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APPLICATION OF (G'/G) — EXPANSION
METHOD TO TWO KORTEWEG — DE VRIES
TYPE DYNAMIC SYSTEMS

[.S. MYKHAILIUK, M. M. PRYTULA

PE3iOME. Metox G'/G possunerns [12] 3acTocoBaHO 70 ABOX HeiHiHHEX
muHamiuaMx cureMm triy Kopresera — ne @piza [20]. dis 06ox cucrem mobyno-
BAHO PO3B’s13KU THUILY OiKy4nx XBU/Ib ¥ (popMi rimepbosiaHnx, parnioHaaIbHuX i
TpuroHoMerpudHux GyHKIii. OTpuMaHni pe3y/bTaTi MOPIBHAHO 3 PEe3y/IbTaTa-
MU, orpumaHuMu tanh- Meromom [4] 1 rpadiuno npoananizoBaHo.

ABsTrACT. The (G'/G) - expansion method [15] is applied to two Korteweg
— de Vries type nonlinear dynamic systems [1]. For both systems the traveling
wave solutions in the form of hyperbolic, rational and trigonometric functions
are constructed. The obtained results are compared to ones derived by means
of the tanh — method [6] and graphically analyzed.

1. INTRODUCTION

Solutions to nonlinear evolution equations (NEE) play a crucial role in math-
ematical physics, therefore more and more scientists from all over the world
dedicate their studies to investigate such equations. Nonlinear wave phenom-
ena appear in various scientific and engineering fields, such as fluid mechanics,
plasma physics, optical fibers, biology, solidstate physics, chemical kinematics,
chemical physics and geochemistry.

With the advent of computers many effective numeric methods for finding
approximate solutions to partial differential equations (PDEs) appeared. On
the other hand, the creation of modern powerful computer algebra systems,
such as MATLAB, MATHEMATICA and MAPLE, simplified the analytical
investigation of NEEs, assisting mathematicians in their tiny computations.
Hence during the past five decades a wide variety of analytical methods for
finding exact solutions to NEEs was developed.

Recently, the (G'/G) - expansion method, firstly introduced by Wang et
al. [15], has become widely used for many PDEs. It turned out that the method
just mentioned provides solutions in a more general form compared to other
analytical methods (e.g. the tanh — method [6]). What is more, with a certain
choice of arbitrary parameters in the (G'/G) — expansion method some well-
known solutions to PDEs can be rediscovered.

In paper [14], the authors constructed soliton solutions for two Korteweg—
de Vries (KdV) type nonlinear dynamic systems [1,3] by means of the tanh —

Key words. (G’ /G) — expansion method, Korteweg — de Vries type dynamic system, soliton
solution.
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method [6]. In this work, we investigate these systems using the (G'/G) — ex-
pansion method and construct solutions in more general form. The rest of the
paper is organized as follows. In Section 2, we describe the (G'/G) — expansion
method [15] for finding traveling wave solutions to nonlinear evolution equa-
tions. In Section 3, we provide a brief overview of the main generalizations of
the method being discussed. In Sections 4 and 5, we apply the method to two
nonlinear KdV type dynamic systems [1,3], and analyze the obtained solutions.
Finally, in Section 6, we summarize our results.

/
2. DESCRIPTION OF THE (%) — EXPANSION METHOD

Suppose that a nonlinear equation, say in two independent variables z and

t, is given by
P(U, ut,ux,utt,um,uxt,...) = O, (1)

where u = u (x,t) is an unknown function, P is a polynomial in v = u (x,t)
and its various partial derivatives, in which the highest order derivatives and
nonlinear terms are involved. In the following we give the main steps of the
(G'/G) — expansion method [15].

Step 1. Combining independent variables x and ¢ into one variable

E=x—Vt, (2)

we suppose that u(z,t) = u (). Traveling wave variable (2) permits us to
reduce Eq. (1) to an ordinary differential equation (ODE) for u (x,t) = u (&)

P (u, Vil VRS -Vl ) = 0. (3)

Step 2. Suppose that the solution to ODE (3) can be expressed by a poly-
nomial in (G'/QG) as follows:

u(§) = iai <g> (4)

=0
where G = G (£) satisfies the second order linear ODE in the form of
G"+ )G+ uG =0, (5)

; (z = W) , A, it are constants to be determined later, o, # 0. The positive
integer m can be determined by considering the homogeneous balance between
the highest order derivatives and nonlinear terms appearing in ODE (3).

Step 3. By substituting (4) into Eq. (3) and using the second order LODE
(5), collecting all terms with the same order of (G'/G) together, the left-hand
side of Eq. (3) is converted into another polynomial in (G'/G). Equating
each coefficient of this polynomial to zero yields a set of algebraic equations for
o; (i =0,m),\ and p.

Step 4. Assuming that the constants a; (i = 0,m), A, and V' can be ob-
tained by solving the algebraic equations in Step 3, since the general solutions
to the second order linear ODE (5) have been well known for us, then substi-
tuting o; (i = 0,m), A, 1,V and the general solutions to Eq. (5) into (4) we
obtain traveling wave solutions to the original nonlinear evolution equation (1).
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As it was already mentioned, the solution to Eq. (5) is well-known for us
and can be easily derived by the Euler method:

(Al sinh 57“\22_4“ + As cosh §v>\22—4u) e*%)‘f,
if A2 —4u >0,
G (&) = (A1 + A) e 2, if X —dpu=0, (6)
( Aysin VI L4 cos ﬁwg—v) b
if N2 —4u<0.

3. MAIN GENERALIZATIONS OF THE (G’/G) — EXPANSION METHOD
Since 2008, when the (G'/G) — expansion method was introduced by Wang
et al. [15], many modifications and generalizations of the algorithm have been
developed, each of which concerned different aspect of the method. Therefore,
it is worth classifying them by that aspect.

3.1. Homogeneous balance value. The classical method [15] assumed that
the homogeneous balance value, which determines a degree of polynomial (4),
is a positive integer. In paper [4] the authors used a transform to handle the
equations with negative or fractional homogeneous balance value. Let m be a
value of balance for a certain equation. If m = % is a fraction in the lowest

terms, then we set the solution

D
u (&) =vi(§),
and when m is a negative integer, then we set
u (&) =v"(E),

then substitute the new expression for u (£) into (3) and recompute the balance
value for a new equation, which is now guaranteed to be a positive integer [4].

3.2. Representation of the solution to NEE. Another way to modify the
original method is to replace the polynomial in (%,) with a more general

structure.
In works [2] and [16] the solution was suggested to be found in the following

form:
u(§)=a +Zn: a; (Gl)ier <G/>Zl o 1+1(G/>2
0 v ‘G WS 1 G )

and, moreover, the function G = G (§) was found as a solution to simplified
equation

G" 4+ uG =0,

where p is a constant to be determined.
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Yet another form of the solution representation was introduced in papers [21],
[17] and [13], namely the solution was supposed to have the following form:

n G/ 7,
i=—n
i. e. the expansion included the terms with negative degrees.

As it is shown in the corresponding works, both mentioned representations of
function u = u (§) yield more general solutions to certain NEEs [2,13,16,17,21].

3.3. Auxiliary equation for function G = G (§). Other modifications of
the method affected the form of the auxiliary equation, which in the classical

<%l) — expansion method is of the form (5). One of the most frequently used

equations was the nonlinear one of the following form:
GG" = AG? + BGG' + C (G')?,

where the prime denotes the derivative with respect to &; A, B, C are all real
parameters.

This improvement of the method was firstly introduced by Liu et al. in [5]
to obtain more general solutions to NEEs in comparison with the classical
method. It was successfully applied to some well-known equations of mathe-
matical physics, among other, in works [5,7-12].

3.4. Coefficient of the polynomial in (%) One more generalization of

the original method was the idea to find a solution to NEEs as a polynomial in
(%) with variable coefficients [20], namely

u(e) = Za ) (£) +arn),

where a; = o; (X) (i =0,n),¢{ = £(X) are functions to be determined. As
in the classical method, function G = G (§) satisfies Eq. (5). The rest of the
algorithm remains the same, except that at the third step one need to solve a
system of ordinary differential equations rather than algebraic ones.

The described idea was successfully used to solve some NEEs in papers [18—
20].

4. APPLICATION: EXAMPLE 1
Consider the following Korteweg — de Vries (KdV) type nonlinear dynamic
system |1, 3]
Ut = Uggzxr — Vg,
(7)

UV = —2Vppr — UU.

Let us solve system (7) by use of the (G'/G) — expansion method.
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Step 1. Introducing traveling wave variable £ = z — V¢, we reduce system
(7) to a system of ODE for v = u (§) and v = v (§)

V! =" — v/)

(8)

Vo' = -20" —uv'.

Suppose that the solution to system (8) can be expressed by polynomials in
(G'/@Q) as follows:

v = (2. v©=3 5 (&) )

=0

Considering the homogeneous balance between v and v/, v"" and uwv’ in the
first and the second equations of system (8) correspondingly, we obtain a simple
system of algebraic equations

m+3=n+1,
(10)
n+3=m+n+1,

from which it can be eagily found that m = 2 and n = 4.
Step 2. Considering (9) and (10), we find the solution to system (8) in the
following form:

u(§) = as (%)2 + ay (%/) + ap,
v@)=/ﬁ(%ﬂ4+¢%(%Q3+¢ﬁ(%)2+61G%)+6m

where function G = G (§) satisfies the second order linear ODE (5), A, i, V, oy
(i =0,2), B; (j =0,4) are all constants to be determined later, ag # 0, B4 # 0.
Step 3. Substituting (11) into system (8) and collecting all terms with

(11)

the same power of (%) together, the left-hand sides of equations (8) are

converted into another polynomials in (%) Equating each coefficient of

these polynomials to zero yields a set of simultaneous algebraic equations for
A, Voo (i =0,2),6; (7 =0,4) as follows:

— from the first equation in (8):

0: A2+ 6as u? + 2004 — B+ arpV =0

1: o A3 4 6092 + Sagp ()\2+2,u) + 8ar Ay — B A — 204+
+V (1 A+ 2a2p) =0

2: lagA (/\2 + 2,u,) + 7o A% + 360\t 4 Saqpt — 2B\ — 3B3u—
01+ V (22X + 1) =0

31 8an (A2 4 2u) + 30a2A? + 1201\ + 24aap — 363 — 4Bsp—
—289 + 2a2V =0

4: BdagA+ 6 — 404N — 3083 =0

5: 24ap — 484 = 0;
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— from the second equation in (8):

—agfip — 200N 1 — 1200 Ap® — 120B3p% — 4Py + BV =0
—aofA = a1 —2a0apt = 2N — 286521 — T2 35 M1~
—1661 A\ — 4864 pi® — 320 + BIAV + 2BV =0

20 —a1 A — 2a002X — asBip — 201 Bap — 3o B3 — o — 16223 —
—11483X% 1 — 148122 — 21684 % — 10482\ — 12083 — 1651 ju+
F28oAV + 385V + A1V =0

— O

31 —aaA — 20152\ — a3\ — 202824 — 31 B30 — 4o Bapi—
—a1 31 — 20032 — 54533 — 296840211 — 768202 — 33633\ 11—
—24B1\ — 3048412 — 80Fap + 30NV + ABapV + 23V = 0

4: 2902\ — 3183\ — dap B\ — 3Pz — 4o Bapn — B —

—2a1 39 — 3aB3 — 1288403 — 2223372 — 7848, A1 — 1085\ —
—22853# - 1261 + 464)\V + 3,83V =0

5: —3agfsA — 4oy BaX — dagfBap — 20032 — 3a1 B3 — o By — 4884 A% —
—28803\ — 496341 — 4802 + 46,V =0

6: —ag (484\ +383) — 41 By + 2 (—12084\ — 60 (384N + (33)) = 0

7 —40(2ﬂ4 - 240ﬁ4 = 0.

In addition to this, the highest order coefficients in (11) are supposed to be
nonzero:

(&%)} 7é O, ﬁ4 7é 0. (12)

Step 4. Solving the system of algebraic equations from the previous step
with conditions (12) with the aid of MATHEMATICA yields four sets of solu-
tions:

— Set 1.
V= >\2 - 4/") apg = _>‘2 - 56#7 a1 = —GOA, Qg = —605
Br=—120 (A3 +2Apn), [Bo=—240 (2A% + ), (13)
B3 = =720\, (4 = —360,
where A, p and [y are arbitrary constants.
— Set 2.
V=4p—X, ag=-3(3N2+8u), o =-60) ay=—60,
P =—720Au, B2 =360 (\* +2u), (14)
B3 = =720\, (4 = —360,

where A, p and By are arbitrary constants.
— Set 3.

V= )‘27 H = 07 apg = _AQ) a1 = _60A7 a9 — _60,

B = —120)3, By = —480)\2, (3= —T20)\, (4= —360, (15)
where A and 3y are arbitrary constants.
— Set 4.
_ )2 _ — _0)2 _ _
V==X u=0 «a IN*, o 60X, as 60, (16)

ﬁl = 07 /82 = _360)\27 /83 = _720)\7 ﬂ4 = _3607

where A and g are arbitrary constants.
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Finally, substituting solutions (13)-(16) with the general solution to linear
ODE (5) into representation (11) we obtain four separate sets of traveling wave
solutions to the KdV type dynamic system (7) as follows.

Solutions set 1. Constants set (13) yields three families of solutions:

— when A2 — 44 > 0, we get the family of hyperbolic functions solutions
u(§) =
v(§) =

B 15(A2-A2)o
Aj sinh %-&-AQ cosh %) 2
15(A2—A2)0?(4A2A; sinh £/5+2( A3+ A2) cosh £\/o+ A3 — A2) (17)
B nh &Y° A +
2(A1 sinh >5=+A cosh T)
+B0 + 1201 ()\2 — 'u) ,

where £ = x — ()\2 — 4u) t, 0 = N2 —4u, Ay, Ag, By are arbitrary con-

_O"

stants; in particular, setting A = :I:\/glkl], W= —%k%, A1 =0, By = aso,
we obtain exactly the soliton solution, found by means of the tanh —
method in [14];

u v(x-V;ﬁ)' ¥ -

Fia. 1. Hyperbolic functions solution (17) when A; = 1,
As =12 A=22 p=1, fo = —460.8

— when A2 — 44 = 0, we get the family of rational functions solutions

60A42
w(€) = ~Tmeran
360(u2(As€+ A1)~ AR) (18)
U(f) = (Az€+A1)% +,30,

where £ =z, A1, As, By are arbitrary constants;
— when A2 —4p < 0, we get the family of trigonometric functions solutions

_ 15(A2+A3)0

v (5) o Aj sin %JrAz cos # 2 to

v(€) = _15(A2{+Ag)g2(_4A2A1sin§ﬁ+2(A§—A§)cosg\/E+A§+A§)+ (19)
o 2<A1 sin %“(‘AQ cos %)4

60+ 1200 (X2 — 1),
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Fia. 2. Rational functions solution (18) when A; =1, Ay =
1.2, =1, p=0.25, By =—22.5

" u(x—\.,;t..)’-'n u v(x—Vr’i:-)ﬂ -

Fia. 3. Trigonometric functions solution (19) when A; = 1,
Ap=12, A =1, u=1, =0

where £ = x — ()\2 — 4,u) t, 0 =4u — N2, Ay, Ay, By are arbitrary con-
stants.

Solutions set 2. Constants set (14) yields three families of solutions:

— when A2 — 44 > 0, we get the family of hyperbolic functions solutions

150 ( A3—A32)

v (5) - (A1 sinh #-{-Ag cosh %)2 — 9
45( A2— A3) 202 ) (20)
v(§) = + Bo + 360u2,

2(A1 sinh %4’142 cosh %)4

where £ = x + (>\2 — 4u) t, 0 = N2 —4u, Ay, Ay, By are arbitrary con-
stants;
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u u(x—th [ & u v(x—Vt).' 0

] COA

Fia. 4. Hyperbolic functions solution (20) when A; = 1,
Ay =12, 2=22, p=1, By = —-360

when A2 — 4 = 0, we get the family of rational functions solutions

60A2
w(€) = ey a1
360 (2 (Agé+A1)*—A2
v (5) = (li (E422§£—|-+A11))4 2) + fo,

where £ =z, Ajp, A, [y are arbitrary constants; note that solutions (21)
coincide with corresponding family (18) from the first set.
when A2 — 4, < 0, we get the family of trigonometric functions solutions

B —150(A2+A3)

u (f) - Aq sin %4-,42 cos #)2 + 907 (22)
2.1 42)2,2

o (6) = 45(A3+A43)%0 -+ Bo + 36042,

N 2(A1 sin %—i—Ag cos %)

where £ = x + ()\2 - 4u) t, 0 =4u — N2, Ay, Ay, By are arbitrary con-
stants.

Solutions set 3. Constants set (15) yields two families of solutions:

\

when A > 0, we get the family of hyperbolic functions solutions

_ 1522 (A3—A2) 9
v (6) o A1 sinh %—I—Ag cosh % 2 A ’
241 A2(A3—A3)(Bo+30A1) sinh €|\[+ A1 A2 (A3+A43) 8o sinh 2¢|\| n
2( A1 sinh %—i—Ag cosh %)4
—(A$—A3)(B0+30A*) cosh Aé—32 (A3 —A3)2(20A1— o)
2<A1 sinh %—I—Ag cosh %)4
% (A%+6A§A% +A%)ﬂ0 cosh 2X\¢
2(A1 sinh %M+A2 cosh %)4 ’

(23)
+

where € = x — A\?t, Ay, Ag, By are arbitrary constants;
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u u(x—V.f.)-'n"'-

Fia. 5. Trigonometric functions solution (22) when A; = 1,
Ay =12, A =1, p=1, By =360

Fia. 6. Hyperbolic functions solution (23) when A; = 1,
Ay =12, A=1, =0

— when A = 0, we get the family of rational functions solutions

_ 6043
_ 360A3 0
v(§) = fo- At AT

where £ =z, A1, A, [y are arbitrary constants; note that solutions (24)
coincide with corresponding family (18) from the first set.

Solutions set 4. Constants set (16) yields two families of solutions:
— when A > 0, we get the family of hyperbolic functions solutions

3X2(6A2A, sinh £|A|+A%(3 cosh Aé+7)+A3(3 cosh AE—7))

u (5) - 2( A1 sinh %-{—Az cosh %)2 ’
0(€) = o o BN 2
o 0 2(A1 sinh %—i—Ag cosh %)4’
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u u(X'.V\.lérw

Fia. 7. Hyperbolic functions solution (25) when A; = 1,
As=12,A=1, By =0

where &€ = x4+ A%t, Aj, Ao, By are arbitrary constants;
when A = 0, we get the family of rational functions solutions

60A2
u(§) = _(A2£+j1)2a (26)
_ 360A%
U(é) - /60 - (AzE+A)T

where £ =z, Aj, Ag, [y are arbitrary constants; note that solutions (26)
coincide with corresponding family (18) from the first set.

5. APPLICATION: EXAMPLE 2
Consider the following Korteweg — de Vries (KdV) type nonlinear dynamic
system [1]
Ut = Uggg T Uy — VVg,
(27)
Vy = —2Uppp — UVg.
Let us solve system (27) by use of the (G'/G) — expansion method.

Step 1. Introducing traveling wave variable £ = z — V¢, we reduce system
(27) to a system of ODE for u = u (§) and v = v (§)

V' =u" 4+ uu — v/,
(28)
Vv = —-20" —uv'.

Suppose that the solution to system (28) can be expressed by polynomials in
(G'/@G) as follows:

o= (G) v0-3a(g) (29)

i=0
Considering the homogeneous balance between «” and vv’, v and wv’ in the
first and the second equations of system (28) correspondingly, we obtain a
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simple system of algebraic equations

m+3=2n+1.
(30)
n+3=m+n+1,

from which it can be easily found that m = 2 and n = 2.
Step 2. Considering (29) and (30), we find the solution to system (28) in
the following form:

! 2 U
u(§) = az (%) + o (%) + ap,
’ 2 !
v (§) = e (%) + 5 (%) + Bo,
where function G = G (§) satisfies the second order linear ODE (5), A, i, V, oy

(i =0,2), 8; (j =0,2) are all constants to be determined later, ag # 0, B2 # 0.
Step 3. Substituting (31) into system (28) and collecting all terms with

(31)

the same power of (%) together, the left-hand sides of equations (28) are

converted into another polynomials in (%) Equating each coefficient of

these polynomials to zero yields a set of simultaneous algebraic equations for
A, Voo (i =0,2),6; (7 =0,2) as follows:
— from the first equation in (28):

0: a2+ 6aodp? + 20142 + aparp — Bobip + arpV =0

1: an A3 + 60X+ 8agp (A2 + 21) 4 8an A+ ap (aq X + 2a0p) +
+aip — Bo (BiA+202p) — B+ V (1A + 200p) = 0

2: 8ag) ()\2 + 2u) + T A? + 360\ + a1 (g A + 2aou) +
+ap (209 + a1) + 8agpn + aragp — B (B1A + 282u) —
—B0 (202X + B1) — B1fBep + V (200X + 1) =0

3: 8ag (A?42u) + 300227 + g (an A + 2ap) + 1200 A+
+a1 (200X + ) + 24z + 20002 — B2 (B1A + 202p) —
=01 (202X + B1) — 260f2 + 202V =0

4: bdao )+ ag (2@2)\ + Oél) + 2ana1 + 601 — Bo (2ﬁ2)\ + ﬂl) —
—2012 =0

5: 203+ 24as — 2032 =0;

— from the second equation in (28):

0: —aobip— 2600020 — 1282 Ap? — 4By 1% + BV =0
1 =2(B1A3 + 6682020 + 8Bap (A? + 2p) + 831 Ap) +
+V (1A +2B2p1) — o (B1A + 202p) + a1 1 (—p) =0
2: —a1 (LA +202p) — ag (262X + B1) + a1 (—p)—
—2 (882X (A2 +2p) + TB1A% + 3602 A + 8B11) +
+V (26N + 1) =0
3: —aa (BiA+202p) — a1 (202N + B1) — 200 P2 —
—2 (802 (A\* + 2u) + 3082X% + 1201\ + 2452) + 262V = 0
4: —ag (282X + B1) — 20132 — 2 (5482 X +661) =0
5 —2a2ﬁ2 - 48ﬁ2 = 0.
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In addition to this, the highest order coefficients in (31) are supposed to be
nonzero:

a2 7& 07 ﬁ? 7é 0. (32)

Step 4. Solving the system of algebraic equations from the previous step
with conditions (32) with the aid of MATHEMATICA yields four sets of solu-
tions:

— Set 1.
ag= 222 —16pu+V, o3 =-24\, ay= —24, (33)
Bo=V2 (=N =8u+2V), pi=-12v2)\ [=-12V2,
where A\, pu and V are arbitrary constants.
— Set 2.
ag= -2\ —16p+V, o3 =-24)\, ay=—24, (34)
Bo=V2(N+8u—2V), [1=12V2), [ =12V2,
where A, p and V are arbitrary constants.
— Set 3.
pu=0, ag=V -2\, a;=-24)\, ap=—24, (35)
fo=2V2V = V2N, B =-12V2) 2= -12V2,
where A and V' are arbitrary constants.
— Set 4.
— — T/ —9)\2 - _ [
"= 0, Qg = Vv 2 y (673] 24)\, (%) 24, (36)

Bo=V2X2 —2V2V, B =12V2), [y =12V2
where A and V are arbitrary constants.

Finally, substituting solutions (33)-(36) with the general solution to linear
ODE (5) into representation (31) we obtain four separate sets of traveling wave
solutions to the KdV type dynamic system (27) as follows.

Solutions set 1. Constants set (33) yields three families of solutions:

— when A2 — 44 > 0, we get the family of hyperbolic functions solutions

o 6(A2-A3)o

v (g) - (Al sinh %—i—Ag cosh %) 2
2_ A2

0(€) = — WA 5o oay,

(Au sinh £47 445 cosh £47 )2

—2X2 4 8u +V,

(37)

where ¢ =x —Vit, 0 = A2 —4p, Ap, Ay, V are arbitrary constants;
— when A2 — 44 = 0, we get the family of rational functions solutions

_ A(PV—24)4+245 A1 (V4 ATV
u(8) = (A26+A1)? ’

6A2
v(©) = 2v2(V - ety )

where £ =x — Vit, Aj, Ao,V are arbitrary constants;

(38)
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HV(X—Vt)n -

Fia. 8. Hyperbolic functions solution (37) when A; = 1,
Ay =12, A=25 pu=1, V=03

e

it

T T g
i 10

Fi1a. 9. Rational functions solution (38) when A; =1, Ay =
12,0=2, u=1, V=03

— when A2 —4p < 0, we get the family of trigonometric functions solutions
_ 60(A3+A3)
v (g) o (Al sin 542@—1—142 cos 52@)2
3v2(A3+A%)0

v (g) == — (Al sin§2@+‘42 cos EJQE)2 + \/§O' + 2\/5‘/7

— 222 +8u+V,

(39)

where ¢ =x — Vit, 0 =4u — N2, Ay, Ay, V are arbitrary constants.
Solutions set 2. Constants set (34) yields three families of solutions:

— when A2 — 44 > 0, we get the family of hyperbolic functions solutions
6(A3-A2%)0

v (6) - (Al sinh %E—l—Ag cosh %E

3v2(A3-A3)o
= 20 — 22
[ (5) (Al Sinh%g-i-Ag cosh%‘?)Q + \/_O' \/_‘/7

E 222 4+ 8u+V,
(40)
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] u(x—Vt) S B : o v(x—Vt) oAl

B T

F1a. 10. Trigonometric functions solution (39) when A; =1,
Ay =12 A=15, u=1, V=03

where £ = 2 — Vt, 0 = X2 —4u, Ay, Ay, V are arbitrary constants; in
particular, setting A1 =0, o = 4k?, V = ajg — 16k}, we obtain exactly
the soliton solution, found by means of the tanh — method in [14].

— when A2 — 44 = 0, we get the family of rational functions solutions

AZ(2V—24)+242A1(V+ATV
u(&) = s (A2EtA;)2 —,

0(©) = V2 (medne V)

where £ =z — Vt, A, Ao,V are arbitrary constants;
— when A2 —4p < 0, we get the family of trigonometric functions solutions

(41)

_ 6(A7+43)0 _9\2

O = e e tE)y 2 TV )
- 3f(A2+A B

v (5) - <A1 sin é‘F-i-A cos éf) \/—U 2\/_V

where ¢ =x — Vit, 0 =4u — N2, Ay, Ay, V are arbitrary constants.
Solutions set 3. Constants set (35) yields two families of solutions:
— when A > 0, we get the family of hyperbolic functions solutions
(V—2X2) (24, Az sinh €|A|+(A3+A3) cosh A) — (AT —A43) (10A2+V)

Y (5) - 2<A1 sinh %—&-Ag cosh %) 2
v(€) = (2V=A?) (241 Az sinh §|A|+ (A7 +A3) cosh A¢) — (A7 —AZ) (5A%+2V) (43)
\/§(A1 sinh %M-I—AQ cosh %) 2 ’
where £ =z — Vt, Aj, A2,V are arbitrary constants;
— when A = 0, we get the family of rational functions solutions
w () = AZ(£2V—24)+242 A1 EV+ ATV
- 2 )

v(§) = 2\/_< %)

where £ =z — Vit, Aj, As,V are arbitrary constants.
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s 1o 5 ga
i 10

Fia. 11. Hyperbolic functions solution (43) when A; = 1,
Ay =12, A=15, V =0.5

Fia. 12. Rational functions solution (44) when A; =1, Ay =
12,A=0, V=1

Solutions set 4. Constants set (36) yields two families of solutions:
— when A > 0, we get the family of hyperbolic functions solutions
(V—2X2) (241 Az sinh €|A|+(A3+A3) cosh A) — (A3 —A43) (10A2+V)

u (5) - 2(A1 sinh %ﬂ+A2 cosh %)2 ’
v (€) = (A2—2V) (241 Az sinh €| A|+(A3+A3) cosh A )+ (AT —A43) (5A2+2V) (45)
\/§(A1 sinh %-}-Ag cosh %) 2 ’
where £ =z — Vt, A, Ao,V are arbitrary constants;
— when A =0, we get the family of rational functions solutions
_ A(EV_24) 424,418V HATV
u (f) - (A2&+A7)? ) (46)

0@ = 22 gty — V),

where £ =z — Vt, Ay, As,V are arbitrary constants.
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6. CONCLUSION

The (G'/G) — expansion method was successfully used to derive exact trav-
eling wave solutions to two KdV type nonlinear dynamic systems |1, 3].

The method was implemented in computer system MATHEMATICA, with
the aid of which we obtained the solutions in the form of hyperbolic, rational
and trigonometric functions for both systems. Moreover, it is shown that with a
certain choice of arbitrary parameters in both systems it is possible to rediscover
the soliton solutions, found by means of the tanh — method in [14], and hence
the solutions obtained in the present paper are of more general forms.

The correctness of the obtained results was assured by putting them back into
the original systems with the aid of MATHEMATICA. Most of the obtained
solutions were graphically analyzed.

The main advantage of the method is that it provides solutions with relatively
many arbitrary parameters, and thus these solutions are often more general
compared to other analytical methods. As it was shown in Section 3, there
exist certain modifications of the method to provide solutions in more general

form in comparison with the classical (%) — expansion method [15], therefore

the authors plan to use them for further investigations.
Finally, the method is confirmed to be suitable for implementation in modern
computer algebra systems.
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