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Ðåçþìå. Ìè ðîçãëÿäà¹ìî çàñòîñóâàííÿ îäíi¹¨ hp-àäàïòèâíî¨ ñòðàòåãi¨
ìåòîäó ñêií÷åííèõ åëåìåíòiâ äî ðîçâ'ÿçóâàííÿ íåñèìåòðè÷íèõ êðàéîâèõ
çàäà÷ êîíâåêöi¨-äèôóçi¨-ðåàêöi¨. Â îñíîâi ðîçãëÿäóâàíî¨ ñòðàòåãi¨ ëåæèòü
ïðîöåäóðà âèáîðó íà êîæíîìó ñêií÷ííîìó åëåìåíòi ìiæ çáiëüøåííÿì éîãî
ïîðÿäêó ÷è ïîäiëîì, ùî áàçó¹òüñÿ íà ïîðiâíÿííi íîðì íàáëèæåíü äî ïî-
õèáêè äëÿ ðîçãëÿäóâàíèõ ñïîñîáiâ ïåðåáóäîâè ñêií÷åííîãî åëåìåíòà. Ìè
ðîçãëÿäà¹ìî àëãîðèòì àäàïòóâàííÿ òà íàâîäèìî îá ðóíòóâàííÿ iäå¨ àëãî-
ðèòìó ó âèïàäêó ñèìåòðè÷íî¨ êðàéîâî¨ çàäà÷i. Çàñòîñîâíiñòü àëãîðèòìó
äî íåñèìåòðè÷íèõ çàäà÷ ìè àíàëiçó¹ìî øëÿõîì ðîçãëÿäó ðåçóëüòàòiâ ÷èñ-
ëîâèõ åêñïåðèìåíòiâ, à òàêîæ äîïîâíþ¹ìî íàâåäåíi ðåçóëüòàòè òåîðåòè÷-
íèì àíàëiçîì ìîæëèâîñòi çâåäåííÿ âèõiäíî¨ âàðiàöiéíî¨ çàäà÷i äî ñèìåò-
ðè÷íî¨ ôîðìè. Ìè íàâîäèìî äâi ïðîöåäóðè, ùî äàþòü çìîãó ïåðåéòè âiä
íåñèìåòðè÷íî¨ çàäà÷i äî åêâiâàëåíòíî¨ ñèìåòðè÷íî¨, àáî äî ïîñëiäîâíîñòi
ñèìåòðè÷íèõ çàäà÷, ïîñëiäîâíiñòü ðîçâ'ÿçêiâ ÿêèõ çáiãà¹òüñÿ äî ðîçâ'ÿçêó
âèõiäíî¨ íåñèìåòðè÷íî¨ çàäà÷i. Îòðèìàíèé ðåçóëüòàò âðåøòi ìîæå áóòè
âèêîðèñòàíèé äëÿ ïîáóäîâè êîìáiíîâàíèõ àëãîðèòìiâ íà îñíîâi îäíi¹¨ iç
ñõåì ñèìåòðèçàöii¨ òà àëãîðèòìó hp-àäàïòóâàííÿ.

Abstract. We consider application of certain hp-adaptive strategy for �-
nite element method for solving nonsymmetric convection-di�usion-reaction
boundary value problems. In the base of described strategy lies re�nement
selection procedure which is used to choose on each �nite element between
degree increase or bisection. It uses special comparative criteria for norms of
approximation to local errors on di�erent re�nement patterns. We present the
adaptation algorithm itself and proof of idea behind it for symmetric prob-
lems. For the case when problem is nonsymmetric we provide corresponding
analysis of numerical experiments and also we add pure theoretical analysis
of the possibility of bringing given variational problem to symmetric form,
taking into account that the algorithm is naturally applicable in the latter
case. We describe two approaches that can provide transition from nonsym-
metric variational problem to directly equivalent symmetric problem in the
�rst approach or to sequence of symmetric problems, solutions of which forms
sequence of functions that is convergent to the solution of initial nonsymmet-
ric problem in the second approach. Obtained result can be used to build
algorithms, based on a combination of one of the described symmetrization
methods with hp-adaptive scheme.

Key words. Convection-di�usion-reaction problem, �nite element method, a posteriori er-
ror estimator, adaptive strategy, hp-adaptivity, nonsymmetric problem.
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1. Introduction
Space mesh adaptivity today is the major technique which is used to opti-

mize the process of �nding the approximate solution by �nite element method
in various free and commercial engineering simulation tools. Using it also is
crucial, since in most cases the nature of considered boundary problem is char-
acterized by highly nonuniform distribution of local errors in the case of uniform
mesh. In the context of modeling of convection-di�usion-reaction phenomena,
the reason of such error distribution lies in relatively large values of P�eclet and
Strouhal numbers for the given problem.

Special and natural attention is on so-called hp-adaptive methods [2, 4, 5,
8�10], since they provide most wide approximation capabilities by using both
space mesh adaptivity (h-) and element polynomial degree adaptivity (p-). De-
spite that there are reasonable facts to believe that such algorithms (hp-) can be
considered "exotic" in some sense, investigation in that �eld is still important,
since it is proved [8] that there is possibility to obtain exponentially convergent
sequence of approximations by using hp-re�ned meshes.

In this paper we study the possibility of application of hp-adaptive strat-
egy, introduced in [5], to nonsymmetric variational problems. The fact is that
the nature of introduced algorithm can be explained only for problems with
self-adjoint operators. Despite this, in practice, it can be seen, that algorithm
still can be used for nonsymmetric problems which is shown in provided nu-
merical example. The goal is of this example is to demonstrate that algorithm
can provide solid results, regardless of the used a posteriori error estimators or
adaptation criteria. The second part of this work is the pure theoretical investi-
gation of the possible methods of symmetrization of nonsymmetric variational
problems.

The paper structure is the following: in section 2 we de�ne model problem;
in section 3 we construct variational formulation; in section 4 we present hp-
adaptation algorithm and discuss the main idea behind it; in section 5 we
extend algorithm with some speci�c error estimator; in section 6 we review
adaptation criteria which we will use in numerical experiment; in section 7
we provide numerical results for direct application of described algorithm and
in section 8 we study two methods of symmetrization of variational problem.
Final conclusions are given in section 9.

2. Model boundary value problem
Let us consider the following boundary value problem:
Find function u = u(x) such that




− (

µu′
)′ + βu′ + σu = f in Ω = (0, L)

(µu′)
∣∣
x=0

= α[u(0)− ū0], −(µu′)
∣∣
x=L

= γ[u(L)− ūL],
(1)

where
α, γ ≥ 0, µ = µ(x) ≥ µ0 > 0, β(0) ≤ 0, β(L) ≥ 0, σ = σ(x) ≥ 0,

σ(x)− β′(x)/2 ≥ σ0 > 0 almost everywhere in (0, L), (2)
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µ, β, σ ∈ L∞(0, L), f ∈ L2(0, L).

Considered problem is used in analysis of ecologic phenomena, semiconduc-
tors, biology etc. Many real problems of such kind are singularly perturbed [3].
In the terms of di�erential equation parameters it means that coe�cients near
highest order derivatives are relatively small in comparison to others. So in
this case a second order equation is almost degenerated to �rst order one. In
combination with standard boundary conditions it causes existence of layers
near domain's boundary with high solution gradient. Those boundary layers
are making the solving of problem by using well-known uniform-mesh-based
FEM quite di�cult. Such conditions leads to large P�eclet and Strouhal criteria
and to nonuniform local error distribution.

3. Variational formulation
Using standard approach [1], we can simply de�ne variational problem cor-

responding to (1): �nd solution u ∈ V , such that

a(u, v) = 〈l, v〉 ∀v ∈ V, (3)

where

a(u, v) :=

L∫

0

[µu′v′ + βu′v + σuv] dx + αu(0)v(0) + γu(L)v(L),

〈l, v〉 :=

L∫

0

fv dx + αū0v(0) + γūLv(L), ∀u, v ∈ V := H1(0, L).

(4)

Under conditions (2) problem data satis�es (for details see [6]) conditions of
Lax-Milgram theorem [1] and therefore this variational problem is well-posed.

For further needs, let us de�ne energy norm ‖v‖E =
√

a(v, v).
To discretize obtained variational problem we use general �nite element

method with high-order polynomial basis functions. In other words, we de-
�ne some space Vh ⊂ V, dimVh < +∞, of piecewise-polynomial functions and
�nd �nite element approximation uh ∈ Vh as a solution of variational equation:

a(uh, vh) = 〈l, vh〉 ∀vh ∈ Vh. (5)

Now if we construct �nite basis {ϕi}n
i=1 of space Vh then by expanding uh =∑n

i=1 qiϕi, where qi ∈ R, i = 1, n we can clearly see, that (5) is equal to the
following system of algebraic linear equations for qi, i = 1, n:

n∑

i=1

qia(ϕi, ϕj) = 〈l, ϕj〉 j = 1, n. (6)

For general reference see [2, 9, 10].
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4. hp-adaptation algorithm
In this section we brie�y present discussion and review of algorithm from [5].
Let us consider �nite element mesh τh = {K = (xk−1, xk)}n

k=1 where 0 =
x0 < x1 < · · · < xn = L. Let us de�ne global error approximation space in the
form:

Eh =
⊕

K∈τh

EK
h , (7)

where space of functions EK
h = {v ∈ V | supp v ⊂ K} and dimEK

h < +∞. Let
us de�ne the following variational problem for error approximation:





�nd eh ∈ Eh such that

a(eh, vh) =
∫

Ω
R[uh]vhdx ∀vh ∈ Eh,

(8)

where R is the residual:
R[uh] := f − (

µuh
′)′ − βuh

′ − σuh. (9)
It is not hard to see that problem (8) can be decomposed per elements. For
each element we have to solve a problem:





�nd eK
h ∈ EK

h such that

a(eK
h , vK

h ) =
∫

K
R[uh]vK

h dx ∀vK
h ∈ EK

h

(10)

and then eh =
∑

K∈τh
eK
h .

Consider now the case β ≡ 0, i.e. the problem has symmetric bilinear form.
Then the following well-known equality holds:

‖u− uh‖2
E = ‖u‖2

E − ‖uh‖2
E . (11)

Since error estimation problem has the same bilinear form as the original,
then for �nite element error approximation eh the equality above also holds:

‖e− eh‖2
E = ‖e‖2

E − ‖eh‖2
E . (12)

From this equality we see that if energy norm of error approximation increases
than also increases accuracy of this approximation. Denote the �nite element
solution on the current mesh as uh ∈ Vh and corresponding error e = u − uh.
Then (12) we can rewrite as

‖u− (uh + eh)‖2
E = ‖u− uh‖2

E − ‖eh‖2
E . (13)

Let us �nd �nite element solution ũh in space Ṽh = Vh + Eh ⊂ V , where Eh

is the error approximation space, de�ned in (7). For symmetric case we have
well-known optimality inequality:

‖u− ũh‖E ≤ ‖u− ṽh‖E , ∀ṽh ∈ Ṽh. (14)

Using now (13), and the fact that uh + eh ∈ Ṽh we have:

‖u− ũh‖2
E ≤ ‖u− uh‖2

E − ‖eh‖2
E . (15)
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Decomposing the second term in the right part we obtain inequality:

‖u− ũh‖2
E ≤ ‖u− uh‖2

E −
∑

K∈τh

∥∥eK
h

∥∥2

E
. (16)

Consider now decomposition of approximation space Vh into local approxima-
tion spaces V K

h , K ∈ τh. Spaces V K
h +EK

h are considered as re�ned local �nite
element spaces according to transition from current mesh to mesh de�ned by
space Ṽh. In the case when EK

h consists of piecewise-polynomial functions it
directly de�nes some re�nement pattern on element K. For each element K we
can consider now several di�erent choices of space EK

h : E1, . . . , ES and taking
into account (16) we see, that it is optimal to use re�nement pattern de�ned
by the space EK

h := EsK , sK ∈ {1, . . . , S} which gives a maximum to a value
of

∥∥eK
h

∥∥
E
in the right part of (16).

So, now we can review the entire algorithm, which consists of two phases:
Initialization:
Compute:

µ0 = min
x∈[0,L]

µ(x),

σ0 = min
x∈[0,L]

{
σ(x)− β′(x)

2

}
,

C = 2 · [min {µ0, σ0}]−1/2 .

(17)

Set τh to some initial �nite element mesh.
For each �nite element K = (xk−1, xk) ∈ τh we de�ne quadratic bubble

function
ωK(x) := (xk − x)(x− xk−1). (18)

TOL is acceptable relative error level in percent.
pmax is the maximum supported degree of polynomial basis function on �nite

element.
θ ∈ (0, 1) is �xed value.
Iteration:

Step 1: Find FEM solution uh on the current mesh τh. De�ne uK
h as restriction

of uh to the element K and pK := deg(uK
h ).

Step 2: For all elements K ∈ τh compute

ηK =
C√

pK(pK + 1)
‖√ωKR[uh]‖L2(K) . (19)

De�ne η :=
√∑

K η2
K .

Then if η
‖uh‖E

× 100% < TOL we stop the algorithm, else:
Step 3: Choose elements for re�nement.
Compute ηmax = max

K
ηK .

We will change those elements K, for which ηK > (1 − θ)ηmax. The set of all
selected elements we name as Aθ.
Step 4: Mesh modi�cation. For all selected elements K = (xk−1, xk) ∈ Aθ

choose between bisection and increasing of polynomial degree on it by 1.
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Step 4a: If pK = pmax then we divide element into two with orders (pK , pK),
otherwise:
Step 4b: De�ne Xp(a, b) as a space of all polynomials of order p on closed
interval [a, b].

De�ne spaces:

V 1
hp(K) = {v ∈ C(K)|v ∈ XpK (xk−1, (xk−1 + xk)/2),

v ∈ XpK ((xk−1 + xk)/2, xk), v|∂K = 0}
V 2

hp(K) = {v ∈ XpK+1(K)| v|∂K = 0}.
(20)

Now we solve problem (10) for EK
h := V 1

hp(K) and EK
h := V 2

hp(K). Let us
denote obtained solutions as e1

h and e2
h respectively.

Compute rm = ‖em
h ‖E , m = 1, 2

Step 5: Consider the di�erence ∆ = r2 − r1.
If ∆ > δ where δ is prede�ned value, then we increase element degree by 1,
otherwise we bisect it into two elements with approximation polynomial degrees
(pK , pK).
Step 6: Go to Step 1.

Idea of described algorithm is clear for symmetric problems. Some numerical
experiments are available in [5,6]. Technically we can run algorithm on nonsym-
metric problems too, without having any theoretical background in that case.
We will try to perform some numerical experiments to show how described algo-
rithm will work in practice for nonsymmetric problem. We describe additional
error estimator in next section 5 and additional adaptation criteria in section
6. Using those we will provide corresponding comparative numerical results
in section 7 to show that algorithm can provide solid results despite of which
combination of estimator and adaptation criteria we use.

5. Error estimator based on fundamental solution
For error indicator ηK , introduced by (19) in section 4, instead of using

explicit formula we can use implicit indicator in the form of problem (10) but
with special approximation space EK

h = span{ϕK}, where:

ϕK(x) =





c11ϕ11(x) + c12ϕ12(x) on x ∈ [xk−1, xk−1/2],

ϕ1(xk−1) = 0, ϕ1(xk−1/2) = 1,

c21ϕ21(x) + c22ϕ22(x) on x ∈ [xk−1/2, xk],

ϕ2(xk−1/2) = 1, ϕ2(xk) = 0,

(21)

and {ϕ1i(x)}, {ϕ2i(x)} are the sets of fundamental solutions for equations
− (

µ̃iw
′)′ + β̃iw

′ + σ̃iw = 0, i = 1, 2 (22)
with constant coe�cients (selected as mean values of corresponding functions)
on corresponding intervals [xk−1, xk−1/2] and [xk−1/2, xk]. Then we solve (10)
and use the energy norm of obtained approximation as an error indicator ηK .
To �nd fundamental solutions we solve corresponding quadratic equations

−µ̃iλ
2
i + β̃iλi + σ̃i = 0, i = 1, 2. (23)
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Here for each of two equations we have three cases possible:
i. if λ

(1)
i , λ

(2)
i ∈ R, λ

(1)
i 6= λ

(2)
i then

ϕi1(x) = exp(λ(1)
i x), ϕi2(x) = exp(λ(2)

i x);
ii. if λ

(1)
i , λ

(2)
i ∈ R, λ

(1)
i = λ

(2)
i then

ϕi1(x) = exp(λ(1)
i x), ϕi2(x) = x exp(λ(1)

i x);
iii. if λ

(1)
i , λ

(2)
i ∈ C\R, λ

(1)
i = α + βi, λ2 = α− βi then

ϕi1(x) = exp(αx) sin(βx), ϕi2(x) = exp(αx) cos(βx).

6. Element selection criteria
In addition to adding new estimator in previous section, we also will try

to run algorithm with di�erent adaptation criteria, used in step 3 to choose
elements for re�nement procedure. So we will have two criteria:

i. ("maximum" criteria) element K is re�ned if
ηK > (1− θ)ηmax, (24)

where ηmax = max
K

ηK and θ ∈ (0, 1) is �xed value;
ii. ("average" criteria) element K is re�ned if√

NηK√
‖uh‖2

E +
∑

K′ η2
K′

100% > ε, (25)

where ε is is acceptable tolerance in % for average error level over �nite
element, N is element count.

7. Numerical example
We consider boundary value problem (1) with the following data

µ = 0.01, β = 100.896(x− 1)3, σ = 84(2− (x− 1)2), f = 200,

α = γ = 1014, ū0 = ūL = 0, L = 2.
(26)

Algorithm parameters are: TOL = 5%, pmax = 3, δ = −150, θ = 0.6, ε = 20.
Fig. 1 demonstrates approximation obtained by introduced algorithm using

fundamental solution error indicator "maximum" adaptation criteria. Taking
into account boundary conditions we can clearly see that we have two bound-
ary layers in the both ends of interval (which we don't see directly in the plot
according to very large gradient of approximation near those two points). In
tables 1 and 2 we present convergence history for di�erent combinations of
introduced error estimators from sections 5 and 4 in combination with "max-
imum" criteria (24) and "average" criteria (25). Average convergence rate is
found using least squares method.

In general we can see from provided numerical examples that:
i. the better choice in according to count of elements, iterations and d.o.f.

reached is a combination of the explicit indicator and "maximum" crite-
ria;

ii. there is no large di�erence between "maximum" and "average" selection
criteria;
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iii. if we need to have almost monotonic relative error decreasing we need to
choose explicit indicator from 4.

Fig. 1. Approximation to solution of problem with data (26)
using implicit error indicator based on fundamental solution ba-
sis which was introduced in section 5 combined with the "max-
imum" criteria (24)

Fig. 2. Dependency between absolute error indicator εn and
number of degrees of freedom N

(n)
dof in log-log scale for previous

results: a) for algorithm with explicit error indicator from sec-
tion 4 and "maximum" criteria (24); b) for algorithm with indi-
cator based on fundamental solution described in section 5 and
"maximum" criteria (24); c) for algorithm with explicit error
indicator from section 4 and "average" criteria (25); d) for algo-
rithm with indicator based on fundamental solution described
in section 5 and "average" criteria (25)
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Tabl. 1. Convergence history for problem with data (26) for
the "maximum" criteria (24): n is an iteration number, N el-
ement count, N

(n)
dof count of degrees of freedom, εn = η ab-

solute error indicator, rn = η‖uh‖−1
E × 100% relative error,

pn = − (ln εn − ln εn−1) ×
(
lnN

(n)
dof − lnN

(n−1)
dof

)−1
rate of con-

vergence

Explicit indicator Fundamental solution indicator
n N N

(n)
dof εn rn pn n N N

(n)
dof εn rn pn

0 50 51 74.00 73.85 0 50 51 84.41 84.25
1 72 75 56.51 50.94 0.69 1 69 75 79.52 67.86 0.15
2 106 109 40.08 32.25 0.91 2 102 118 62.69 52.61 0.52
3 136 143 22.26 21.22 2.16 3 124 145 56.07 49.96 0.54
4 144 165 11.39 15.61 4.68 4 130 151 33.69 33.22 12.56
5 144 177 5.14 17.90 11.33 5 142 175 22.55 37.16 2.72
6 144 181 2.90 8.39 25.48 6 142 182 15.10 43.72 10.21
7 146 187 1.24 4.57 26.08 7 143 187 6.24 19.58 32.59

8 145 193 2.88 11.29 24.49
9 146 196 1.12 4.72 61.11

average rate of convergence 2.66 average rate of convergence 2.38

Tabl. 2. Convergence history for problem with data (26) for
the "average" criteria (25).

Explicit indicator Fundamental solution indicator
n N N

(n)
dof εn rn pn n N N

(n)
dof εn rn pn

0 50 51 74.00 73.85 0 50 51 84.41 84.25
1 72 81 52.93 52.15 0.72 1 72 85 72.67 71.90 0.29
2 106 125 38.34 32.55 0.74 2 106 135 60.36 50.78 0.40
3 134 167 22.12 21.43 1.89 3 136 189 50.07 48.36 0.55
4 142 195 11.33 15.90 4.31 4 144 227 24.87 35.20 3.81
5 142 211 5.11 18.80 10.08 5 144 252 19.63 70.70 2.26
6 142 219 2.84 8.02 15.76 6 144 266 7.52 21.09 17.73
7 146 231 1.24 4.57 15.56 7 150 284 3.84 14.18 10.26

8 152 290 1.13 4.75 58.56
average rate of convergence 2.32 average rate of convergence 1.86

Also, taking into account, that during preparation of this paper the algorithm
was tested on several other problems, we can conclude from solid numerical
results that the algorithm is applicable in practice in the case of nonsymmetric
problems too, despite of which indicators or element selection criteria we use
(without any theoretical background). In the next section we provide some
pure theoretical analysis in that case.

56



ON THE APPLICATION OF THE ONE HP-ADAPTIVE STRATEGY ...

8. Symmetrization methods
Instead of trying to generalize somehow (11) to nonsymmetric problems to

bring similar argument as in remark in section 4, it is natural to try to construct
equivalent (in some sense) to (3) but symmetric variational problem.

Here we present two pure theoretical results which can not be used in practice
directly but can be considered as a starting point in further investigation in
described direction.

8.1. Equivalent symmetric problem approach. Let us recall variational
equation (1) in expanded form:

L∫

0

[µu′v′ + βu′v + σuv] dx + αu(0)v(0) + γu(L)v(L) =

=

L∫

0

fv dx + αū0v(0) + γūLv(L), ∀v ∈ V.

(27)

We are free to choose arbitrary function v in (27) in the form: v = zw, where
both functions z and w are arbitrary, but z is �xed. After substitution into
(27) and small algebra we obtain equivalend equation:

L∫

0

[µzu′w′ + (µz′ + βz)︸ ︷︷ ︸u′w + σzuw] dx+

+ αz(0)u(0)w(0) + γz(L)u(L)w(L) =

=

L∫

0

fzw dx + αū0z(0)w(0) + γūLz(L)w(L), ∀w ∈ V.

(28)

Lets choose z as a solution of the ordinary di�erential equation µz′ + βz = 0.
It is not hard to �nd partial solution:

z(x) = exp



−

x∫

0

β(ξ)
µ(ξ)

dξ



 . (29)

Substituting (29) into (28) lead us to:

L∫

0

[µzu′w′ + σzuw] dx + αu(0)w(0) + γz(L)u(L)w(L) =

=

L∫

0

fzw dx + αū0w(0) + γūLz(L)w(L), ∀w ∈ V.

(30)
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It is not hard to see that (3) and (30) are equivalent and furthermore the
bilinear form

b(u, v) :=

L∫

0

[µzu′w′ + σzuw] dx + αu(0)w(0) + γz(L)u(L)w(L), (31)

in the left part of (30), is symmetric. Corresponding to (30) boundary value
problem is:





�nd function u = u(x), such that
− (

µzu′
)′ + σzu = fz on Ω = (0, L)

(µzu′)
∣∣
x=0

= α[u(0)− ū0], −(µzu′)
∣∣
x=L

= γz(L)[u(L)− ūL].

(32)

Visual simplicity of obtained symmetrization procedure and the problem (32),
in practice lead us to problem which is technically hard to solve. The reason is
in function z (29). Fraction β(ξ)

µ(ξ) is almost proportional to P�eclet number for the
given problem and in the latter is singular perturbed multiplier z will be the ex-
ponent with large negative power. In such conditions it is very problematically
to calculate integrals from (30) when we use standard Galerkin discretization
according to very large quadrature round-o� errors. We investigated numeri-
cally the following approaches:

i. trapezoidal rule;
ii. interpolation-type quadrature based on L-splines;
iii. asymptotic formula at Pe → +∞;
iv. tanh− sinh quadratures;
v. adaptive quadratures using previous methods;
vi. implementation of adaptation algorithm using Wolfram Mathematica.

Those approaches even with combination with element-wise scaling of function
z does not provide successful practical result.

8.2. Iterative approach. The second approach does not provide directly equi-
valent symmetric problem. Let us suppose that the bilinear form a and linear
functional l from (1) satisfy conditions of Lax-Milgram theorem, i.e. a and l
are bounded and moreover bilinear form a is V -elliptical. So, there are two
positive constants M > 0 and α > 0 such that:

a(u, v) ≤ M‖u‖V ‖v‖V , ∀u, v ∈ V,

a(u, u) ≥ α‖u‖2
V , ∀u ∈ V.

(33)

By the way, where the conditions from (1) guarantees existence of such con-
stants M and α.

Let us construct sequence {uk}∞k=0 ∈ V . We select arbitrary u0 ∈ V , uk,
k > 0 we �nd from the following symmetric variational problem:

{
�nd function uk ∈ V, such that
a(uk, v) + a(v, uk) = 〈l, v〉+ a(v, uk−1), ∀v ∈ V.

(34)
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Under previous conditions for a and l it is not hard to conclude that the se-
quence is well-de�ned, i.e. the solution of (34) exists on each step.

Theorem 1. If M < 2α, than uk −−−→
k→∞

u in V , where u is the solution of (3),
moreover

‖u− uk‖V ≤
(

M

2α

)k

‖u− u0‖V . (35)

Proof. Let us de�ne ek = uk − u. Then substitute uk = u + ek into equation
from (34). We get:

a(u + ek, v) + a(v, u + ek) = 〈l, v〉+ a(v, u + ek−1), (36)
or after simpli�cation:

a(ek, v) + a(v, ek) = a(v, ek−1). (37)
Taking v = ek and using (33) we obtain the following inequality chain:

2α‖ek‖2
V ≤ 2a(ek, ek) = a(ek, ek−1) ≤ M‖ek‖V ‖ek−1‖V . (38)

If there exist k0 : ek0 = 0V than it is obvious that uk = u,∀k ≥ k0, i.e. we
have convergent sequence and the inequality from theorem statement holds. In
other case ∀k ∈ N we can divide (38) by ‖ek‖V 6= 0 and we obtain:

‖ek‖V ≤ M

2α
‖ek−1‖V . (39)

By combining the last recurrent formula we simply get the �nal estimate (35):

‖ek‖V ≤
(

M

2α

)k

‖e0‖V , (40)

and convergence if M < 2α.

9. Conclusion
In this paper we studied application of certain hp-adaptive algorithm to

nonsymmetric problems. We combined this algorithm with di�erent a posteri-
ori error estimators and adaptation criteria to show by numerical experiment
that algorithm can be directly applied to nonsymmetric problems. Also we
construct several methods of symmetrization of given variational problem and
provide corresponding theoretical analysis of those procedures. Two approaches
are described. First can be used to build equivalent symmetric problem. In
the second approach we built iterative procedure, where by solving symmetric
variational problem on each step we can obtain sequence of elements that is
convergent in the space of test functions to the solution of the original nonsym-
metric problem. We still are working on the problem of theorem applicability
to singular perturbed problems and schemes of combining this theorem with
adaptive �nite element algorithms. Also we are working on practical imple-
mentation of both symmetrization schemes which in practice involve building
some ad hoc numerical quadratures.
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