discrete projection method, where the unknown densities are rep-
resented as a linear combination of spherical harmonics [1] and the boundary
integrals are rewritten over the unit sphere, and to those obtained integrals
certain cubature rules are then applied [13,16].
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An outline of this work is: in Section 2, we consider the iterative algorithm,
the boundary integral equations method for one of the direct problems in the
procedure (having boundary conditions of Robin type) is given in Section 3 and
in Section 4 some numerical results are shown and discussed.

2. THE ITERATIVE ALGORITHM
We consider one of the iterative methods proposed in [2], in three-dimensional
doubly connected domains. At each iteration step, we need to solve one Dirich-
let and one Robin boundary value problem for the Laplace equation. The
algorithm is as follows:

— The first approximation wug of the solution w is calculated by solving the
Dirichlet boundary value problem:

Aug=0 1in D, (3)
up=noonIlty and wy=jf ony, (4)
where 79 is an arbitrary initial starting approximation on the boundary
I.
— Then the element vy is obtained by solving the Robin boundary value
problem:
Avg=0 in D, (5)
0 0 0
%4—&@0:00111“1 and %—Fm}o:g—% on I's. (6)

— Having obtained ug_1 and vi_1, the approximation uy is obtained from
the Dirichlet boundary value problem:

Aup =0 in D, (7)
up=nronly and wup=f onTy, (8)

where
Mk = Me—1+ Yok—1lp,, 7> 0. (9)

— Then the solution vy is obtained by solving the following Robin boundary
value problem:

Avi, =0 in D, (10)
vy, B Ovg _ Oug
B + kv =0o0nT7 and B + kv =g B on I's. (11)

The iterative procedure then continues by iterating in the last two steps. The
stopping rule is the Morozov discrepancy principle. The initial approximation
is arbitrary for linear problems, and we select it as the zero-function.

The parameter x in the Robin boundary condition is positive: k > 0. The
parameter v > 0 in the iterative procedure is a relaxation parameter, which is
needed for convergence of the algorithm [2].

The Dirichlet and Robin boundary value problems are well-posed in L?(D)
for boundary data from L?(I';) and L?*(T3). Moreover, given f,g € L*(T)
one can show that kh_}ngo |u — ug|lp2(py = 0, where uy is the k-th approxima-

tion generated from the above algorithm and w is the solution of the Cauchy
problem (1)—(2). Furthermore, for noisy data {f‘57g6}, with § > 0, we have
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‘ fé _ Ui’ T <79, for 7 > 1, where ui is the k-th approximation obtained
2

from the iterative algorithm using the noisy data. For further information and

details on these estimates, see [2].

3. NUMERICAL SOLUTION OF THE BOUNDARY VALUE PROBLEMS

To solve each of the boundary value problems used in the iterative procedure,
we use the boundary integral equations method. In the introduction, we men-
tioned some advantages of this approach such as reducing the dimension of the
problem compared with the dimension of the solution domain, the flexibility of
applying it for domains of different shapes or even to unbounded domains, its
super-algebraic convergence for analytical data etc.

In [3], it is demonstrated how to solve the Dirichlet boundary value problem
using a single-layer representation of the solution. The similar ideas can be
applied to the Dirichlet boundary value problem by instead using a combina-
tion of single- and double-layer potentials to represent the solution, thereby
obtaining an integral equation of the second kind to solve [9].

We then turn to the Robin boundary value problem:

Au=0 in D, (12)
Gu +rku=honTl d Ou + KU =w r (13)
B =honli] an B Ku = on I'g,

where k > 0, h € Ly(I'1), w € Lyo(I'2) are given.
To obtain an integral equation of the second kind, we represent the solution
of (12)—(13) as a sum of two single-layer potentials:

Z/g@l (x,y)ds(y), =z €D, (14)
=1

where ®(z,y) = is a fundamental solution of the Laplace equation in

1
Am|z — y|
R? and ¢; € C(I), | = 1,2, are unknown densities.

From the representation of the solution (14) requiring the boundary condi-
tions (13) to be satisfied, invoking properties of single-layer potentials [9], we
obtain a system of linear integral equations for finding the unknown densities:

1
——p1 + K11 + Ki2p2 + 6 (St11 + Si2¢2) = h, on Ty,

2 (15)
1
3Pzt K101 + Ka202 + £ (S21901 + S22¢p2) = w,  on D'y,
where we used the following boundary integral operators for I,r = 1,2:
(Sp)(x /w (xz,y)ds(y), z € Ty, v € C(T)), (16)
0P(x,y
)@ = [v0) L asty) weTivecwy.  am
ov(x)
r,
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Notice here that for the Robin boundary problem the approximation of the
solution on the internal boundary surface I'y needed in the above generalized
Landweber algorithm, can be obtained as

u(z) = (Sup1)(@) + (Siap2)(x), 2 €T (18)

We assume that the two boundary surfaces can be smoothly mapped one-

to-one to the unit sphere S? = {z e R3 : |Z| = 1}. In that case there exist

one-to-one mappings q : ST Ty, 1=1,2, having smoothly varying Jacobian

Jg» 1 = 1,2. Therefore, based on (16) and (17), we can rewrite the system of
integral equations (15) over the unit sphere:

1 3 . 3 _ 5
—§<Z51 + K111 + Ki2¢02 + K <S11¢1 + Smf)z) =h, on S? 19
19

1 [ - ot ~ ~
56252 + Ko1¢91 + Kooga + K (521¢1 + 522¢2) =w, onS?

where ¢1(2) = @i(@(@)), | = 1,2, h(@) = h(q1(%)), B(Z) = w(q2(%)) for T € S
and the parametrised integral operators are for [,r = 1,2:

()@ /ﬁ @) L@ 9 ds(y), (@) € C(?), TS, (20)

and
(Rut) (@ /¢ )M (3,9) ds(y), (@) € C(S2), 7e 82, (21)
with
Jo D) (@(@), 0. @), L#T,
Lu(@9) ={ R37) o
FE -
(@@ - @) va@) .
IVRTE B |
e Rl(§7 /y\) l=r
F—gl /
where -7
r—1Y ~ ~
O T
Tul@) =7
and
(@@ - a@)" v(a(@)) -
~ a@) - 4w GF el
o ~ 3 3
FlE0) = R0 23 ¢ @@ - 3 4 @n@)
= 7j=1 ~ —~
272 (7) ey

From this representation, it can be seen that the integral operators Sy and
Ky, 1 =1,2, each have a weak singularity.
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For the numerical approximation of the integrals in (20) and (21), we next
use the following cubature rules for n" > 0, see [13,16]:

— cubature for integrals with a continuous integrand:

on' 410 +1

JEGIEOED S S R (oo (22)
S2

p'=0 s'=1

— cubature for integrals with a weak singularity in the integrand:
~ 2nl+1 TL/+1
/ f@)
7 -
S2

/y\| dS(g//\) [ Z Z ﬁp/ bs/f(TaAjilg//\s/p/)' (23)
In the cubature rules (22)-(23), we use the following cubature points:

p'=0 §'=1

@\S/p/ = (Sin 0 cos <pp/,sin03/ sing,, cos 95’)?

!/

with Py = n'LJ—TF 0, = arccoszy, where zs are the zeros of the Legendre
polynomials P/, [1]. The weights of the cubature rules are: ﬁp/ = n/i T
2(1 —22) - "
as = y = , b =ay P(z). Following [13], we use an or-
T DP(z)) ; 1) & [12]

thogonal transformation 7% to move the weak singularity in the integrands to
appear at the north pole of the sphere; it is present in (23). The transformation
T% is defined as follows:

T; = Dr(¢)Dr(0)Dp(—¢), =z €S’
with
cos(v) —sin(v) cos(¢p) 0 —sin(v))

0
Drw) | sin() cos@) o |, praw)[ o 1 0
0 0 1 sin(¢p) 0 cos(v)

The cubatures (22)-(23) have exponential convergence for a sufficiently smooth
integrand f, see [16].

For discretisation of the system (19), we use a Galerkin projection method.
The unknown densities ¢;, [ = 1,2, are first approximated by a linear combi-
nation of real-valued spherical harmonics:

n k
Oy~ Q= Z Z (bic,myk]?m’ =12, (24)

k=0m=—k
where d)fg ., are the unknown coefficients, and the real-valued spherical harmon-

ics are:

km —

R ImYk’|m|, 0<m<k,
ReYk,‘m‘, —k <m<0

with Y} ,, the spherical harmonics [1].
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We consider the following discrete inner product, defined from the cubature
rule (22):
2n+1n+1
d) = Z Zupasv(/y\sp)d(/y\sp)v v, de 0(82)7 (25)
p=0 s=1
where the weights and points are generated from (22) for the parameter n > 0.
After approximating the unknown densities in (19) by (24), and by applying
(n + 1)? times the inner product (25) to (19) with Y, km, E=0,....,n,m=
—k, ..., k, taking into account the representation of the integral operators (20)
and (21), we obtain a linear system of equations for finding the unknown coef-
ficients in the representation (24):

n k
BE et )
2n+1n+1 R~
= Szl HpQs (wsp)Yk7m(xsp)a
n k A22 B (26)
2n+1n+1
pZO 521 HpQsW (xSP)Yk]?m(§SP)7

for K =0,....,n,m = —k,....,k,n=0,1,..., with coefficients for I,r = 1,2
given by:

[\

Alr ,

kk'mm (SUSP) X

‘H M+
H M+

n+1 +
Z Z Iy
p=0 s'=1
{ y ( Ir wspvy")+’QLlr(wspay”)>7 l7é7"

2

s

xsp,ysp +/€Rl(x5p,y5p) , l=r

7 l % r
_|_
() ¥ @), t=r )
where 7s) = ngi@g/p/

Calculation of the coefficients Ag"k,mm/ requires many operations. We can
reduce the number of operations by using sequential calculation of smaller ad-
ditional matrices [4,5]. Employing this strategy, we can reduce the number of
operations from O(n®) to O(n®). The coefficients AZk/mm, of the system (26)
need only to be calculated once, and can then be used at each step of the gen-
eralized Landweber iterative algorithm. In fact, we only need to calculate the
right-hand side of the system (26) at each step for different functions h and .

After finding the unknown coefficients (f)éwm [ =1,2, from (26), we can find

an approximation of the unknown densities ¢;, [ = 1,2, from (24).
The solution of the Robin boundary value problem (12)-(13) on the interior
surface I' is given by (18); using the approximation of the densities (24), the
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cubature rule (22) and the representation of the integral operator (16), an
approximation of the solution on I'y is then given by:

n 120 41
~ >~ ~ 7 1~ ~ el
2230 2 (b T T )R T )+

=1 p/:0
gl 620y, 2@ g,)), FETY.

4. NUMERICAL EXPERIMENTS
In this section, we give some numerical examples. The main example is
the numerical solution of the Cauchy problem (1)-(2) by using the iterative
generalized Landweber algorithm with exact and noisy data. However, we first
start by giving results for the Robin boundary value problem (12)-(13) needed
in the iterative algorithm, to see how our proposed boundary integral equations
method and discretisation perform for this direct problem.

= T
1+ Q
,\\ \
0.5+ l \
& 0+ Ll
JeT
0.5 W 2
14 )
\N ‘EE_.
~~\\“'€‘\-=””
-1.5 =l \Q;‘" _ l,
2

T2 Al

FiGg. 1. The solution domain D in Ex. 1

Example 1 (Robin problem (12)—(13)). Let the doubly connected do-
main D (see Fig. 1) be bounded by the two surfaces:

Iy ={x(0,9) =1r1(0,¢) (sinf cos ¢, 2sinfsin g, cos ) , 6 € [0, 7], ¢ € [0,27]},

where radial function 7y is:

r1(0, ) = \/cos 20) 2 — sin?(26),
21+ 2
and
= {z(0,¢) = (sinfcosp, 1.5sinfsinp,1.5¢cos6), 6 € (0,7, ¢ € [0,2n]}.

10
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TABL. 1. Lg-errors for the Robin boundary value problem in Ex. 1

, ter — UnHLz(F1)

[tea ||L2(F1)
2 5.13-E01
4 1.27-E02
6 6.56-E04
8 2.81-E05
10 1.91-E06
12 1.50-E07

The boundary data needed in the Robin boundary problem are generated

from the exact solution: ue,(r) = x5 — 23 + 21, = (21, 72, 73), thus we get:

0
a—Z(aj) + ku(x) = v1(x) + 2z9v2(x) — 2x303(2)+
+r(xd —ad+x), zely, 1=1,2.

Values of the relative Lo-errors for the Robin boundary value problem (12)—
(13) are presented in Table 1. As we can see from this table, super-algebraic
convergence is present. In Fig. 2 are the exact and the numerical approximation
for the function values on the internal boundary surface I'1, obtained with the
discretisation parameters being n = n' = 12.

a). exact solution b). approximate solution

Fia. 2. Exact and numerical approximation for the function values
on the internal boundary I'; for the solution of the Robin boundary
problem in Ex. 1

Example 2 (Cauchy problem (1)—(2)). Let the domain D (see Fig. 3)
be bounded by the two surfaces:

Iy = {x(0,¢) = ri(6, ¢) (sinf cos ¢, sinfsin p, cos ),
00, pel0,2n]}, 1=1,2,

11
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a). exact solution b). approximate solution

FiG. 4. Reconstruction of the solution on the boundary I'y in Ex. 2
(exact data)

where the radial functions are as follows:

ri(0,9) = 0.2 (0.6 + \/1.25 + 2cos(30) )

and

r9(6, ) = /0.8 + 0.2 (cos(2p) — 1) (cos(46) — 1).

We take a harmonic function uey(x) = €*cosz; — e" sinxg as an exact
solution of the Cauchy problem (1)-(2). The necessary data for the Cauchy
problem are generated from the exact solution wu., on the external boundary
T', as in Example 1.

12
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b). approximate solution

a). exact solution

F1G. 5. Reconstruction of the solution on the boundary I'; in Ex. 2
(3% noise)

[t = el oy
°
&
([T P
°
&

0.2
0.1 L 0.1
0
0 50 100 150 200 250

0 100 200 300 400 500 600 700
k k

a). exact data b). 3% noisy data

FiG. 6. Ls-errors in Ex. 2

The results of the numerical reconstruction of the function w., by the gen-
eralized Landweber algorithm on the boundary I';, for the cases of exact and
noisy data, are shown in Figs. 4-5. Values of the relative Lo-errors at each
iteration are presented in Fig. 6. In the case of exact data, after 700 iterations,

we get

[tex — wroollLo(ry) 0.0078
||uex||L2(F1)

and for noisy data after 88 iterations (noise is 3%) we obtain

Uer — U
|tex — uss|l Lo (ry) = 0.0283,
”Uex”L2(F1)

in both cases the discretisation parameters for the direct boundary value prob-
lems are n’ = n = 10. The relaxation parameter v for the generalized Landwe-
ber method is selected as 0.5 (both for exact and noisy data).

13
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5. CONCLUSION

We employed a generalized iterative Landweber algorithm, which can be ap-
plied to obtain a stable solution to the Cauchy problem, in particular it was
used to find a stable approximation of the function values of the solution on
the interior boundary surface of doubly connected three-dimensional domains.
At each iteration step of the algorithm, we need to solve one Dirichlet and one
Robin boundary value problem. Fach of these direct boundary problems is
solved by an indirect integral equations method in conjunction with a Galerkin
method for the discretisation. Applicability of proposed algorithm and discreti-
sation are highlighted by some numerical examples both for direct problems as
well as for the Cauchy problem.
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