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CONVERGENCE ANALYSIS OF A TWO-STEP
MODIFICATION OF THE GAUSS-NEWTON
METHOD AND ITS APPLICATIONS

R.P.IAKYMCHUK, S. M. SHAKHNO, H. P. YARMOLA

PE3IOME. Y po6oTi T0C/TiI2KeHO 301KHICTh BOKPOKOBOT MOAm(piKaIlii METOLY
laycca-Hprorona 3a ysarampreHux yMmoB Jlimmmwms mis moxXigHuX mepimoro i
Apyroro nopsaakis. BeranoBieHo nopamox i paaiyc 3612KHOCTI METOLY, a TAKOK
00J1aCTh €QUHOCTI PO3B’ 3Ky HeJIHINAHOIT 3a7a4i Tpo HalimeHmi kBaapaTu. IIpo-
BEJIEHO YHUCEJIbHI eKCIIEPUMEHTH Ha BIIOMHUX TECTOBHMX 3aJadax.

ABSTRACT. We investigate the convergence of a two-step modification of
the Gauss-Newton method applying the generalized Lipschitz condition for
the first- and second-order derivatives. The convergence order as well as the
convergence radius of the method are studied and the uniqueness ball of the
solution of the nonlinear least squares problem is examined. Finally, we carry
out numerical experiments on a set of well-known test problems.

1. INTRODUCTION
Let us consider the nonlinear least squares problem [6]:

1
min f(z) := §F($)TF(~%’), (1)
where F' is a Fréchet differentiable operator defined on IR"™ with its values on
IR™, m > n. The best known method for finding an approximate solution of

the problem (1) is the Gauss-Newton method, which is defined as
Thi1 = 2 — [F (2p)TF (2)] 7 F (a3) " F(2x), k=0,1,2, ... (2)

The convergence analysis of the method (2) under various conditions was con-
ducted in [4,5]. In paper [11], three free-derivative iterative methods were
investigated under the classical Lipschitz conditions. The radius of the conver-
gence ball and the convergence order of these methods were determined. The
study of these methods was conducted in the case of both zero and nonzero
residuals.

For solving the problem (1), we consider a two-step modification of the Gauss-
Newton method [1,3]

{ Tl = Tp — [F/(Zl?k)TF/ (%k)]_lF/(%k)TF(ﬂfk)v (3)
Ykt1 = Tpt1 — [F (Zk)TF (Zk)]_lF (Zk)TF(;Ek+1), k=0,1,2,...,

Key words. Least squares problem, Gauss-Newton method, Lipschitz conditions with L
average, radius of convergence, uniqueness ball.
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where zp, = (xp+yk)/2; o and yo are given. In case when m = n, this method is
equivalent to the methods proposed by Bartish [2] and Werner [17]. On each it-
eration, the method (3) computes the inversion of the matrix [F (z)T F' (z;)] !
only once. Because of that, the computation cost of each iteration of the
method (3) is roughly the same as of the Gauss-Newton method (2): for calcu-
lating yg+1, it is only necessary to perform one backward substitution, which
requires O(n?) floating-point operations (Flops), since the LLT decomposi-
tion of the matrix F' (z)7F (zx), which costs O(n?) (O(n®/3) to be precise)
Flops [6], is computed for zj.

The main goal of this paper is to analyze the local convergence of the
method (3). Bartish et al. [1] examined the local convergence of this method us-
ing the classical Lipschitz condition for derivatives of the second-order, but only
for the problem (1) with zero residuals. Instead, we study the convergence of
the above-mentioned method using the generalized Lipschitz conditions [15] for
derivatives of the first- and second-orders; such conditions employ an integrable
function L(u) instead of the Lipschitz constant L. The Lipschitz condition with
L average in the inscribe sphere makes us unify the convergence criteria con-
taining the Kantorovich theorem and the Smale a-theory [5,8,12,14,15]. We
prove the convergence of the method (3) for the problem (1) with zero as well
as non-zero residuals. Furthermore, we find both the order and the radius of
the convergence of the method (3) as well as the uniqueness ball of the solution
of the problem (1). We have published some of the results without proofs as
an extended abstract [7].

2. PRELIMINARIES

For our study, we present different definitions of the Lipschitz conditions.
Let us denote B(zy,7) = {z € D CIR" : ||x — x«|| <1} as an closed ball with
the radius r (r > 0) at z,.

Definition 1. The function F' : IR®™ — IR™ satisfies the classical Lipschitz
condition on B(z,r) if

|1F(z) — F(y)|| < Ll — yl],
where z,y € B(z«,r) and L is the Lipschitz constant.

In Definition 1 L may not necessary be a constant, but it also can be an
integrable function L(u).

Definition 2 ( [15]). The function F' : IR" — IR™ satisfies the Lipschitz
condition with L average on B(x,,r) if

llz—y|l
|F(z) - F)| < /0 L(u)du, Yz € B(w.,7),

where L(u) is a positive non-decreasing function.

Let R™*™ m > n, denote a set of all m x n matrices. Then, for a full
rank matrix A € IR™*", its Moore-Penrose pseudo-inverse [6] is defined as
AT = (AT A)71AT,
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Lemma 1 ( [13,16]). Let A, E € R™*". Assume that C = A+ E, || AT||| E| <
1, and rank(A) = rank(C). Then,

1AT]

ICH) < ~— iz

1 — || AT|[[|£]]
If rank(A) = rank(C) = min(m,n), we can obtain
V2| AT Bl
1|l AT[|E]
Lemma 2 ( [4]). Let A,E € R™ ™. Assume that C = A+ E, |[EAT|| < 1,
and rank(A) = n, then rank(C) = n.

It — AT <

1 t
Lemma 3 ( [15]). Let h(t) = t/ L(u)du, 0 <t <r, where L(u) is a positive
0

integrable function and monotonically non-decreasing on [0,7]. Then, h(t) is
monotonically non-decreasing with respect to t.

Lemma 4 ( [10]). Let g(t) /N )(t—u)?du, 0 <t <7, where N(u) is a

positive integrable function and monotonically non-decreasing on [0,7]. Then,
g(t) is monotonically non-decreasing with respect to t.

3. LocAL CONVERGENCE ANALYSIS OF METHOD (3)

In this section, we investigate the convergence and the radius of the conver-
gence ball of the method (3).

Theorem 1. Let F' : IR" — IR™, m > n, be a twice Fréchet differentiable
operator on a subset D C IR"™. Assume that the problem (1) has a solution
z, € D and a Fréchet deriative F' (x4) has full rank. Suppose that Fréchet
derivatives F'(z) and F"(z) on B(x«, R) = {x € D : ||z — .|| < R} satisfy the
Lipschitz conditions with L and N average:

, , o=yl

uFm—F@\sdé L(w)du, (@
) ) o=yl

HFMF@\s[; N(w)du, (5)

where L and N are positive non-decreasing functions on [0,3R/2].
Furthermore, assume function

ho(p) = (B8/8) / N(u)(p —u) du+ﬁp(/0(3/2)p[/(u)du+/OPL(u)du)+
44%@/me—p )

has a minimal zero v on [0, R|, which also satisfies

5/ wdu < 1. (")
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Then, for all xg,yo € B(xs,r) the sequences {x} and {yr}, which are gen-
erated by the method (3), are well defined, remain in B(x.,r) for all k > 0,
and converge to xs such that

plarer) < p(er)® + np(er)p(ye) + 0p(zk), (8)
plyrsr) < yplenn)® + (0/3)(plar) + plyr) + pleri1))p(Tri) +

+0p(zr), (9)

Tet1 = max{p(Tr+1), p(Yr+1)} < grp < -0 < ¢"*'ro, (10)

where p(x) = |lx — 2., ro = max{p(xo), p(yo)},
q = vp(x0)? +9+n, (11)
B N (ploo) — VB0 [ Ly

G ey Ry cey )
(1‘0+(yo)/2
n = B g L(w)du (13)
(2p(z0) + p(v0))/3 (1 -8 J7= )d“>

o = [F@)l, B=F @) F ) Fla)]. (14)

Proof. Let choose arbitrary xo,yo € B(z«, 7). For z1,y; that are generated by
(3), we have

(12)

w1 — 2, = 20— 20— [F'(20)7F (20)] T F (20)T Flag) =
= [P F ()] F' (o) [F' o) o — 22) — Flao) + Fla)] +
+[F @) F (2.) U (@) TP — [F ()" F (z0)] CF ) Fla) =
= [P F ()] F (20)"x
x [(F (‘””0 + 5”) (w0 — 4) — F(zo) + F(a:*)> +

o+ (25 -o]

+ [F/(.CL‘*)TF/(LL’*)} F/(a:*)TF(x*) - [F/(ZQ)TF/(Z())} F/(zo)TF(a:*);

Yl — T = T1 — Tu — [Fl(zo)TF/(ZO)} - F (Zo)TF(xl) =
= [F ()" F (a0)] T )T [F ()1 — ) — Fla) + F(a)] +
+[F @) F (@) (@) TP — [F ()" F (z0)] T F )T F () =
= [F ) F ()] F (z0)"x
x KF (f’” ;:C) (21— 2.) — F(z1) + F(a:*)> +

(o (252 e
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/ / -1 / / / -1 /
4 [F )TF (a:*)} F (2T F(z.) — [F (20)TF (zo)} F (20) F ().
According to Lemma 1 from [17] with the value w = 1/2 we can write

’ x—i—y
2

(
:i/lu—t) [F (x;er;( y)>— (15)
(

(T )

By setting x = z, and y = z¢ in the equation above, we receive

F(z) - F(y) - F T —y) =

—y)?dt.

/ mo—;—x* (x* B xo)

HF( )~ Fleo) ~ F
’/ (1-1) { " (mo—;-x*Jr;(:c*—xo)) _
< Totdn o ))} (24 —x0)2dtH <
i/l (1-1) /Otxo - N (w)dul|zo — @,|2dt =
)

_u ) , 1 [r) o
(1=t ) oo = [ Nt it

1 [rlxo)
= /O N(u

and also
, , . p(y0)/2
[ (o) -# (o) < [ s
0

Using (4) and (14), we obtain that

/ / / , , ()
|(F (@) F (2)) " F (@) || F () - F ()] < 8 / ™ Llw)du

According to Lemmas 1 and 2 and that F' () has full rank, for all z € B(x,,7),
the following inequalities hold

I @) F ) ) S (16
I(F (2)" F' ()" F' ()" — (F/(ﬂﬁ*)TF,( D) ()T <
_ VIR i 17
1 — ﬂfo du

By the monotonicity of L(u) and N(u) with Lemmas 3 and 4, functions
I I
75/ L(u)du and t3/ N (u)(t — u)?du are non-decreasing by t. Hence, from
0 0
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(6) and (7) it follows that

) (3/2)ro

B[ N)(ro—uw)?du Bro [ L(u)du+v2a3? fOL(u)du
g< = |0 _ n 0 _ 0 <
"0ls (1 — ﬁfL(u)du) 1 -3 [ L(u)du
0 0
. (3/2)r \
) B[ Nu)(r—u)?du pBr [ Ludu +2a8?[L(u)du
<= |- +—2 - K <1

"8 <1 - ﬁfL(u)du) 1- 8 [Lwdu 1— 5[ Lu)du
0 0 0

Thus, by Lemmas 1-4, conditions (4) and (5), and the afore-derived estimates,
we obtain

[F (o) TF (z0)] " F(20)7

<F’ ( > ) (w0 = ) = F (o) + W*’) i

+ (FI(ZO) —F <x0—;$*>> (zo — @)
+ H [F’(x*)TF’ (g:*)] P (@) F(z) — [F’(zo)TF'(zO)} T ()T F ()

< Bplo)® J§ N (u)(p(x) — u)*du
8p $03(1 5]‘9(20)[/ )
 Beleo)olu) J§ Lwydu - V2afp(z0) J; Lw)du

p(yo) (1 — B [y L(U)dU) p(z ( ﬂf”(zo )
<p(z0)® 4+ np(xo)p(yo) + 9p(20) <qro<r.

lr — || < x

X

_|_

—_

<

Similarly,

’ / -1 ’
lon = @all = ||[F (20)TF (20)] F'(20)7]

(252

(o (2520
+ H [F'(az*)TF' (:c*)] CF (@) F(x) — [F’(ZO)TF’(,ZO)} T F (20) T F ()
< Bple)® J7) N(w)(p(ar) — u)’du
8p(z1)3 (1— fp(ZO)L )du)
Bolan)p(p) J0 Liwdu  V3aBp(z0) [ L(w)du
(1B E o] e (1~ 5T )

X

+

—

<
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< p(x1)? + (n/3)p(1)(p(x0) + p(yo) + p(x1)) + Op(20) <
< yp(wo)? + (n/3)p(z0)(2p(m0) + p(y0)) + Op(20) < qro <,

where p(z5) = (p(xo) + p(yo) + p(x1))/2. Therefore, 1,91 € B(zs,r) and both
(8) and (9) follow for k = 0. Also, (10) is satisfied

r1 = max{||x1 — x|, [|[y1 — ||} < gro.

Using mathematical induction, assume that xg,yr € B(x.,r) and (8)—(10)
hold for & > 0. Then, from (3) for £+ 1 we obtain that

Bp(ax)* 7 N(u)(p(m) — u)2du
8p(xy)3 (1 - ﬁfp ) du)

ﬁp(ﬂﬂk p(yk) [ W2 1, (u )du V2a82p(2) [ ) 1 (u)du
"ot (1- 9 15 du) o) (1 ﬁfp(z’“ u)du)
_ Bee)® i P N (u (p(fco) — u)*du
T 8p(@o)® (1= %) L(w)du) (18)
+ﬁp<xk> plye) J7@ L ()du+ V2a820(z) J§' L(u)
(Yo (1—/3fp(Z°)L ) p(z0) (1—ﬁfo = U)dU) -
< p(ar)® +nplar)plyr) + 0p(2k) < gry <7

lorsr — ]l <

and
Bolwrn) Jy ™) N () (plaan) — u)du
8p(wpi1)3 (1 -6y Z’“)L )du)
Bp(xri1)p z;g fop(z’“) (wydu — V2a8%p(z) [ (2) u)du
+ . + 2 =
p(z) (1= [y du) o) (1= B J7 du)
 Bolawsn)? 57 NG plao) = P (19)
8p(z0)3 (1 — ﬁfp(zo) L( u)du)
Boleri1)p(z,) fop(z(/))L (uydu V2082 p(z2) 7 L(u
+ p(20) (20)
oz (1—ﬁf0 >du) plzo) (1= J750 L du)

< yp(x1)® + (1/3)(p(xr) + p(yr) + p(ari1))p(zr41) +0p(21) <
<qri <r.

Hyk+1 - $*H <

where p(z,) = (p(z1) + p(yr) + p(zr11))/2. According to (11) and both in-
equalities (8) and (9), we receive

rerr = max{||lzrgn — 2,y — 2} < gre < P < - < g
Thus, Tgt+1,Ye+1 € B(zs,7) and (8)—(10) hold; and also hm Tr = x, and
k—o0

lim y = x«. This completes the induction and the proof of Theorem 1. (]

k—o0

In case of zero residual (o = ||F(z4)| = 0) the results of Theorem 1 are
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Corollary 1. Suppose that x. satisfies (1), F(x.) =0, F(x) is a twice Fréchet
differentiable operator in B(x, R), F'(x,) has full rank, and both F'(x) and
F"(x) satisfy the Lipschitz conditions with L and N average as in (4) and (5),
respectively, where L and N are positive non-decreasing functions on [0,3R/2].
Furthrmore, assume function Hy has a minimal zero r on [0, R], which also
satisfies:

ﬁ/o L(u)du < 1,

where

o) = (3/9) [ N —wau+ o [ M Lwyau + [ i) —»

Then, the Gauss-Newton type method (3) is convergent for all xo, yo €
B(xx,7) such that

plees) < yplar)® +nplen)p(yr),
p(rr1) < vp(@rsr)® + (0/3)(p(x) + plyr) + p(zrs1)) p(Trs),
rier = max{p(zpi1), p(We+1)} < qre < - < ¢" g,
where p(x) = ||z — 24|, ro = max{p(zo), p(y0)},
BJE N () (p(ao) — u)Pdu
q=
8p(xo) (1 - ﬁfop(zo) L(u)du)
Bp(0) fop(l"o)-i-ﬂ(yo)/? L(u)du
(20(20) + p(0))/3 (1= B 5 L(w)du)
v,1n, 8 hold in (12)-(14).

Corollary 2. Convergence order of the iterative method (3) in case of zero
residual is equal to 1+ /2.

<1,

Proof. Assume that ar = p(zk),bx = p(yx),k = 0,1,2,... Since the residual is
equal to zero, i.e. a = |[|[F(z4)|| =0, so # = 0. From the inequalities (18) and
(19), we have

apy1 < ar(vai +nby), (20)
bry1 < apqr haiﬂ +n/3(ag + ap41 + bk)] <
< apgr [(var +2n/3)ag + nby /3] < (21)
< agrrax [yr 4] = agrrakdr.

From (20) and (21) for large enough k, it follows
ap1 < ag(vag +nbg) < ap(vaj + néraxag—1) < agag—1(y + nd1) = azag—1¢s.
From this inequality, we obtain an equation [17]

PP —2p—1=0.

The positive root of the latter, which is p, = 1++/2, is the order of convergence
of the iterative method (3). O
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Theorem 2. (The uniqueness of solution) Suppose x. satisfies (1) and
F(x) has a continuous derivative F' (x) in the ball B(x,,r). Moreover, F'(x)
has full rank and F'(x) satisfies the Lipschitz condition with L average (4). Let

r > 0 satisfy
ﬁ/ (r—u) du—i—ﬁo/ L(u)du <1, (22)
0

r

where a and § are defined in (14) and By = ||[F' (z:)TF (z)] 7. Then, x, is
a unique solution of the problem (1) in B(x., ).

The proof of this theorem is analogous to the one in [4].

4. APPLICATIONS
In this section, we apply the obtained results to special cases, when, for
instance, L is a Lipschitz constant. Then, we immediately receive results of the
convergence analysis of the method (3).

Theorem 3. Let F' : IR" — IR™, m > n, be a twice Fréchet differentiable
operator in D C R"™. Assume that (1) has a solution . € D and a Fréchet
derivative F' (x,) has full rank. Suppose that Fréchet derivatives F'(x) and
F'(x) on B(x.,r) = {2 € D : ||z — 2| < r} satisfy the Lipschitz conditions:

[F (x) = F () < Lllz—yll, (23)

[ (x) = F (y) < Nlz—uyl (24)
where z,y € B(x.,r) and both L and N are positive numbers. Also, the radius
r > 0 is a root of the equation

BN72 + 608Lr + 24v2a3*L — 24 = 0. (25)

Then, for all zo,yo € B(z«,r) the sequences {xy} and {y}, which are gen-
erated by the method (8), are well defined, remain in B(x.,r) for all k > 0,
and converge to x4 such that

(8/24)N p(=r)” + BLp(xk) p(yr) /2 + f@ﬁQLP(Zk)

p(Try1) < 1— BLp(z) (26)
p(ghst) < (B/24)Np(zp11)* + BLfl’(ikgz)p((z(:)kH) + (k) + p(yk))/2 n
V2o Lp(z1)
1—BLp(z) &)
repr = max{p(zps1), p(Wks1)} < qre < - < ¢F g, (28)
where p(r) = ||z — 2., ro = max{p(wo), p(yo)},
0<q = (8/24)Np(x0)? + BL(p(x0) + p(y0)/2) + V2052 L <1, (29)

1 — BLp(20)
2z = (xk + yr)/2 and both o and 3 are defined in (14).
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Proof. Let choose arbitrary xo,yo € B(xs,r). According to Lemma 1 from [17]
and the proof of Theorem 1, by setting * = z, and y = z¢ in (15), we receive

o T + Tk
HF(Q;*)—F(Q;O)—F OT (24 — 0)

1 /01(1—t) [Fu <xo+x*+t(x*_x0)) _

4 2 2

" * t
- F <x0—;—m + 5(% - :U*)>:| (x4 — $0)2dt’

1
/ H1 — )N o — 2 |Pdt = - Np(ao)?,
. 24

| (452) - (25| = o

Using (23) and (14), we obtain that
I(F (@) F (@)™ F (@) ||| F (2) = F'(2.)|| < BLp().

According to that F'(z) has full rank, for all z € B(z.,r), the following in-
equalities hold

<

and also

/ ’ _ ’ /6
|(F ()" F () ' F ($)T”§m7
’ ’ _ ’ ’ ’ _ ’ \@ﬁ2Lp(x)

Hence, from (25) it follows that

(8/24)N plao)? + 35L(plwo) + plyo)/2) + V0L _
1 —BLp(20)
B/24)Nr? + 3BLr/2 +\/2a3%L -
1—GLr -
Thus, by Lemmas 1-4, conditions (23) and (24), and the derived estimates in
the proof of Theorem 1, we obtain

(8/24)N p(wo)® + BLp(w0)p(y0)/2 + v2a32Lp(20)
1 — BLp(z0)

O0<qg=

<( 1.

|21 — 2| < < qro <.

Similarly,

(8/24)Np(x1)*
1 — BLp(z0)
L BLp(1)(p(x1) + pl0) + p(0))/2 + V2032 Lp(z0) _
1 — BLp(2o) B
(8/24)Np(0)* + BLp(0)(2p(w0) + p(y0))/2 + v23° Lp(20)
1 —BLp(z0)
Therefore, x1,y1 € B(z«,7) and both (26) and (27) follow for &k = 0. Also, (28)
is satisfied

lyr — .|| <

< < qrg <.

r1 = max{||z1 — x|, [Jy1 — x|} < gqro.
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Using mathematical induction, assume that g, yx € B(z«,7) and (28) holds
for k > 0. Then, for £+ 1 from (3) we obtain that

(8/24)Np(zx,)* + BLp(xk)p(yr)/2 + V23> Lp(2)

[Th41 — 24| < <

1 — BLp(z)
_ (B/24)Np(0)* + BLp(yo) /2 + V2aB*L)ry .
B 1 — BLp(20) —

and

(8/24)Np(11)* + BLp(x11) (p(zhy1) + p(xr) + p(yr))/2

[Yrt1 — @] < 2 1= BLp(z) +
\m <qri <.
According to (29) and both inequalities (26) and (27), we receive
et = max{|[zps1 — Tl Y1 — 2} < @ < Premr < -0 < @M.
Thus, Tg11,Yk+1 € B(xy,r) as well as (26), (27), and (28) hold. O

From (25) it follows that the convergence radius of the method (3) is
4(1 — V2a3%L)
50L + 1—12\/ (608L)2 + 968N (1 — /2a32L)

r =

For zero residual, Theorem 3 can be formulated as

Corollary 3. Suppose that x. satisfies (1), F(z,) =0, F(z) is a twice Fréchet
differentiable operator in B(zy,r), F () has full rank, and both F'(x) and
F"(x) satisfy the classic Lipschitz conditions as in (23) and (24), respectively.
Moreover, the radius v > 0 is o unique positive root of the following equation

BN7T2 4+ 608Lr — 24 = 0.

Then, the Gauss-Newton type method (3) is convergent for all xo, yo €
B(xx,7) such that

(8/24)Np(zx)* + BLp(xk)p(yr) /2

p(xr1) < I~ BLp(a) ,
oyrt) < (8/24)N p(x11)* + BLp(xr11) (p(ry1) + p(xr) + p(yr))/2
B 1 — BLp(2k) ’
rer = max{p(zps1), pye1)} < qre < -+ < ¢,

where p(z) = |z — .||, ro = max{p(z0), p(y0)},

0 < o= BN (o + BL(o(wo) +p(w)/2 _

1 — BLp(z0)
2k = (2 +yk)/2 and (B is defined in (14).
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From Corollary 3, the convergence radius is
4 2
"= 580+ L \/(GOBL) + 963N  5BL
12

that corresponds to the previously received results in [10] for nonlinear equa-
tions (m = n).

Under the classic Lipschitz condition Theorem 2 for the uniqueness of the
solution can be written as follow

Theorem 4. Suppose x. satisfies (1) and F(x) has a continuous derivative
F'(z) in B(xy,7). Moreover, F' (1) has full rank and F' () satisfies the classic
Lipschitz condition as in (23). Let r > 0 satisfy

L
%—i—aﬂoL <1.

Then, . is a unique solution of the problem (1) in B(x.,7).

5. NUMERICAL EXPERIMENTS
We carried out a set of experiments on widely used test problems and com-
pared the number of iterations under which the Gauss-Newton method (2), the
Secant method [11], and the method (3) converge to the solution. We used the
same initial points for all methods and the following stopping criteria:

o — il < and AL Flo)] <e.

where

o Ajp1 = F'(xp41) for the Gauss-Newton method (2);

e Ajy1 = F'(2p41) for the method (3);

o Ay = F(xgy1, k) for the Secant method, F'(xp41,xk) is the divided
difference of the first order of F' [11].

TABL. 1. The number of iterations to the solution with the
accuracy € = 10712

Example Gauss-Newton Secant M-d (3)
Rosenbrock func. (n =m = 4)

2o = (—1.2,1,-1.2,1) 5 4 4
Box-3D func. (n =3, m = 10)

20 = (0, 10, 20) 7 9 6
Gnedenko-Veibull dist. (n =2, m = 8)

2o = (1,1) 7 - 6
Freidenstein-Ross func. (n =m = 2)

2o = (0.5, —2) 43 18 10
Wood func. (n =4, m = 6)

2o = (—3,—1,-3,~1) 52 75 50
Bard func. (n =3, m = 15)

2o = (1,1,1) 10 - 9
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In Table 1 we present the amount of iterations spent by each methods to
compute an approximation to the solution of the examples from [9,11] with
the accuracy ¢ = 107'2. The additional initial point yo we calculated in the
following way: yo = x¢9+0.01. The symbol ‘- indicates that the Secant method
does not converge to the solution with the desired accuracy, however the method
converges for the lower accuracy (¢ = 1078).

6. CONCLUSIONS

We studied the local convergence of the Gauss-Newton type method (3)
under the generalized and classic Lipschitz conditions for the first- and second-
order derivatives. We determined the convergence order and the radius of the
method (3) as well as proved the uniqueness ball of the solution of the nonlinear
least squares problem (1). The method (3) is not only more efficient than the
Gauss-Newton and Secant methods in terms of the convergence order, but also
in terms of the amount of iterations to the solution on a variety of test problems.
Furthermore, the method (3) has promising characteristics for parallelization,
which we plan to utilize for constructing and developing new parallel methods
for solving the problem (1).
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