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Ðåçþìå. Ìåòîä G′/G ðîçâèíåííÿ [12] çàñòîñîâàíî äî äâîõ íåëiíiéíèõ
äèíàìi÷íèõ ñèòåì òèïó Êîðòåâåãà � äå Ôðiçà [20]. Äëÿ îáîõ ñèñòåì ïîáóäî-
âàíî ðîçâ'ÿçêè òèïó áiæó÷èõ õâèëü ó ôîðìi ãiïåðáîëi÷íèõ, ðàöiîíàëüíèõ i
òðèãîíîìåòðè÷íèõ ôóíêöié. Îòðèìàíi ðåçóëüòàòè ïîðiâíÿíî ç ðåçóëüòàòà-
ìè, îòðèìàíèìè tanh- ìåòîäîì [4] i ãðàôi÷íî ïðîàíàëiçîâàíî.
Abstract. The (G′/G) � expansion method [15] is applied to two Korteweg
� de Vries type nonlinear dynamic systems [1]. For both systems the traveling
wave solutions in the form of hyperbolic, rational and trigonometric functions
are constructed. The obtained results are compared to ones derived by means
of the tanh � method [6] and graphically analyzed.

1. Introduction
Solutions to nonlinear evolution equations (NEE) play a crucial role in math-

ematical physics, therefore more and more scientists from all over the world
dedicate their studies to investigate such equations. Nonlinear wave phenom-
ena appear in various scienti�c and engineering �elds, such as �uid mechanics,
plasma physics, optical �bers, biology, solidstate physics, chemical kinematics,
chemical physics and geochemistry.

With the advent of computers many e�ective numeric methods for �nding
approximate solutions to partial di�erential equations (PDEs) appeared. On
the other hand, the creation of modern powerful computer algebra systems,
such as MATLAB, MATHEMATICA and MAPLE, simpli�ed the analytical
investigation of NEEs, assisting mathematicians in their tiny computations.
Hence during the past �ve decades a wide variety of analytical methods for
�nding exact solutions to NEEs was developed.

Recently, the (G′/G) � expansion method, �rstly introduced by Wang et
al. [15], has become widely used for many PDEs. It turned out that the method
just mentioned provides solutions in a more general form compared to other
analytical methods (e.g. the tanh � method [6]). What is more, with a certain
choice of arbitrary parameters in the (G′/G) � expansion method some well-
known solutions to PDEs can be rediscovered.

In paper [14], the authors constructed soliton solutions for two Korteweg�
de Vries (KdV) type nonlinear dynamic systems [1, 3] by means of the tanh �

Key words. (G′/G) � expansion method, Korteweg � de Vries type dynamic system, soliton
solution.
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method [6]. In this work, we investigate these systems using the (G′/G) � ex-
pansion method and construct solutions in more general form. The rest of the
paper is organized as follows. In Section 2, we describe the (G′/G) � expansion
method [15] for �nding traveling wave solutions to nonlinear evolution equa-
tions. In Section 3, we provide a brief overview of the main generalizations of
the method being discussed. In Sections 4 and 5, we apply the method to two
nonlinear KdV type dynamic systems [1,3], and analyze the obtained solutions.
Finally, in Section 6, we summarize our results.

2. Description of the
(

G′
G

)
� expansion method

Suppose that a nonlinear equation, say in two independent variables x and
t, is given by

P (u, ut, ux, utt, uxx, uxt, ...) = 0, (1)
where u = u (x, t) is an unknown function, P is a polynomial in u = u (x, t)
and its various partial derivatives, in which the highest order derivatives and
nonlinear terms are involved. In the following we give the main steps of the
(G′/G) � expansion method [15].
Step 1. Combining independent variables x and t into one variable

ξ = x− V t, (2)
we suppose that u (x, t) = u (ξ). Traveling wave variable (2) permits us to
reduce Eq. (1) to an ordinary di�erential equation (ODE) for u (x, t) = u (ξ)

P
(
u,−V u′, u′, V 2u′′,−V u′′, u′′, ...

)
= 0. (3)

Step 2. Suppose that the solution to ODE (3) can be expressed by a poly-
nomial in (G′/G) as follows:

u(ξ) =
m∑

i=0

αi

(
G′

G

)i

, (4)

where G = G (ξ) satis�es the second order linear ODE in the form of
G′′ + λG′ + µG = 0, (5)

αi

(
i = 0,m

)
, λ, µ are constants to be determined later, αm 6= 0. The positive

integer m can be determined by considering the homogeneous balance between
the highest order derivatives and nonlinear terms appearing in ODE (3).
Step 3. By substituting (4) into Eq. (3) and using the second order LODE

(5), collecting all terms with the same order of (G′/G) together, the left-hand
side of Eq. (3) is converted into another polynomial in (G′/G). Equating
each coe�cient of this polynomial to zero yields a set of algebraic equations for
αi

(
i = 0,m

)
, λ and µ.

Step 4. Assuming that the constants αi

(
i = 0,m

)
, λ, µ and V can be ob-

tained by solving the algebraic equations in Step 3, since the general solutions
to the second order linear ODE (5) have been well known for us, then substi-
tuting αi

(
i = 0,m

)
, λ, µ, V and the general solutions to Eq. (5) into (4) we

obtain traveling wave solutions to the original nonlinear evolution equation (1).
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As it was already mentioned, the solution to Eq. (5) is well-known for us
and can be easily derived by the Euler method:

G (ξ) =





(
A1 sinh ξ

√
λ2−4µ
2 + A2 cosh ξ

√
λ2−4µ
2

)
e−

1
2
λξ,

if λ2 − 4µ > 0,

(A1 + A2ξ) e−
1
2
λξ, if λ2 − 4µ = 0,

(
A1 sin ξ

√
4µ−λ2

2 + A2 cos ξ
√

4µ−λ2

2

)
e−

1
2
λξ,

if λ2 − 4µ < 0.

(6)

3. Main generalizations of the (G′/G) � expansion method
Since 2008, when the (G′/G) � expansion method was introduced by Wang

et al. [15], many modi�cations and generalizations of the algorithm have been
developed, each of which concerned di�erent aspect of the method. Therefore,
it is worth classifying them by that aspect.

3.1. Homogeneous balance value. The classical method [15] assumed that
the homogeneous balance value, which determines a degree of polynomial (4),
is a positive integer. In paper [4] the authors used a transform to handle the
equations with negative or fractional homogeneous balance value. Let m be a
value of balance for a certain equation. If m = p

q is a fraction in the lowest
terms, then we set the solution

u (ξ) = v
p
q (ξ) ,

and when m is a negative integer, then we set
u (ξ) = vm (ξ) ,

then substitute the new expression for u (ξ) into (3) and recompute the balance
value for a new equation, which is now guaranteed to be a positive integer [4].

3.2. Representation of the solution to NEE. Another way to modify the
original method is to replace the polynomial in

(
G′
G

)
with a more general

structure.
In works [2] and [16] the solution was suggested to be found in the following

form:

u (ξ) = a0 +
n∑

i=1


ai

(
G′

G

)i

+ bi

(
G′

G

)i−1

√√√√σ

(
1 +

1
µ

(
G′

G

)2
)

 ,

and, moreover, the function G = G (ξ) was found as a solution to simpli�ed
equation

G′′ + µG = 0,

where µ is a constant to be determined.
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Yet another form of the solution representation was introduced in papers [21],
[17] and [13], namely the solution was supposed to have the following form:

u (ξ) =
n∑

i=−n

αi

(
G′

G

)i

,

i. e. the expansion included the terms with negative degrees.
As it is shown in the corresponding works, both mentioned representations of

function u = u (ξ) yield more general solutions to certain NEEs [2,13,16,17,21].

3.3. Auxiliary equation for function G = G (ξ). Other modi�cations of
the method a�ected the form of the auxiliary equation, which in the classical(

G′
G

)
� expansion method is of the form (5). One of the most frequently used

equations was the nonlinear one of the following form:

GG′′ = AG2 + BGG′ + C
(
G′)2

,

where the prime denotes the derivative with respect to ξ; A,B, C are all real
parameters.

This improvement of the method was �rstly introduced by Liu et al. in [5]
to obtain more general solutions to NEEs in comparison with the classical
method. It was successfully applied to some well-known equations of mathe-
matical physics, among other, in works [5, 7�12].

3.4. Coe�cient of the polynomial in
(

G′
G

)
. One more generalization of

the original method was the idea to �nd a solution to NEEs as a polynomial in(
G′
G

)
with variable coe�cients [20], namely

u (ξ) =
n∑

i=1

αi (X)
(

G′

G

)i

+ α0 (X) ,

where αi = αi (X)
(
i = 0, n

)
, ξ = ξ (X) are functions to be determined. As

in the classical method, function G = G (ξ) satis�es Eq. (5). The rest of the
algorithm remains the same, except that at the third step one need to solve a
system of ordinary di�erential equations rather than algebraic ones.

The described idea was successfully used to solve some NEEs in papers [18�
20].

4. Application: Example 1
Consider the following Korteweg � de Vries (KdV) type nonlinear dynamic

system [1,3] 



ut = uxxx − vx,

vt = −2vxxx − uvx.
(7)

Let us solve system (7) by use of the (G′/G) � expansion method.
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Step 1. Introducing traveling wave variable ξ = x − V t, we reduce system
(7) to a system of ODE for u = u (ξ) and v = v (ξ)




−V u′ = u′′′ − v′,

−V v′ = −2v′′′ − uv′.
(8)

Suppose that the solution to system (8) can be expressed by polynomials in
(G′/G) as follows:

u (ξ) =
m∑

i=0

αi

(
G′

G

)i

, v (ξ) =
n∑

i=0

βi

(
G′

G

)i

. (9)

Considering the homogeneous balance between u′′′ and v′, v′′′ and uv′ in the
�rst and the second equations of system (8) correspondingly, we obtain a simple
system of algebraic equations





m + 3 = n + 1,

n + 3 = m + n + 1,
(10)

from which it can be easily found that m = 2 and n = 4.
Step 2. Considering (9) and (10), we �nd the solution to system (8) in the

following form:




u (ξ) = α2

(
G′
G

)2
+ α1

(
G′
G

)
+ α0,

v (ξ) = β4

(
G′
G

)4
+ β3

(
G′
G

)3
+ β2

(
G′
G

)2
+ β1

(
G′
G

)
+ β0,

(11)

where function G = G (ξ) satis�es the second order linear ODE (5), λ, µ, V , αi(
i = 0, 2

)
, βj

(
j = 0, 4

)
are all constants to be determined later, α2 6= 0, β4 6= 0.

Step 3. Substituting (11) into system (8) and collecting all terms with
the same power of

(
G′
G

)
together, the left-hand sides of equations (8) are

converted into another polynomials in
(

G′
G

)
. Equating each coe�cient of

these polynomials to zero yields a set of simultaneous algebraic equations for
λ, µ, V, αi

(
i = 0, 2

)
, βj

(
j = 0, 4

)
as follows:

� from the �rst equation in (8):

0 : α1λ
2µ + 6α2λµ2 + 2α1µ

2 − β1µ + α1µV = 0
1 : α1λ

3 + 6α2λ
2µ + 8α2µ

(
λ2 + 2µ

)
+ 8α1λµ− β1λ− 2β2µ+

+V (α1λ + 2α2µ) = 0
2 : 8α2λ

(
λ2 + 2µ

)
+ 7α1λ

2 + 36α2λµ + 8α1µ− 2β2λ− 3β3µ−
−β1 + V (2α2λ + α1) = 0

3 : 8α2

(
λ2 + 2µ

)
+ 30α2λ

2 + 12α1λ + 24α2µ− 3β3λ− 4β4µ−
−2β2 + 2α2V = 0

4 : 54α2λ + 6α1 − 4β4λ− 3β3 = 0
5 : 24α2 − 4β4 = 0;

90



APPLICATION OF (G′/G) � EXPANSION METHOD ...

� from the second equation in (8):
0 : −α0β1µ− 2β1λ

2µ− 12β2λµ2 − 12β3µ
3 − 4β1µ

2 + β1µV = 0
1 : −α0β1λ− α1β1µ− 2α0β2µ− 2β1λ

3 − 28β2λ
2µ− 72β3λµ2−

−16β1λµ− 48β4µ
3 − 32β2µ

2 + β1λV + 2β2µV = 0
2 : −α1β1λ− 2α0β2λ− α2β1µ− 2α1β2µ− 3α0β3µ− α0β1 − 16β2λ

3−
−114β3λ

2µ− 14β1λ
2 − 216β4λµ2 − 104β2λµ− 120β3µ

2 − 16β1µ+
+2β2λV + 3β3µV + β1V = 0

3 : −α2β1λ− 2α1β2λ− 3α0β3λ− 2α2β2µ− 3α1β3µ− 4α0β4µ−
−α1β1 − 2α0β2 − 54β3λ

3 − 296β4λ
2µ− 76β2λ

2 − 336β3λµ−
−24β1λ− 304β4µ

2 − 80β2µ + 3β3λV + 4β4µV + 2β2V = 0
4 : −2α2β2λ− 3α1β3λ− 4α0β4λ− 3α2β3µ− 4α1β4µ− α2β1−

−2α1β2 − 3α0β3 − 128β4λ
3 − 222β3λ

2 − 784β4λµ− 108β2λ−
−228β3µ− 12β1 + 4β4λV + 3β3V = 0

5 : −3α2β3λ− 4α1β4λ− 4α2β4µ− 2α2β2 − 3α1β3 − 4α0β4 − 488β4λ
2−

−288β3λ− 496β4µ− 48β2 + 4β4V = 0
6 : −α2 (4β4λ + 3β3)− 4α1β4 + 2 (−120β4λ− 60 (3β4λ + β3)) = 0
7 : −4α2β4 − 240β4 = 0.

In addition to this, the highest order coe�cients in (11) are supposed to be
nonzero:

α2 6= 0, β4 6= 0. (12)
Step 4. Solving the system of algebraic equations from the previous step

with conditions (12) with the aid of MATHEMATICA yields four sets of solu-
tions:

� Set 1.
V = λ2 − 4µ, α0 = −λ2 − 56µ, α1 = −60λ, α2 = −60,

β1 = −120
(
λ3 + 2λµ

)
, β2 = −240

(
2λ2 + µ

)
,

β3 = −720λ, β4 = −360,
(13)

where λ, µ and β0 are arbitrary constants.
� Set 2.

V = 4µ− λ2, α0 = −3
(
3λ2 + 8µ

)
, α1 = −60λ, α2 = −60,

β1 = −720λµ, β2 = −360
(
λ2 + 2µ

)
,

β3 = −720λ, β4 = −360,
(14)

where λ, µ and β0 are arbitrary constants.
� Set 3.

V = λ2, µ = 0, α0 = −λ2, α1 = −60λ, α2 = −60,
β1 = −120λ3, β2 = −480λ2, β3 = −720λ, β4 = −360,

(15)

where λ and β0 are arbitrary constants.
� Set 4.

V = −λ2, µ = 0, α0 = −9λ2, α1 = −60λ, α2 = −60,
β1 = 0, β2 = −360λ2, β3 = −720λ, β4 = −360,

(16)

where λ and β0 are arbitrary constants.
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Finally, substituting solutions (13)�(16) with the general solution to linear
ODE (5) into representation (11) we obtain four separate sets of traveling wave
solutions to the KdV type dynamic system (7) as follows.
Solutions set 1. Constants set (13) yields three families of solutions:
� when λ2 − 4µ > 0, we get the family of hyperbolic functions solutions




u (ξ) = − 15(A2
1−A2

2)σ(
A1 sinh ξ

√
σ

2
+A2 cosh ξ

√
σ

2

)
2
− σ,

v (ξ) = −15(A2
1−A2

2)σ2(4A2A1 sinh ξ
√

σ+2(A2
1+A2

2) cosh ξ
√

σ+A2
1−A2

2)
2
(
A1 sinh ξ

√
σ

2
+A2 cosh ξ

√
σ

2

)
4

+

+β0 + 120µ
(
λ2 − µ

)
,

(17)

where ξ = x − (
λ2 − 4µ

)
t, σ = λ2 − 4µ, A1, A2, β0 are arbitrary con-

stants; in particular, setting λ = ±
√

8
3 |k1|, µ = −1

3k2
1, A1 = 0, β0 = a20,

we obtain exactly the soliton solution, found by means of the tanh �
method in [14];

Fig. 1. Hyperbolic functions solution (17) when A1 = 1,
A2 = 1.2, λ = 2.2, µ = 1, β0 = −460.8

� when λ2 − 4µ = 0, we get the family of rational functions solutions




u (ξ) = − 60A2
2

(A2ξ+A1)2
,

v (ξ) =
360(µ2(A2ξ+A1)4−A4

2)
(A2ξ+A1)4

+ β0,
(18)

where ξ = x, A1, A2, β0 are arbitrary constants;
� when λ2−4µ < 0, we get the family of trigonometric functions solutions




u (ξ) = − 15(A2
1+A2

2)σ(
A1 sin ξ

√
σ

2
+A2 cos ξ

√
σ

2

)
2

+ σ,

v (ξ) = −15(A2
1+A2

2)σ2(−4A2A1 sin ξ
√

σ+2(A2
1−A2

2) cos ξ
√

σ+A2
1+A2

2)
2
(
A1 sin ξ

√
σ

2
+A2 cos ξ

√
σ

2

)
4

+

+β0 + 120µ
(
λ2 − µ

)
,

(19)
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Fig. 2. Rational functions solution (18) when A1 = 1, A2 =
1.2, λ = 1, µ = 0.25, β0 = −22.5

Fig. 3. Trigonometric functions solution (19) when A1 = 1,
A2 = 1.2, λ = 1, µ = 1, β0 = 0

where ξ = x − (
λ2 − 4µ

)
t, σ = 4µ − λ2, A1, A2, β0 are arbitrary con-

stants.
Solutions set 2. Constants set (14) yields three families of solutions:
� when λ2 − 4µ > 0, we get the family of hyperbolic functions solutions





u (ξ) = − 15σ(A2
1−A2

2)(
A1 sinh ξ

√
σ

2
+A2 cosh ξ

√
σ

2

)
2
− 9σ

v (ξ) = − 45(A2
1−A2

2)2σ2

2
(
A1 sinh ξ

√
σ

2
+A2 cosh ξ

√
σ

2

)
4

+ β0 + 360µ2,
(20)

where ξ = x +
(
λ2 − 4µ

)
t, σ = λ2 − 4µ, A1, A2, β0 are arbitrary con-

stants;
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Fig. 4. Hyperbolic functions solution (20) when A1 = 1,
A2 = 1.2, λ = 2.2, µ = 1, β0 = −360

� when λ2 − 4µ = 0, we get the family of rational functions solutions




u (ξ) = − 60A2
2

(A2ξ+A1)2
,

v (ξ) =
360(µ2(A2ξ+A1)4−A4

2)
(A2ξ+A1)4

+ β0,
(21)

where ξ = x, A1, A2, β0 are arbitrary constants; note that solutions (21)
coincide with corresponding family (18) from the �rst set.

� when λ2−4µ < 0, we get the family of trigonometric functions solutions




u (ξ) =
−15σ(A2

1+A2
2)(

A1 sin ξ
√

σ
2

+A2 cos ξ
√

σ
2

)
2

+ 9σ,

v (ξ) = − 45(A2
1+A2

2)2σ2

2
(
A1 sin ξ

√
σ

2
+A2 cos ξ

√
σ

2

)
4

+ β0 + 360µ2,
(22)

where ξ = x +
(
λ2 − 4µ

)
t, σ = 4µ − λ2, A1, A2, β0 are arbitrary con-

stants.
Solutions set 3. Constants set (15) yields two families of solutions:
� when λ > 0, we get the family of hyperbolic functions solutions




u (ξ) =
15λ2(A2

2−A2
1)(

A1 sinh
ξ|λ|
2

+A2 cosh λξ
2

)
2
− λ2,

v (ξ) =
2A1A2(A2

2−A2
1)(β0+30λ4) sinh ξ|λ|+A1A2(A2

1+A2
2)β0 sinh 2ξ|λ|

2
(
A1 sinh

ξ|λ|
2

+A2 cosh λξ
2

)
4

+

+
−(A4

1−A4
2)(β0+30λ4) cosh λξ− 3

4(A2
1−A2

2)2(20λ4−β0)
2
(
A1 sinh

ξ|λ|
2

+A2 cosh λξ
2

)
4

+

+
1
4(A4

1+6A2
2A2

1+A4
2)β0 cosh 2λξ

2
(
A1 sinh

ξ|λ|
2

+A2 cosh λξ
2

)
4

,

(23)

where ξ = x− λ2t, A1, A2, β0 are arbitrary constants;
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Fig. 5. Trigonometric functions solution (22) when A1 = 1,
A2 = 1.2, λ = 1, µ = 1, β0 = 360

Fig. 6. Hyperbolic functions solution (23) when A1 = 1,
A2 = 1.2, λ = 1, β0 = 0

� when λ = 0, we get the family of rational functions solutions




u (ξ) = − 60A2
2

(A2ξ+A1)2
,

v (ξ) = β0 − 360A4
2

(A2ξ+A1)4
,
% (24)

where ξ = x, A1, A2, β0 are arbitrary constants; note that solutions (24)
coincide with corresponding family (18) from the �rst set.

Solutions set 4. Constants set (16) yields two families of solutions:
� when λ > 0, we get the family of hyperbolic functions solutions





u (ξ) = −3λ2(6A2A1 sinh ξ|λ|+A2
1(3 cosh λξ+7)+A2

2(3 cosh λξ−7))
2
(
A1 sinh

ξ|λ|
2

+A2 cosh λξ
2

)
2

,

v (ξ) = β0 − 45(A2
1−A2

2)2λ4

2
(
A1 sinh

ξ|λ|
2

+A2 cosh λξ
2

)
4
,

(25)

95



I. S.MYKHAILIUK, M.M.PRYTULA

Fig. 7. Hyperbolic functions solution (25) when A1 = 1,
A2 = 1.2, λ = 1, β0 = 0

where ξ = x + λ2t, A1, A2, β0 are arbitrary constants;
� when λ = 0, we get the family of rational functions solutions





u (ξ) = − 60A2
2

(A2ξ+A1)2
,

v (ξ) = β0 − 360A4
2

(A2ξ+A1)4
,

(26)

where ξ = x, A1, A2, β0 are arbitrary constants; note that solutions (26)
coincide with corresponding family (18) from the �rst set.

5. Application: Example 2
Consider the following Korteweg � de Vries (KdV) type nonlinear dynamic

system [1] 



ut = uxxx + uux − vvx,

vt = −2vxxx − uvx.
(27)

Let us solve system (27) by use of the (G′/G) � expansion method.
Step 1. Introducing traveling wave variable ξ = x − V t, we reduce system

(27) to a system of ODE for u = u (ξ) and v = v (ξ)



−V u′ = u′′′ + uu′ − vv′,

−V v′ = −2v′′′ − uv′.
(28)

Suppose that the solution to system (28) can be expressed by polynomials in
(G′/G) as follows:

u (ξ) =
m∑

i=0

αi

(
G′

G

)i

, v (ξ) =
n∑

i=0

βi

(
G′

G

)i

. (29)

Considering the homogeneous balance between u′′′ and vv′, v′′′ and uv′ in the
�rst and the second equations of system (28) correspondingly, we obtain a
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simple system of algebraic equations



m + 3 = 2n + 1.

n + 3 = m + n + 1,
(30)

from which it can be easily found that m = 2 and n = 2.
Step 2. Considering (29) and (30), we �nd the solution to system (28) in

the following form: 



u (ξ) = α2

(
G′
G

)2
+ α1

(
G′
G

)
+ α0,

v (ξ) = β2

(
G′
G

)2
+ β1

(
G′
G

)
+ β0,

(31)

where function G = G (ξ) satis�es the second order linear ODE (5), λ, µ, V , αi(
i = 0, 2

)
, βj

(
j = 0, 2

)
are all constants to be determined later, α2 6= 0, β2 6= 0.

Step 3. Substituting (31) into system (28) and collecting all terms with
the same power of

(
G′
G

)
together, the left-hand sides of equations (28) are

converted into another polynomials in
(

G′
G

)
. Equating each coe�cient of

these polynomials to zero yields a set of simultaneous algebraic equations for
λ, µ, V, αi

(
i = 0, 2

)
, βj

(
j = 0, 2

)
as follows:

� from the �rst equation in (28):
0 : α1λ

2µ + 6α2λµ2 + 2α1µ
2 + α0α1µ− β0β1µ + α1µV = 0

1 : α1λ
3 + 6α2λ

2µ + 8α2µ
(
λ2 + 2µ

)
+ 8α1λµ + α0 (α1λ + 2α2µ)+

+α2
1µ− β0 (β1λ + 2β2µ)− β2

1µ + V (α1λ + 2α2µ) = 0
2 : 8α2λ

(
λ2 + 2µ

)
+ 7α1λ

2 + 36α2λµ + α1 (α1λ + 2α2µ)+
+α0 (2α2λ + α1) + 8α1µ + α1α2µ− β1 (β1λ + 2β2µ)−
−β0 (2β2λ + β1)− β1β2µ + V (2α2λ + α1) = 0

3 : 8α2

(
λ2 + 2µ

)
+ 30α2λ

2 + α2 (α1λ + 2α2µ) + 12α1λ+
+α1 (2α2λ + α1) + 24α2µ + 2α0α2 − β2 (β1λ + 2β2µ)−
−β1 (2β2λ + β1)− 2β0β2 + 2α2V = 0

4 : 54α2λ + α2 (2α2λ + α1) + 2α2α1 + 6α1 − β2 (2β2λ + β1)−
−2β1β2 = 0

5 : 2α2
2 + 24α2 − 2β2

2 = 0;

� from the second equation in (28):
0 : −α0β1µ− 2β1λ

2µ− 12β2λµ2 − 4β1µ
2 + β1µV = 0

1 : −2
(
β1λ

3 + 6β2λ
2µ + 8β2µ

(
λ2 + 2µ

)
+ 8β1λµ

)
+

+V (β1λ + 2β2µ)− α0 (β1λ + 2β2µ) + α1β1(−µ) = 0
2 : −α1 (β1λ + 2β2µ)− α0 (2β2λ + β1) + α2β1(−µ)−

−2
(
8β2λ

(
λ2 + 2µ

)
+ 7β1λ

2 + 36β2λµ + 8β1µ
)
+

+V (2β2λ + β1) = 0
3 : −α2 (β1λ + 2β2µ)− α1 (2β2λ + β1)− 2α0β2−

−2
(
8β2

(
λ2 + 2µ

)
+ 30β2λ

2 + 12β1λ + 24β2µ
)

+ 2β2V = 0
4 : −α2 (2β2λ + β1)− 2α1β2 − 2 (54β2λ + 6β1) = 0
5 : −2α2β2 − 48β2 = 0.
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In addition to this, the highest order coe�cients in (31) are supposed to be
nonzero:

α2 6= 0, β2 6= 0. (32)
Step 4. Solving the system of algebraic equations from the previous step

with conditions (32) with the aid of MATHEMATICA yields four sets of solu-
tions:

� Set 1.
α0 = −2λ2 − 16µ + V, α1 = −24λ, α2 = −24,

β0 =
√

2
(−λ2 − 8µ + 2V

)
, β1 = −12

√
2λ, β2 = −12

√
2,

(33)

where λ, µ and V are arbitrary constants.
� Set 2.

α0 = −2λ2 − 16µ + V, α1 = −24λ, α2 = −24,
β0 =

√
2

(
λ2 + 8µ− 2V

)
, β1 = 12

√
2λ, β2 = 12

√
2,

(34)

where λ, µ and V are arbitrary constants.
� Set 3.

µ = 0, α0 = V − 2λ2, α1 = −24λ, α2 = −24,
β0 = 2

√
2V −√2λ2, β1 = −12

√
2λ, β2 = −12

√
2,

(35)

where λ and V are arbitrary constants.
� Set 4.

µ = 0, α0 = V − 2λ2, α1 = −24λ, α2 = −24,
β0 =

√
2λ2 − 2

√
2V, β1 = 12

√
2λ, β2 = 12

√
2

(36)

where λ and V are arbitrary constants.
Finally, substituting solutions (33)�(36) with the general solution to linear

ODE (5) into representation (31) we obtain four separate sets of traveling wave
solutions to the KdV type dynamic system (27) as follows.
Solutions set 1. Constants set (33) yields three families of solutions:
� when λ2 − 4µ > 0, we get the family of hyperbolic functions solutions





u (ξ) = − 6(A2
1−A2

2)σ(
A1 sinh ξ

√
σ

2
+A2 cosh ξ

√
σ

2

)
2
− 2λ2 + 8µ + V,

v (ξ) = − 3
√

2(A2
1−A2

2)σ(
A1 sinh ξ

√
σ

2
+A2 cosh ξ

√
σ

2

)
2
−√2σ + 2

√
2V,

(37)

where ξ = x− V t, σ = λ2 − 4µ, A1, A2, V are arbitrary constants;
� when λ2 − 4µ = 0, we get the family of rational functions solutions





u (ξ) =
A2

2(ξ2V−24)+2A2A1ξV +A2
1V

(A2ξ+A1)2
,

v (ξ) = 2
√

2
(
V − 6A2

2
(A2ξ+A1)2

)
,

(38)

where ξ = x− V t, A1, A2, V are arbitrary constants;
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Fig. 8. Hyperbolic functions solution (37) when A1 = 1,
A2 = 1.2, λ = 2.5, µ = 1, V = 0.3

Fig. 9. Rational functions solution (38) when A1 = 1, A2 =
1.2, λ = 2, µ = 1, V = 0.3

� when λ2−4µ < 0, we get the family of trigonometric functions solutions




u (ξ) = − 6σ(A2
1+A2

2)(
A1 sin ξ

√
σ

2
+A2 cos ξ

√
σ

2

)
2
− 2λ2 + 8µ + V,

v (ξ) = − 3
√

2(A2
1+A2

2)σ(
A1 sin ξ

√
σ

2
+A2 cos ξ

√
σ

2

)
2

+
√

2σ + 2
√

2V,
(39)

where ξ = x− V t, σ = 4µ− λ2, A1, A2, V are arbitrary constants.
Solutions set 2. Constants set (34) yields three families of solutions:
� when λ2 − 4µ > 0, we get the family of hyperbolic functions solutions





u (ξ) = − 6(A2
1−A2

2)σ(
A1 sinh ξ

√
σ

2
+A2 cosh ξ

√
σ

2

)
2
− 2λ2 + 8µ + V,

v (ξ) =
3
√

2(A2
1−A2

2)σ(
A1 sinh ξ

√
σ

2
+A2 cosh ξ

√
σ

2

)
2

+
√

2σ − 2
√

2V,
(40)
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Fig. 10. Trigonometric functions solution (39) when A1 = 1,
A2 = 1.2, λ = 1.5, µ = 1, V = 0.3

where ξ = x − V t, σ = λ2 − 4µ, A1, A2, V are arbitrary constants; in
particular, setting A1 = 0, σ = 4k2

1, V = a10 − 16k2
1, we obtain exactly

the soliton solution, found by means of the tanh � method in [14].
� when λ2 − 4µ = 0, we get the family of rational functions solutions




u (ξ) =
A2

2(ξ2V−24)+2A2A1ξV +A2
1V

(A2ξ+A1)2
,

v (ξ) = 2
√

2
(

6A2
2

(A2ξ+A1)2
− V

)
,

(41)

where ξ = x− V t, A1, A2, V are arbitrary constants;
� when λ2−4µ < 0, we get the family of trigonometric functions solutions




u (ξ) = − 6(A2
1+A2

2)σ(
A1 sin ξ

√
σ

2
+A2 cos ξ

√
σ

2

)
2
− 2λ2 + 8µ + V,

v (ξ) =
3
√

2(A2
1+A2

2)σ(
A1 sin ξ

√
σ

2
+A2 cos ξ

√
σ

2

)
2
−√2σ − 2

√
2V,

(42)

where ξ = x− V t, σ = 4µ− λ2, A1, A2, V are arbitrary constants.
Solutions set 3. Constants set (35) yields two families of solutions:
� when λ > 0, we get the family of hyperbolic functions solutions



u (ξ) = (V−2λ2)(2A1A2 sinh ξ|λ|+(A2
1+A2

2) cosh λξ)−(A2
1−A2

2)(10λ2+V )
2
(
A1 sinh

ξ|λ|
2

+A2 cosh λξ
2

)
2

,

v (ξ) = (2V−λ2)(2A1A2 sinh ξ|λ|+(A2
1+A2

2) cosh λξ)−(A2
1−A2

2)(5λ2+2V )√
2
(
A1 sinh

ξ|λ|
2

+A2 cosh λξ
2

)
2

,
(43)

where ξ = x− V t, A1, A2, V are arbitrary constants;
� when λ = 0, we get the family of rational functions solutions




u (ξ) =
A2

2(ξ2V−24)+2A2A1ξV +A2
1V

(A2ξ+A1)2
,

v (ξ) = 2
√

2
(
V − 6A2

2
(A2ξ+A1)2

)
,

(44)

where ξ = x− V t, A1, A2, V are arbitrary constants.
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Fig. 11. Hyperbolic functions solution (43) when A1 = 1,
A2 = 1.2, λ = 1.5, V = 0.5

Fig. 12. Rational functions solution (44) when A1 = 1, A2 =
1.2, λ = 0, V = −1

Solutions set 4. Constants set (36) yields two families of solutions:
� when λ > 0, we get the family of hyperbolic functions solutions



u (ξ) = (V−2λ2)(2A1A2 sinh ξ|λ|+(A2
1+A2

2) cosh λξ)−(A2
1−A2

2)(10λ2+V )
2
(
A1 sinh

ξ|λ|
2

+A2 cosh λξ
2

)
2

,

v (ξ) = (λ2−2V )(2A1A2 sinh ξ|λ|+(A2
1+A2

2) cosh λξ)+(A2
1−A2

2)(5λ2+2V )√
2
(
A1 sinh

ξ|λ|
2

+A2 cosh λξ
2

)
2

,
(45)

where ξ = x− V t, A1, A2, V are arbitrary constants;
� when λ = 0, we get the family of rational functions solutions




u (ξ) =
A2

2(ξ2V−24)+2A2A1ξV +A2
1V

(A2ξ+A1)2
,

v (ξ) = 2
√

2
(

6A2
2

(A2ξ+A1)2
− V

)
,

(46)

where ξ = x− V t, A1, A2, V are arbitrary constants.
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6. Conclusion
The (G′/G) � expansion method was successfully used to derive exact trav-

eling wave solutions to two KdV type nonlinear dynamic systems [1, 3].
The method was implemented in computer system MATHEMATICA, with

the aid of which we obtained the solutions in the form of hyperbolic, rational
and trigonometric functions for both systems. Moreover, it is shown that with a
certain choice of arbitrary parameters in both systems it is possible to rediscover
the soliton solutions, found by means of the tanh � method in [14], and hence
the solutions obtained in the present paper are of more general forms.

The correctness of the obtained results was assured by putting them back into
the original systems with the aid of MATHEMATICA. Most of the obtained
solutions were graphically analyzed.

The main advantage of the method is that it provides solutions with relatively
many arbitrary parameters, and thus these solutions are often more general
compared to other analytical methods. As it was shown in Section 3, there
exist certain modi�cations of the method to provide solutions in more general
form in comparison with the classical

(
G′
G

)
� expansion method [15], therefore

the authors plan to use them for further investigations.
Finally, the method is con�rmed to be suitable for implementation in modern

computer algebra systems.
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