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ON THE APPLICATION OF THE ONE HP-ADAPTIVE
FINITE ELEMENT STRATEGY FOR NONSYMMETRIC
CONVECTION-DIFFUSION-REACTION PROBLEMS

R.G.DREBOTIY, H. A. SHYNKARENKO

PE3IOME. Mu posrasggaemMo 3acTocyBaHHs OmHi€l hp-aganTuBHOI cTparterii
METO/Iy CKIHYEHHUX €JIEMEHTIB /10 PO3B’si3yBaHHS HECHUMETPUYHUX KPAROBUX
3a7a4 KOHBeKIIiI-mudys3ii-peakriii. B ocHoBi po3rasayBanoi cTpareril J1eXuTh
IporteIypa BUOOPY HA KOKHOMY CKIHIHHOMY €JIEMEHTI MiK 301/1bIreHHaM H0ro
MOPSIIKY |M TIO1JTOM, 10 0a3y€eThCsl Ha MOPIBHAHHI HOPM HAOIMKEHDb 10 IT0-
XUOKU 71 PO3IJISAYBAHUX CIIOCODIB mepely/10Br CKiHIeHHOTO eaeMenTa. Mwu
PO3IJISIAEMO AJICOPUTM AJANTYBAHHS Ta HABOAUMO OOT'DyHTYBaHHY imel ajro-
PUTMYy y BUMQJKy CUMETPUYIHOI KpaiioBoi 3a7a4i. 3aCTOCOBHICTH AJTOPUTMY
10 HECUMETPUYIHUX 33129 MU aHATI3YEMO MLISAXOM POy PE3yAbTATIB IUC-
JIOBUX €KCIIEDUMEHTIB, & TAKOXK [IOIIOBHIOEMO HABE/IEHI PE3yJIbTaTh TeOPEeTUt-
HUM aHaJIi30M MOXKJ/IMBOCTI 3BeJEHHS BUXITHOI BapialliifHoi 3a/ad4l 0 CUMeT-
puaHOi dpopmu. Mu HABOAMMO 1B IPOITEyPH, MO JAIOTH 3MOTY ITePEeNTH BifT
HECUMEeTPUYHOL 3a/1a49l 10 eKBIBAJIEHTHOI CHMeTPUYHOI, abo 10 IOC/II0BHOCTI
CHMETPUYIHUX 3324, ITOCIJOBHICTh PO3B’sI3KiB AKNX 30ira€ThCst 10 PO3B’A3KY
BuxizHol HecuMerpudnol 3ama4i. OTpumanwmii pe3yabraT BpemTi Moxe Oyru
BUKODUCTAHUU /1 100y10BH KOMOIHOBAHUX JITOPUTMIB Ha OCHOBI ommiel i3
cxeM cuMeTpu3ariil Ta aaropurmy hp-aJanTyBaHHS.

ABsTrRACT. We consider application of certain hp-adaptive strategy for fi-
nite element method for solving nonsymmetric convection-diffusion-reaction
boundary value problems. In the base of described strategy lies refinement
selection procedure which is used to choose on each finite element between
degree increase or bisection. It uses special comparative criteria for norms of
approximation to local errors on different refinement patterns. We present the
adaptation algorithm itself and proof of idea behind it for symmetric prob-
lems. For the case when problem is nonsymmetric we provide corresponding
analysis of numerical experiments and also we add pure theoretical analysis
of the possibility of bringing given variational problem to symmetric form,
taking into account that the algorithm is naturally applicable in the latter
case. We describe two approaches that can provide transition from nonsym-
metric variational problem to directly equivalent symmetric problem in the
first approach or to sequence of symmetric problems, solutions of which forms
sequence of functions that is convergent to the solution of initial nonsymmet-
ric problem in the second approach. Obtained result can be used to build
algorithms, based on a combination of one of the described symmetrization
methods with hp-adaptive scheme.

Key words. Convection-diffusion-reaction problem, finite element method, a posteriori er-
ror estimator, adaptive strategy, hp-adaptivity, nonsymmetric problem.

48



ON THE APPLICATION OF THE ONE HP-ADAPTIVE STRATEGY ...

1. INTRODUCTION

Space mesh adaptivity today is the major technique which is used to opti-
mize the process of finding the approximate solution by finite element method
in various free and commercial engineering simulation tools. Using it also is
crucial, since in most cases the nature of considered boundary problem is char-
acterized by highly nonuniform distribution of local errors in the case of uniform
mesh. In the context of modeling of convection-diffusion-reaction phenomena,
the reason of such error distribution lies in relatively large values of Péclet and
Strouhal numbers for the given problem.

Special and natural attention is on so-called hp-adaptive methods [2,4,5,
8-10], since they provide most wide approximation capabilities by using both
space mesh adaptivity (h-) and element polynomial degree adaptivity (p-). De-
spite that there are reasonable facts to believe that such algorithms (hp-) can be
considered "exotic" in some sense, investigation in that field is still important,
since it is proved [8] that there is possibility to obtain exponentially convergent
sequence of approximations by using hp-refined meshes.

In this paper we study the possibility of application of hp-adaptive strat-
egy, introduced in [5], to nonsymmetric variational problems. The fact is that
the nature of introduced algorithm can be explained only for problems with
self-adjoint operators. Despite this, in practice, it can be seen, that algorithm
still can be used for nonsymmetric problems which is shown in provided nu-
merical example. The goal is of this example is to demonstrate that algorithm
can provide solid results, regardless of the used a posteriori error estimators or
adaptation criteria. The second part of this work is the pure theoretical investi-
gation of the possible methods of symmetrization of nonsyminetric variational
problems.

The paper structure is the following: in section 2 we define model problem,;
in section 3 we construct variational formulation; in section 4 we present hp-
adaptation algorithm and discuss the main idea behind it; in section 5 we
extend algorithm with some specific error estimator; in section 6 we review
adaptation criteria which we will use in numerical experiment; in section 7
we provide numerical results for direct application of described algorithm and
in section 8 we study two methods of symmetrization of variational problem.
Final conclusions are given in section 9.

2. MODEL BOUNDARY VALUE PROBLEM
Let us consider the following boundary value problem:
Find function u = u(x) such that

- (Mu/)/+ﬂul +ou=fin Q= (0,L)
(p')],_y = @[u(0) — tig], —(uu)|,_, =~[u(L) — L],
where
a,v>0, p=plx)>p >0, B(0)<0, 5(L) >0, 0 =0c(x) >0,

o(z) — B'(z)/2 > o¢ > 0 almost everywhere in (0, L), (2)
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w, 3,0 € L=(0,L), f € L*0,L).

Considered problem is used in analysis of ecologic phenomena, semiconduc-
tors, biology etc. Many real problems of such kind are singularly perturbed |3].
In the terms of differential equation parameters it means that coefficients near
highest order derivatives are relatively small in comparison to others. So in
this case a second order equation is almost degenerated to first order one. In
combination with standard boundary conditions it causes existence of layers
near domain’s boundary with high solution gradient. Those boundary layers
are making the solving of problem by using well-known uniform-mesh-based
FEM quite difficult. Such conditions leads to large Péclet and Strouhal criteria
and to nonuniform local error distribution.

3. VARIATIONAL FORMULATION

Using standard approach [1], we can simply define variational problem cor-
responding to (1): find solution u € V| such that

a(u,v) = (l,v) Yv eV, (3)

where

L
a(u,v) := /[,uu/v/ + Bu'v + ouv] dx + au(0)v(0) + yu(L)v(L),
\ (4)
(lv) == /fv dx + atigv(0) + yurv(L), Yu,v € V := H'(0,L).
0

Under conditions (2) problem data satisfies (for details see [6]) conditions of
Lax-Milgram theorem [1] and therefore this variational problem is well-posed.

For further needs, let us define energy norm ||v|| g = \/a(v,v).

To discretize obtained variational problem we use general finite element
method with high-order polynomial basis functions. In other words, we de-
fine some space V;, C V,dimV}, < 400, of piecewise-polynomial functions and
find finite element approximation up € Vj as a solution of variational equation:

a(uh,vh) = <l,Uh> Yo € Vp,. (5)

Now if we construct finite basis {¢;}_; of space V}, then by expanding uj, =
Yo, qipi, where ¢; € R,i = 1,n we can clearly see, that (5) is equal to the
following system of algebraic linear equations for ¢;,2 = 1, n:

> gialei ) = (le;) j=Tn. (6)
i=1
For general reference see [2,9,10].
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4. hp—ADAPTATION ALGORITHM
In this section we briefly present discussion and review of algorithm from [5].
Let us consider finite element mesh 7, = {K = (z4_1,21)}}_, where 0 =
9 <z < -+ <xp = L. Let us define global error approximation space in the

form:
Ey, = @ Eiffa (7)
Kery,

where space of functions EX = {v € V|suppv C K} and dim EX < +00. Let
us define the following variational problem for error approximation:

find ey, € Ej, such that

8
alep,vp) = / Rlup|vopdx Yy, € Ep, (8)
Q

where R is the residual:

Rlup) == f — (uuh')/ — Buy — ouy,. (9)

It is not hard to see that problem (8) can be decomposed per elements. For
each element we have to solve a problem:

find ef € EF such that

10
a(ehK,Uf):/KR[uh]vffdx Vol € EF (10)

and then ep, = ) e, ek.
Consider now the case 8 = 0, i.e. the problem has symmetric bilinear form.
Then the following well-known equality holds:

2 2 2
lu = unllp = lullz — llunllp - (11)

Since error estimation problem has the same bilinear form as the original,
then for finite element error approximation e the equality above also holds:

2 2 2
le —enllz = llellz = lleallz - (12)

From this equality we see that if energy norm of error approximation increases
than also increases accuracy of this approximation. Denote the finite element
solution on the current mesh as uwp € Vj, and corresponding error e = uw — up,.
Then (12) we can rewrite as

2 2 2
[ = (un + en)llp = llu = unlz = llenlls - (13)

Let us find finite element solution 4y, in space Vi, = Vi, + Ej, C V, where Ej,
is the error approximation space, defined in (7). For symmetric case we have
well-known optimality inequality:

lu—tnlg < llu—0nllp, Yon € Vi (14)
Using now (13), and the fact that uj + e, € V), we have:

~ 2 2 2
lu = anllp < llu = unlz = llenlls - (15)

ol



R.G.DREBOTIY, H. A. SHYNKARENKO

Decomposing the second term in the right part we obtain inequality:

lu—nl3 < lu—unll = 3 [lel[l%- (16)
Ker,

Consider now decomposition of approximation space V}, into local approxima-
tion spaces VhK , K € 1. Spaces VhK + E,If are considered as refined local finite
element spaces according to transition from current mesh to mesh defined by
space V4. In the case when E,[f consists of piecewise-polynomial functions it
directly defines some refinement pattern on element K. For each element K we
can consider now several different choices of space E,If : Eq,...,Eg and taking
into account (16) we see, that it is optimal to use refinement pattern defined
by the space EX = Es,., sk € {1,...,5} which gives a maximum to a value
of HefHE in the right part of (16).

So, now we can review the entire algorithm, which consists of two phases:

Initialization:

Compute:
Ho = Igféfi] (),
/
0= min fow) - 21 (1)

C =2 [min {po, o0}]/?.
Set 73, to some initial finite element mesh.

For each finite element K = (zy_1,x%) € 75, we define quadratic bubble

function
wr(x) = (zp — x)(x — Tp_1). (18)

TOL is acceptable relative error level in percent.

Pmagz 18 the maximum supported degree of polynomial basis function on finite
element.

0 € (0,1) is fixed value.

Iteration:
Step 1: Find FEM solution uy on the current mesh 7. Define u{f as restriction
of uy, to the element K and pk := deg(ul).
Step 2: For all elements K € 7, compute

C
Nk = ———— VWi Rlu]|| : (19)
rr (P + 1) L2 (k)

Define 1 := /> ¢ n%.
Then if —L— x 100% < TOL we stop the algorithm, else:

lunllg
Step 3: Choose elements for refinement.

Compute Npax = Max N .

We will change those elements K, for which ng > (1 — 0)nmax. The set of all
selected elements we name as Ag.

Step 4: Mesh modification. For all selected elements K = (xp_1,x) € Ay
choose between bisection and increasing of polynomial degree on it by 1.
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Step 4a: If px = Pmax then we divide element into two with orders (px, px),
otherwise:
Step 4b: Define XP(a,b) as a space of all polynomials of order p on closed
interval [a, b].

Define spaces:

Vip(K) = {v € C(K)Jv € XPX (241, (xh—1 + 71)/2),
v GXpK((SIZk_l—I—JZk)/Q,xk),U|8K:0} (20)
Vin(K) = {v € XPKFY(K)| v]y = 0}

Now we solve problem (10) for EX := Vhlp(K) and EE = Vth(K). Let us
denote obtained solutions as e}L and e% respectively.

Compute rp, = ||ef| p, m=1,2
Step 5: Consider the difference A = r9 — r1.

If A > § where § is predefined value, then we increase element degree by 1,
otherwise we bisect it into two elements with approximation polynomial degrees
(PK, PK)-

Step 6: Go to Step 1.

Idea of described algorithm is clear for symmetric problems. Some numerical
experiments are available in [5,6]. Technically we can run algorithm on nonsym-
metric problems too, without having any theoretical background in that case.
We will try to perform some numerical experiments to show how described algo-
rithm will work in practice for nonsymmetric problem. We describe additional
error estimator in next section 5 and additional adaptation criteria in section
6. Using those we will provide corresponding comparative numerical results
in section 7 to show that algorithm can provide solid results despite of which
combination of estimator and adaptation criteria we use.

5. ERROR ESTIMATOR BASED ON FUNDAMENTAL SOLUTION
For error indicator ng, introduced by (19) in section 4, instead of using
explicit formula we can use implicit indicator in the form of problem (10) but
with special approximation space E}f( = span{px }, where:

crip11(z) + crapr2(x) on x € [Tp_1,Tp_1/2],
o1(zr-1) = 0, 01(TR—1/2) = 1,

or(x) = (21)
c21921(x) + caopaa(x) On T € [$k71/2, ],

P2(xp_1/2) = 1, p2(xx) = 0,
and {p1;(z)}, {p2(z)} are the sets of fundamental solutions for equations
— (') + B + 6w =0, i =1,2 (22)
with constant coefficients (selected as mean values of corresponding functions)
on corresponding intervals [xx1,Zy_1/2] and [z_; /2, 7%]. Then we solve (10)

and use the energy norm of obtained approximation as an error indicator 7.
To find fundamental solutions we solve corresponding quadratic equations

— N+ Bidhi+6,=0,i=T1,2. (23)
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Here for each of two equations we have three cases possible:
it A AP e R AW £ AP then
en(@) = ep(1), pun(z) = exp(APr):
i if A A e r AW = )\E)then

s>:\

p(A '2), pin(x) = zexp(\Ma);

pir () = exp(\{!
iii. if A ),)\E) C\R, A = o + Bi, Ay = o — Bi then
pi1(x) = exp(ax) sin(Bz), piz(x) = exp(azx) cos(Bz).

6. ELEMENT SELECTION CRITERIA
In addition to adding new estimator in previous section, we also will try
to run algorithm with different adaptation criteria, used in step 3 to choose
elements for refinement procedure. So we will have two criteria:

i. ("mazimum" criteria) element K is refined if
nK > (1 - e)nmaxv (24)
where Mpae = mMax 1) and 6 € (0,1) is fixed value;

ii. ("average" criteria) element K is refined if

\/NUK
Vlunl3 + e,

where ¢ is is acceptable tolerance in % for average error level over finite
element, IV is element count.

100% > ¢, (25)

7. NUMERICAL EXAMPLE
We consider boundary value problem (1) with the following data

p=10.01,5 = 100.896(x — 1)3,0 = 84(2 — (z — 1)?), f = 200, (26)
a=vy=10" 14 =a;,=0,L =2.

Algorithm parameters are: TOL = 5%, pmaz = 3,0 = —150,6 = 0.6, = 20.

Fig. 1 demonstrates approximation obtained by introduced algorithm using
fundamental solution error indicator "maximum" adaptation criteria. Taking
into account boundary conditions we can clearly see that we have two bound-
ary layers in the both ends of interval (which we don’t see directly in the plot
according to very large gradient of approximation near those two points). In
tables 1 and 2 we present convergence history for different combinations of
introduced error estimators from sections 5 and 4 in combination with "max-
imum" criteria (24) and "average" criteria (25). Average convergence rate is
found using least squares method.

In general we can see from provided numerical examples that:

i. the better choice in according to count of elements, iterations and d.o.f.
reached is a combination of the explicit indicator and "maximum" crite-
ria;

ii. there is no large difference between "maximum" and "average" selection
criteria;
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iii. if we need to have almost monotonic relative error decreasing we need to
choose explicit indicator from 4.

08

086

04

02

0 02 04 06 08 1 12 14 16 18 2

Fia. 1. Approximation to solution of problem with data (26)
using implicit error indicator based on fundamental solution ba-
sis which was introduced in section 5 combined with the "max-
imum" criteria (24)

* |
L i L
L. Rl I |

35 4 45 5 55 35 4 45 5 55 4 45 5 55 4 45 5 55

In N,

FiGg. 2. Dependency between absolute error indicator €, and
number of degrees of freedom N SZ} in log-log scale for previous
results: a) for algorithm with explicit error indicator from sec-
tion 4 and "maximum" criteria (24); b) for algorithm with indi-
cator based on fundamental solution described in section 5 and
"maximum" criteria (24); c) for algorithm with explicit error
indicator from section 4 and "average" criteria (25); d) for algo-
rithm with indicator based on fundamental solution described
in section 5 and "average" criteria (25)
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TABL. 1. Convergence history for problem with data (26) for
the "maximum" criteria (24): n is an iteration number, N el-

ement count, N CEZ} count of degrees of freedom, €, = n ab-

solute error indicator, r, = 7lupl|zt x 100% relative error,

-1
pn=—(Ine, —lney,_1) X <1n NC(IZ} —In N$f—1)> rate of con-
vergence

Explicit indicator Fundamental solution indicator

n| N Né:} €n n Pnlln| N N(EZ} €n Tn DPn
0| 50 51 | 74.00 | 73.85 0 50 5l | 84.41 | 84.25

1| 72 75 156.51 5094 | 069 1| 69 751 79.52 | 67.86 | 0.15
21106 | 109|40.08|32.25| 091 | 2]102| 118]|62.69|52.61 | 0.52
31136 | 1432226 |21.22 | 216 | 3 |124| 145 |56.07 | 49.96 | 0.54
41144 | 165 |11.39 | 15.61 | 4.68 || 4| 130 | 151 | 33.69 | 33.22 | 12.56
o144 | 177 | 5.14 | 1790 | 11.33 || 5| 142 | 175 |22.55 | 37.16 | 2.72
6144 | 181 | 290 | 8.39 2548 || 6 | 142 | 182 | 15.10 | 43.72 | 10.21
71146 | 187 | 1.24| 4.57|26.08| 7 |143| 187 | 6.24|19.58 | 32.59
8|145| 193 | 2.88|11.29|24.49
91146 | 196 | 1.12| 4.72|61.11

average rate of convergence 2.66 average rate of convergence 2.38

TABL. 2. Convergence history for problem with data (26) for

the "average" criteria (25).

Explicit indicator Fundamental solution indicator

n| N|N ng} €n Tn pnlln| N|N é:} €n Tn Pn
0| 50 51 | 74.00 | 73.85 0| 50 01 | 84.41 | 84.25

1| 72 8115293 |5215| 0.72|| 1| 72 85 | 72.67 | 71.90 | 0.29
21106 | 125]38.34|3255| 0.74 | 2106 | 135|60.36 | 50.78 | 0.40
31134 | 16722122143 | 1.89 | 3|136| 189 |50.07|48.36 | 0.55
411421 195|11.33 |15.90 | 431 | 4| 144 | 227 |24.87|35.20| 3.81
51142 | 211 | 5.11|18.80|10.08 || 5| 144 | 252 |19.63 | 70.70 | 2.26
6142 | 219 | 2.84| 8.02|15.76 | 6| 144 | 266 | 7.52|21.09|17.73
71146 | 231 | 1.24| 457 | 1556 || 7150 | 284 | 3.84|14.18 | 10.26
81152 | 290 | 1.13| 4.75| 58.56

average rate of convergence 2.32 average rate of convergence 1.86

Also, taking into account, that during preparation of this paper the algorithm
was tested on several other problems, we can conclude from solid numerical
results that the algorithm is applicable in practice in the case of nonsymmetric
problems too, despite of which indicators or element selection criteria we use
(without any theoretical background). In the next section we provide some
pure theoretical analysis in that case.
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8. SYMMETRIZATION METHODS

Instead of trying to generalize somehow (11) to nonsymmetric problems to
bring similar argument as in remark in section 4, it is natural to try to construct
equivalent (in some sense) to (3) but symmetric variational problem.

Here we present two pure theoretical results which can not be used in practice
directly but can be considered as a starting point in further investigation in
described direction.

8.1. Equivalent symmetric problem approach. Let us recall variational
equation (1) in expanded form:

L
/[,uu’v’ + pu'v + ouv] dx + au(0)v(0) + yu(L)v(L) =
. (27)
= /fv dx + augv(0) +yurv(L), YveV.
0

We are free to choose arbitrary function v in (27) in the form: v = zw, where
both functions z and w are arbitrary, but z is fixed. After substitution into
(27) and small algebra we obtain equivalend equation:

L
/[uzu’w’ + (p2' + B2) v'w + ozuw] de+

0

+ az(0)u(0)w(0) + yz(L)u(L)w(L) = (28)

L
= /fzw dx 4+ atpz(0)w(0) + yurz(L)w(L), Ywe V.
0

Lets choose z as a solution of the ordinary differential equation pz’ + 8z = 0.
It is not hard to find partial solution:

G
z(x) =expq — [ —=dE » . (29)
0/ (&)
Substituting (29) into (28) lead us to:

L
/[uzu'w/ + ozuw| dx + au(0)w(0) + yz(L)u(L)w(L) =
" (30)

= /fzw dx + atgw(0) + varz(L)w(L), YweV.
0
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It is not hard to see that (3) and (30) are equivalent and furthermore the
bilinear form

L
b(u,v) := /[uzu’w’ + ozuw] dz + au(0)w(0) + vz (L)u(L)w(L), (31)
0

in the left part of (30), is symmetric. Corresponding to (30) boundary value
problem is:

find function v = u(x), such that
- (,uzu')/ +ozu= fzon Q= (0,L) (32)
(nzu')|,_y = a[u(0) — o, —(uzu')|,_, = v2(L)[w(L) — a].

Visual simplicity of obtained symmetrization procedure and the problem (32),
in practice lead us to problem which is technically hard to solve. The reason is
in function z (29). Fraction % is almost proportional to Péclet number for the
given problem and in the latter is singular perturbed multiplier z will be the ex-
ponent with large negative power. In such conditions it is very problematically
to calculate integrals from (30) when we use standard Galerkin discretization
according to very large quadrature round-off errors. We investigated numeri-
cally the following approaches:

i. trapezoidal rule;
ii. interpolation-type quadrature based on L-splines;
iii. asymptotic formula at Pe — 400;
iv. tanh — sinh quadratures;
v. adaptive quadratures using previous methods;
vi. implementation of adaptation algorithm using Wolfram Mathematica.

Those approaches even with combination with element-wise scaling of function
z does not provide successful practical result.

8.2. Iterative approach. The second approach does not provide directly equi-
valent symmetric problem. Let us suppose that the bilinear form a and linear
functional [ from (1) satisfy conditions of Lax-Milgram theorem, i.e. a and [
are bounded and moreover bilinear form a is V-elliptical. So, there are two

positive constants M > 0 and « > 0 such that:
a(u,v) < Mllullv[lollv,  Vu,v eV, 23
a(u,u) > allul|?, Yu e V. (33)

By the way, where the conditions from (1) guarantees existence of such con-
stants M and a.

Let us construct sequence {uk}zozo € V. We select arbitrary u® € V, uF,
k > 0 we find from the following symmetric variational problem:

{ﬁnd function u* € V, such that

a(u®,v) + a(v,uf) = (1, v) + a(v,u* 1), Vo eV. (34)
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Under previous conditions for a and [ it is not hard to conclude that the se-
quence is well-defined, i.e. the solution of (34) exists on each step.

Theorem 1. If M < 2o, than u* P in V', where u is the solution of (3),
moreover o

M k
=ty < (52 ) =l (35)

Proof. Let us define e¥ = ¥ — u. Then substitute u* = u + ¥ into equation
from (34). We get:
alu+ e v) +a(v,u+e*) = (1,v) + a(v,u+ 1), (36)

or after simplification:

k) 4 a(v,e) = a(v, ). (37)

a(e
Taking v = ¥ and using (33) we obtain the following inequality chain:
2al|e"|[} < 2a(e”, ) = a(e®, &) < M|y eIy (38)

If there exist ko : e = 0y than it is obvious that u* = u,Vk > ko, i.e. we
have convergent sequence and the inequality from theorem statement holds. In
other case Vk € N we can divide (38) by ||e*||1; # 0 and we obtain:

M -
¥l < o lle v (39)
By combining the last recurrent formula we simply get the final estimate (35):
M\ F
et < (5 ) 1elv, (40)

and convergence if M < 2a.

9. CONCLUSION

In this paper we studied application of certain hp-adaptive algorithm to
nonsymmetric problems. We combined this algorithm with different a posteri-
ori error estimators and adaptation criteria to show by numerical experiment
that algorithm can be directly applied to nonsymmetric problems. Also we
construct several methods of symmetrization of given variational problem and
provide corresponding theoretical analysis of those procedures. Two approaches
are described. First can be used to build equivalent symmetric problem. In
the second approach we built iterative procedure, where by solving symmetric
variational problem on each step we can obtain sequence of elements that is
convergent in the space of test functions to the solution of the original nonsym-
metric problem. We still are working on the problem of theorem applicability
to singular perturbed problems and schemes of combining this theorem with
adaptive finite element algorithms. Also we are working on practical imple-
mentation of both symmetrization schemes which in practice involve building
some ad hoc numerical quadratures.
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