UDC 519.6

ON THE FINITE ELEMENT APPROXIMATION OF A SYSTEM OF ELLIPTIC QUASI-VARIATIONAL INEQUALITIES RELATED TO HAMILTON-JACOBI-BELLMAN EQUATIONS

M. Boulbrachene

Резюме. В роботі розвинуто новий підхід, запропонований в [3], для вивчення скінченно-елементної апроксимації систем еліптичних квазі-варіаційних нерівностей, що пов'язані з рівняннями Гамільтона-Якобі-Бельтрана. Метод поєднує в собі підходи часткових розв'язків, дискретної регулярності для варіаційних нерівностей та геометричну збіжність ітераційної схеми, що наближає розв'язок.
Abstract. In this paper, we exploit a new approach, introduced in [3], to study the finite element approximation of a system of elliptic quasi-variational inequalities (Q.V.I.) related to Hamilton-Jacobi-Bellman (HJB) equations. The method combines the concepts of subsolutions, discrete regularity for variational inequalities, and the geometrical convergence of an iterative scheme approximating the solution.

1. Introduction

We are concerned with the standard finite element approximation of the system of elliptic quasi-variational inequalities (Q.V.I): Find $U=\left(u_{1}, \ldots, u_{M}\right) \in$ $\left(H_{0}^{1}(\Omega)\right)^{M}$ such that

$$
\left\{\begin{array}{l}
a_{i}\left(u_{i}, v-u_{i}\right) \geq\left(f_{i}, v-u_{i}\right) \quad \forall v \in H_{0}^{1}(\Omega) \tag{1}\\
u_{i} \leq k+u_{i+1}, v \leq k+u_{i+1} \\
u_{M+1}=u_{1}
\end{array}\right.
$$

where, Ω is a bounded convex domain of \mathbb{R}^{N} with sufficiently smooth boundary $\Gamma, f \geq 0$ is a right hand in $L^{\infty}(\Omega), k>0,(.,$.$) is the inner product in L^{2}(\Omega)$, $a(.,$.$) is the bilinear form defined by: \forall u, v \in H^{1}(\Omega)$

$$
\begin{equation*}
a_{i}(u, v)=\int_{\Omega}\left(\sum_{j, k=1}^{N} a_{j k}^{i}(x) \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{k}}+\sum_{k=1}^{N} b_{k}^{i}(x) \frac{\partial u}{\partial x_{k}} v+a_{0}^{i}(x) u v\right) d x \tag{2}
\end{equation*}
$$

such that

$$
a_{i}(v, v) \geq \delta\|v\|_{H^{1}(\Omega)}^{2} \forall v \in H^{1}(\Omega)
$$

where the coefficients $a_{j k}^{i}(x), b_{k}^{i}(x), a_{0}^{i}(x),(j, k=1, \ldots, N)$, are sufficiently smooth such that

$$
\begin{equation*}
a_{0}^{i}(x) \geq c_{0}>0, \forall x \in \Omega \tag{3}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\sum_{1 \leq j, k \leq N} a_{j k}^{i}(x) \xi_{j} \xi_{k} \geq \alpha|\xi|^{2} ;\left(x \in \bar{\Omega}, \xi \in R^{N}, \alpha>0\right) \tag{4}
\end{equation*}
$$

\]

Denoting by \mathbb{V}_{h}, the finite element space consisting of continuous piecewise linear functions vanishing at the boundary, r_{h} the usual interpolation operator, we define the discrete counterpart of (1) by: find $U_{h}=\left(u_{1, h}, \ldots, u_{M, h}\right) \in\left(\mathbb{V}_{h}\right)^{M}$ such that

$$
\left\{\begin{array}{l}
a_{i}\left(u_{i, h}, v-u_{i, h}\right) \geq\left(f, v-u_{i, h}\right) \quad \forall v \in \mathbb{V}_{h} \tag{5}\\
u_{i, h} \leq r_{h}\left(k+u_{i+1, h}\right), v \leq r_{h}\left(k+u_{i+1, h}\right) \\
u_{M+1, h}=u_{1, h}
\end{array}\right.
$$

This system appears in stochastic control problems related to Hamilton-Jacobi-Bellman equations (HJB) (see [1], [2]). Its finite element approximation was studied in (cf.,e.g., [4], [5], [6], where different methods were employed.

In this paper, we exploit an idea developed in [3] to derive optimal convergence order for the system of Q.V.I (1).

This method consists, mainly, of combining, in both the continuous and discrete contexts, the concept of subsolutions for variational inequalities and a geometrical convergence of an iterative scheme approximating the solution. For a computational purpose, this method provides an interesting information as it permits to control the error between the continuous iterative scheme and its finite element counterpart.

A brief description of this method is as follows: Let $U^{n}=\left(u_{1}^{n}, \ldots, u_{M}^{n}\right)$ be the nth iterate of the scheme approximating the solution U, and $U_{h}^{n}=$ $\left(u_{1 h}^{n}, \ldots, u_{M h}^{n}\right)$ its finite element counterpart, approximating U_{h}. We construct a sequence of continuous subsolutions $\beta^{n}=\left(\beta_{1}^{n}, \ldots, \beta_{M}^{n}\right)$ such that

$$
\beta^{n} \leq U^{n}
$$

and

$$
\left\|\beta^{n}-U_{h}^{n}\right\|_{\infty} \leq C h^{2}|\ln h|^{2}
$$

and a sequence of discrete subsolutions $\gamma^{n}=\left(\gamma_{1, h}^{n}, \ldots, \gamma_{M, h}^{n}\right)$ such that:

$$
\gamma_{h}^{n} \leq U_{h}^{n}
$$

and

$$
\left\|U^{n}-\gamma_{h}^{n}\right\|_{\infty} \leq C h^{2}|\ln h|^{2}
$$

In this situation, using a concept of discrete regularity, we establish an optimal error estimate for the iterative scheme:

$$
\begin{equation*}
\left\|U^{n}-U_{h}^{n}\right\|_{\infty} \leq C h^{2}|\ln h|^{2} \tag{6}
\end{equation*}
$$

and then, combining estimate (6) with the geometrical convergence of the iterative scheme $\left(U^{n}\right)$ and $\left(U_{h}^{n}\right)$ to the solutions U and U_{h} of systems (1) and (5), respectively, we also derive error estimate for the system of Q.V.I. (1):

$$
\begin{equation*}
\left\|U-U_{h}\right\|_{\infty} \leq C h^{2}|\ln h|^{2} \tag{7}
\end{equation*}
$$

where

$$
\|V\|_{\infty}=\max \left\|v_{i}\right\|_{L^{\infty}(\Omega)}, V=\left(v_{1}, \ldots, v_{M}\right)
$$

and, in all the above error estimates, C is a constant independent of both h and n.
It is worth pointing out that estimate (6) is new for the system (1).
The paper is organized as follows. In sections 2 , we recall the construction and convergence of the continuous iterative scheme for system (1). In section 3, we also recall analog discrete results and detail discrete regularity for the discrete iterative scheme. In section 4, we discuss the new approximation approach and derive the main results of this paper. In section 5 , we give a numerical example and, finally, in section 6 , a short conclusion.

2. The Continuous Problem

2.1. A Continuous Iterative Scheme. Let $U^{0}=\left(u_{1}^{0}, \ldots, u_{M}^{0}\right) \in\left(H^{1}(\Omega)\right)^{M}$ be such that u_{i}^{0} solves the equation

$$
\begin{equation*}
a\left(u_{i}^{0}, v\right)=\left(f_{i}, v\right) \quad \forall v \in H_{0}^{1}(\Omega) ; \forall i=1, \ldots, M . \tag{8}
\end{equation*}
$$

Then, starting from U^{0} solution of (8), we define the continuous sequence $\left(U^{n}\right)$ such that $U^{n}=\left(u_{1}^{n}, \ldots, u_{M}^{n}\right)$ and u_{i}^{n} solves the variational inequality (V.I)

$$
\left\{\begin{array}{l}
a\left(u_{i}^{n}, v-u_{i}^{n}\right) \geq\left(f_{i}, v-u_{i}^{n}\right) \quad \forall v \in H_{0}^{1}(\Omega), \tag{9}\\
u_{i}^{n} \leq k+u_{i+1}^{n-1}, v \leq k+u_{i+1}^{n-1}, \\
u_{M+1}^{n-1}=u_{1}^{n-1} .
\end{array}\right.
$$

Theorem 1. [5] The sequence $\left(U^{n}\right)$ defined in (9) converge decreasingly to the solution U of of system (1). Moreover, there exists $0<\mu<1$ such that

$$
\begin{equation*}
\left\|U^{n}-U\right\|_{\infty} \leq \mu^{n}\left\|U^{0}\right\|_{\infty} . \tag{10}
\end{equation*}
$$

3. The discrete Problem

For the sake of simplicity we suppose that Ω is polyhedral.We then consider a regular and quasi-uniform triangulation τ_{h} of $\bar{\Omega}$, consisting of n-simplices K. Denote by $h=\max _{K \in \tau_{h}} h_{K}$, the meshsize of τ_{h} with h_{K} being the diameter of K. For each $K \in \tau_{h}$, denote by $P_{1}(K)$ the set of polynomials on K with degree no more than 1 . The P_{1} - conforming finite element space is given by

$$
\mathbb{V}_{h}=\left\{v: v \in H^{1}(\Omega) \cap C(\bar{\Omega}), v_{/ K} \in P_{1}(K), \quad \forall K \in \tau_{h}\right\} .
$$

Let $M_{i}, 1 \leq i \leq N_{h}$ denote the the vertices of the triangulation τ_{h}, and let $\varphi_{i}, 1 \leq i \leq m(h)$, denote the functions of V_{h} which satisfy

$$
\varphi_{i}\left(M_{j}\right)=\delta_{i j}, 1 \leq i, j \leq N_{h}
$$

so that the functions φ_{i} form a basis of V_{h}. For every $v \in H^{1}(\Omega) \cap C(\bar{\Omega})$, the function

$$
r_{h} v(x)=\sum_{i=1}^{N_{h}} v\left(M_{i}\right) \varphi_{i}(x)
$$

represents the interpolate of v over τ_{h}.
Now, in order to establish existence and uniqueness of a solution to V.I (5), the stiffness matrix is required to be an M-Matrix.

Definition 1. A real matrix $d \times d$ matrix $C=\left(c_{l s}\right)$ with $c_{l s} \leq 0, \forall l \neq s$, $1 \leq l, s \leq d$, is called an M-Matrix if C is nonsingular and $C^{-1} \geq 0$ (i.e., all entries of its inverse are nonnegative).
3.1. Discrete Maximum Principle. Denote by A^{i} the matrices with generic coefficient

$$
\begin{equation*}
a_{l s}^{i}=a_{i}\left(\varphi_{l}, \varphi_{s}\right), \quad 1 \leq l, s \leq N_{h} ; \quad i=1, \ldots, M \tag{11}
\end{equation*}
$$

Because the bilinear form $a_{i}(.,$.$) is coercive, we have$

$$
\begin{equation*}
A^{i} \text { is positive definite } \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{l l}^{i}>0 \quad \forall l=1, \ldots, m(h) . \tag{13}
\end{equation*}
$$

Furthermore, if the matrix $\left(a_{j k}\right)$ involved in the bilinear form (2) is symmetric $\left(a_{j k}=a_{k j}\right)$, then mesh conditions for which the off-diagonal entries of A^{i} satisfy

$$
\begin{equation*}
a_{l s}^{i} \leq 0, \forall i \neq j, \quad 1 \leq l, s \leq m(h) \tag{14}
\end{equation*}
$$

can be found in [8]. Therefore, combining (12), (13) and (14), we have the following lemma.

Lemma 1. The matrices $A^{i}, i=1, \ldots, M$ are M-Matrices.
Proof. See [8], [9].
3.2. A discrete Iterative Scheme. Let $U_{h}^{0}=\left(u_{1 h}^{0}, \ldots, u_{M h}^{0}\right)$ such that $u_{i, h}^{0} \in$ \mathbb{V}_{h} solves the equation

$$
\begin{equation*}
a_{i}\left(u_{i, h}^{0}, v\right)=\left(f_{i}, v\right) \quad \forall v \in \mathbb{V}_{h} ; \quad i=1, \ldots, M \tag{15}
\end{equation*}
$$

Now, starting from $U_{h}^{0}=0$, we define the discrete sequence $\left(U_{h}^{n}\right)$ such that $U_{h}^{n}=\left(u_{1 h}^{n}, \ldots u_{M h}^{n}\right)$ and $u_{i h}^{n} \in \mathbb{V}_{h}$ solves the variational inequality (V.I)

$$
\left\{\begin{array}{l}
a\left(u_{i h}^{n}, v-u_{i h}^{n}\right) \geq\left(f_{i}, v-u_{i h}^{n}\right) \quad \forall v \in \mathbb{V}_{h} \tag{16}\\
u_{i h}^{n} \leq k+u_{i+1 h}^{n-1}, v \leq k+u_{i+1 h}^{n-1} \\
u_{M+1 h}^{n-1}=u_{1 h}^{n-1}
\end{array}\right.
$$

Theorem 2. [5] Under conditions of lemma 1, the sequence $\left(U_{h}^{n}\right)$ and $\left(U_{n, h}\right)$ converges decreasingly to the unique solution solution U_{h} of Q.V.I (5).Moreover, there exists a constant $0<\mu<1$ such that

$$
\begin{align*}
& \left\|U_{h}^{n}-U_{h}\right\|_{\infty} \leq \mu^{n}\left\|U_{h}^{0}\right\|_{\infty} \tag{17}\\
& \left\|U_{n, h}-U_{h}\right\|_{\infty} \leq \mu^{n}\left\|U_{h}^{0}\right\|_{\infty} \tag{18}
\end{align*}
$$

3.3. Discrete regularity. Let $\omega \in H_{0}^{1}(\Omega)$ be the solution of the V.I

$$
\left\{\begin{array}{l}
a(\omega, v-\omega) \geq(g, v-\omega) \forall v \in H_{0}^{1}(\Omega) \tag{19}\\
v \leq r_{h} \psi, \omega \leq r_{h} \psi
\end{array}\right.
$$

and $\omega_{h} \in \mathbb{V}_{h}$, its discrete counterpart, the solution of the V.I

$$
\left\{\begin{array}{l}
a\left(\omega_{h}, v-\omega_{h}\right) \geq\left(g, v-\omega_{h}\right) \forall v \in \mathbb{V}_{h} \tag{20}\\
v \leq r_{h} \psi, \omega_{h} \leq r_{h} \psi
\end{array}\right.
$$

This concept of "discrete regularity", introduced in [10], can be regarded as the discrete counterpart of the Lewy-Stampaccia estimate $\|\mathcal{A} u\|_{\infty} \leq C(\mathcal{A}$ being the operator associated with bilinear form $a(.,$.$)), extended to the variational$ form through the $L^{1}-L^{\infty}$ duality. The main role it plays, in the present paper, is in the regularization of the obstacles appearing in the discrete problems (16)
Lemma 2. [10] We assume that there exists a constant C independent of h such that

$$
\begin{equation*}
\left|a\left(\omega_{h}, \varphi_{s}\right)\right| \leq C\left\|\varphi_{s}\right\|_{L^{1}(\Omega)} \quad \forall s=1,2, \ldots, N_{h} \tag{21}
\end{equation*}
$$

Then, there exists a family of right hand sides $g^{(h)}$ such that

$$
\left\|g^{(h)}\right\|_{\infty} \leq C
$$

and

$$
a\left(\omega_{h}, v\right)=\left(g^{n,(h)}, v\right) \quad \forall v \in \mathbb{V}_{h}
$$

Theorem 3. Let conditions of lemma 2 hold. Then, there exists a sequence $\left(g^{n,(h)}\right)_{n \geq 1}$ and a constant $C>0$ independent of h and n such that

$$
\begin{gathered}
\left\|g^{n,(h)}\right\|_{\infty} \leq C \\
a\left(u_{i h}^{n}, v\right)=\left(g^{(h)}, v\right) \quad \forall v \in \mathbb{V}_{h}
\end{gathered}
$$

where $u_{i h}^{n}$ is defined in (16).
Proof. The proof will be carried out by induction. For $n=1$, let $u_{i h}^{1}$ be the solution of the V.I

$$
\left\{\begin{array}{l}
a\left(u_{i h}^{1}, v-u_{h}^{1}\right) \geq\left(f_{i}, v-u_{i h}^{1}\right) \forall v \in \mathbb{V}_{h} \\
v \leq k+u_{i h}^{0}, \quad u_{i h}^{1} \leq k+u_{i h}^{0}
\end{array}\right.
$$

where

$$
a\left(u_{i h}^{0}, v\right)=\left(f_{i}, v\right) \quad \forall v \in V_{h}
$$

So, clearly

$$
\begin{equation*}
\left|a\left(u_{i h}^{0}, \varphi_{s}\right)\right| \leq C\left\|\varphi_{s}\right\|_{L^{1}(\Omega)} \quad \forall s=1,2, \ldots, N_{h} \tag{22}
\end{equation*}
$$

and, using the discrete Levy-Stampachia inequality [4], we have

$$
-\left(f_{i}, \varphi_{s}\right) \wedge a\left(k+u_{i h}^{0}, \varphi_{s}\right) \leq a\left(u_{i h}^{1}, \varphi_{i}\right) \leq\left(f, \varphi_{s}\right)
$$

But

$$
a\left(k+u_{i h}^{0}, \varphi_{s}\right)=a\left(u_{i h}^{0}, \varphi_{s}\right)+\left(k a_{0}^{i}(x), \varphi_{s}\right)
$$

and, using (22), there exists a constant C such that,

$$
-\left(f_{i}, \varphi_{i}\right) \wedge\left(-C, \varphi_{s}\right) \leq a\left(u_{i h}^{1}, \varphi_{s}\right) \leq\left(f, \varphi_{s}\right)
$$

which implies

$$
\left|a\left(u_{i h}^{1}, \varphi_{s}\right)\right| \leq C\left\|\varphi_{s}\right\|_{L^{1}(\Omega)}, \forall s=1,2, \ldots, N_{h} .
$$

Hence, making use of lemma 2, there exists a family of right-hands side $\left\{g_{i}^{1,(h)}\right\} \in L^{\infty}(\Omega)$ such that

$$
\left\{\begin{aligned}
i) & \left\|g_{i}^{1,(h)}\right\|_{\infty} \leq C \\
& \text { and } \\
\text { ii) } & a\left(u_{i h}^{1}, v\right)=\left(g_{i}^{1,(h)}, v\right) \quad \forall v \in \mathbb{V}_{h} .
\end{aligned}\right.
$$

Now, assume that there exists a constant C independent of n such that

$$
\begin{equation*}
a\left(u_{i h}^{n-1}, \varphi_{s}\right) \leq C\left\|\varphi_{s}\right\|_{L^{1}(\Omega)}, \quad \forall s=1,2, \ldots, N_{h} . \tag{23}
\end{equation*}
$$

So, using the discrete Levy-Stampachia inequality, we get

$$
-\left(f, \varphi_{s}\right) \wedge a\left(k+u_{i h}^{n-1}, \varphi_{i}\right) \leq a\left(u_{i h}^{n}, \varphi_{s}\right) \leq\left(f, \varphi_{s}\right)
$$

or

$$
-\left(f, \varphi_{s}\right) \wedge\left(a\left(k+u_{i h}^{n-1}, \varphi_{s}\right) \leq a\left(u_{i h}^{n}, \varphi_{s}\right) \leq\left(f, \varphi_{s}\right)\right.
$$

and, as

$$
a\left(k+u_{h}^{n-1}, \varphi_{s}\right)=a\left(u_{h}^{n-1}, \varphi_{s}\right)+\left(k a_{0}^{i}(x), \varphi_{s}\right)
$$

using (23) as above, we have

$$
-\left(f_{i}, \varphi_{s}\right) \wedge\left(-C, \varphi_{s}\right) \leq a\left(u_{h}^{n}, \varphi_{s}\right) \leq\left(f, \varphi_{s}\right)
$$

which implies

$$
\left|a\left(u_{h}^{n}, \varphi_{s}\right)\right| \leq C\left\|\varphi_{s}\right\|_{L^{1}(\Omega)} .
$$

So, making use of lemma 2, there exists family of right-hands side $\left\{g_{i}^{n,(h)}\right\} \in$ $L^{\infty}(\Omega)$ such that

$$
\left\{\begin{aligned}
\text { i) } & \left\|g_{i}^{n,(h)}\right\|_{\infty} \leq C \\
& \text { and } \\
\text { ii) } & a\left(u_{i h}^{n}, v\right)=\left(g_{i}^{n,(h)}, v\right) \quad \forall v \in \mathbb{V}_{h}
\end{aligned}\right.
$$

which completes the proof.
Note that, as

$$
a\left(u_{i h}^{n}, v\right)=\left(g_{i}^{n,(h)}, v\right) \forall v \in \mathbb{V}_{h}
$$

one can define

$$
U^{n,(h)}=\left(u_{1}^{n,(h)}, \ldots, u_{M}^{n,(h)}\right),
$$

the discrete analog of

$$
U_{h}^{n}=\left(u_{1 h}^{n}, \ldots, u_{M h}^{n}\right)
$$

such that

$$
\left\|u_{i}^{n,(h)}\right\|_{W^{2, p}(\Omega)} \leq C
$$

and

$$
\begin{equation*}
a\left(u_{i}^{n,(h)}, v\right)=\left(g_{i}^{n,(h)}, v\right) \quad \forall v \in H_{0}^{1}(\Omega) \tag{24}
\end{equation*}
$$

and, by standard maximum norm estimates

$$
\begin{equation*}
\left\|u_{i}^{n,(h)}-u_{i h}^{n}\right\|_{\infty} \leq C h^{2}|\log h| \tag{25}
\end{equation*}
$$

4. $L^{\infty}-$ Error Analysis

From now on, C will denote an arbitrary constant independent of both h and n.
4.1. Background. We begin with recalling some useful properties enjoyed by elliptic variational inequalities. Indeed, let

Definition 2. $w \in H_{0}^{1}(\Omega)$ is said to be a subsolution for the VI (19) if

$$
\left\{\begin{array}{l}
a(w, v) \leq(g, v) \forall v \in H_{0}^{1}(\Omega), v \geq 0 \tag{26}\\
w \leq \psi
\end{array}\right.
$$

Theorem 4. [7] The solution ω of V.I (19) is the least upper bound of the set of subsolutions.

Theorem 5. [7] Let $\omega=\partial(\tilde{\psi})$ and $\tilde{\omega}=\partial(\tilde{\psi})$. Then, we have

$$
\begin{equation*}
\|\omega-\tilde{\omega}\|_{\infty} \leq C\|\psi-\tilde{\psi}\|_{\infty} \tag{27}
\end{equation*}
$$

Remark 1. Under conditions of lemma 1, the above properties of the solution of V.I (19) remain valid in the discrete case.

Indeed, let $\omega_{h}=\partial_{h}(\psi) \in \mathbb{V}_{h}$ be the solution of the discrete variational inequality

$$
\left\{\begin{array}{l}
a\left(\omega_{h}, v-\omega_{h}\right) \geq\left(g, v-\omega_{h}\right) \forall v \in \mathbb{V}_{h} \tag{28}\\
\omega_{h} \leq r_{h} \psi, v \leq r_{h} \psi
\end{array}\right.
$$

Next, we shall give the discrete analog of Theorems 3, 4. Their respective proofs will be omitted as they are similar to their continuous counterparts.
Definition 3. $w_{h} \in \mathbb{V}_{h}$ is said to be a subsolution for the V.I (28) if

$$
\left\{\begin{array}{l}
a\left(w_{h}, \varphi_{s}\right) \leq\left(g, \varphi_{s}\right) \forall s=1, \ldots, N_{h} \tag{29}\\
w_{h} \leq r_{h} \psi
\end{array}\right.
$$

Theorem 6. Under conditions of lemma 1, the solution ω_{h} of V.I (28) is the least upper bound of the set of discrete subsolutions.

Theorem 7. Let $\omega_{h}=\partial_{h}(\psi)$ and $\tilde{\omega}_{h}=\partial_{h}(\tilde{\psi})$. Then, under conditions of lemma 1, we have

$$
\begin{equation*}
\left\|\omega_{h}-\tilde{\omega}_{h}\right\|_{\infty} \leq C\|\psi-\tilde{\psi}\|_{\infty} \tag{30}
\end{equation*}
$$

Lemma 3. [11] If $\psi \in W^{2, p}(\Omega)$ and $\omega \in W^{2, p}(\Omega), 2 \leq p<\infty$, then the following error estimate holds

$$
\begin{equation*}
\left\|\omega-\omega_{h}\right\|_{\infty} \leq C h^{2}|\ln h|^{2} \tag{31}
\end{equation*}
$$

4.2. L^{∞} - Error estimate for the Iterative Scheme. In order to estimate the error between the continuous iterative scheme and its finite element counterpart, we introduce the following sequences of variational inequalities.

An auxiliary sequence of continuous variational inequalities: We introduce the sequence $\bar{U}^{n}=\left(\bar{u}_{1}^{n}, \ldots, \bar{u}_{M}^{n}\right)_{n \geq 1}$ such that $\bar{u}_{i}^{n}=\partial\left(k+\hat{u}_{i+1, h}^{n-1}\right) \in$ $H_{0}^{1}(\Omega)$ solves the continuous V.I:

$$
\left\{\begin{array}{l}
a_{i}\left(\bar{u}_{i}^{n}, v-\bar{u}^{n}\right) \geq\left(f, v-\bar{u}_{i}^{n}\right) \quad \forall v \in H_{0}^{1}(\Omega) \tag{32}\\
\bar{u}_{i}^{n} \leq k+u_{i+1}^{n-1,(h)}, \quad v \leq k+u_{i+1}^{n-1,(h)} \\
u_{M+1, h}^{n-1}=u_{i+1}^{n-1,(h)}
\end{array}\right.
$$

where $u_{i+1}^{n-1,(h)}$ is defined in (24).
An auxiliary sequence of discrete variational inequalities We define the sequence $\bar{U}_{h}^{n}=\left(\bar{u}_{1, h}^{n}, \ldots, \bar{u}_{i, h}^{n}\right)_{n \geq 1}$ such that $\bar{u}_{i, h}^{n}=\partial_{h}\left(k+u_{i+1}^{n-1}\right) \in \mathbb{V}_{h}$ solves the discrete V.I

$$
\left\{\begin{array}{l}
a_{i}\left(\bar{u}_{i, h}^{n}, v-\bar{u}_{h}^{n}\right) \geq\left(f_{i}, v-\bar{u}_{h}^{n}\right) \quad \forall v \in \mathbb{V}_{h} \tag{33}\\
\bar{u}_{h}^{n} \leq r_{h}\left(k+u_{i+1}^{n-1}\right), v \leq r_{h}\left(k+u_{i+1}^{n-1}\right) \\
u_{M+1}^{n-1}=u_{1}^{n-1}
\end{array}\right.
$$

where u^{0} and u^{n} are defined in (8) and (9), respectively.
Theorem 8. We have

$$
\begin{equation*}
\left\|U^{n}-\bar{U}_{h}^{n}\right\|_{\infty} \leq C h^{2}|\ln h|^{2} \tag{34}
\end{equation*}
$$

Proof. As $\bar{u}_{i, h}^{n}$ is the discrete counterparts of u_{i}^{n} and $\left\|u_{i}^{n}\right\|_{W^{2, p}(\Omega)} \leq C$ (independent of n) (see [5]), making use of (31), we get the desired error estimates.

Theorem 9.

$$
\begin{equation*}
\left\|U^{n}-U_{h}^{n}\right\|_{\infty} \leq C h^{2}|\ln h|^{2} \tag{35}
\end{equation*}
$$

Proof. We proceed by induction. Indeed, consider V.I (32) for $n=1$:

$$
\left\{\begin{array}{l}
a_{i}\left(\bar{u}_{i}^{1}, v-\bar{u}_{i}^{1}\right) \geq\left(f, v-\bar{u}_{i}^{1}\right) \quad \forall v \in H_{0}^{1}(\Omega) \\
\bar{u}_{i}^{1} \leq k+u_{i+1}^{0,(h)}, \quad v \leq k+u_{i+1}^{0,(h)} \\
u_{M+1}^{0,(h)}=u_{1}^{0,(h)}
\end{array}\right.
$$

So

$$
\begin{equation*}
\left\|\bar{u}_{i}^{1}-u_{i, h}^{1}\right\|_{\infty} \leq C h^{2}|\ln h|^{2} \tag{36}
\end{equation*}
$$

Indeed, let $\bar{u}_{i}^{1}=\partial\left(k+u_{i+1}^{0,(h)}\right), \tilde{u}_{i, h}^{1}=\partial_{h}\left(k+u_{i+1}^{0,(h)}\right)$ and $u_{i, h}^{1}=\partial_{h}\left(k+u_{i+1, h}^{0}\right)$. Then, as $\tilde{u}_{i, h}^{1}$ is the discrete analog of \bar{u}_{i}^{1}, making use of (34), we have

$$
\begin{equation*}
\left\|\bar{u}_{i}^{1}-\tilde{u}_{i, h}^{1}\right\|_{\infty} \leq C h^{2}|\ln h|^{2} \tag{37}
\end{equation*}
$$

Moreover, using (30) and standard maximum error estimate, we get

$$
\begin{aligned}
\left\|u_{i, h}^{1}-\tilde{u}_{i, h}^{1}\right\|_{\infty} & \leq\left\|u_{i+1}^{0,(h)}-u_{i+1, h}^{0}\right\|_{\infty} \\
& \leq C h^{2}|\ln h| .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left\|\bar{u}_{i}^{1}-u_{i, h}^{1}\right\|_{\infty} & \leq\left\|\bar{u}_{i}^{1}-\tilde{u}_{i, h}^{1}\right\|_{\infty}+\left\|\tilde{u}_{i, h}^{1}-u_{i, h}^{1}\right\|_{\infty} \\
& \leq C h^{2}|\ln h|^{2} .
\end{aligned}
$$

Now, as \bar{u}_{i}^{1} is solution to a V.I, it is also a subsolution, i.e.,

$$
\begin{aligned}
& a\left(\bar{u}_{i}^{1}, v\right) \leq\left(f_{i}, v\right) \quad \forall v \in H_{0}^{1}(\Omega), v \geq 0, \\
& \bar{u}_{i}^{1} \leq k+u_{i+1}^{0,(h)} .
\end{aligned}
$$

But, as

$$
\begin{aligned}
\bar{u}_{i}^{1} & \leq k+\left\|u_{i+1}^{0,(h)}-u_{i+1, h}^{0}\right\|_{\infty}+u_{i+1}^{0} \leq \\
& \leq k+C h^{2}|\ln h|^{2}+u_{i+1}^{0},
\end{aligned}
$$

we have

$$
\begin{aligned}
a\left(\bar{u}_{i}^{1}, v\right) & \leq(f, v) \forall v \in H_{0}^{1}(\Omega), v \geq 0, \\
\bar{u}_{i}^{1} & \leq k+C h^{2}|\ln h|+u_{i+1}^{0} .
\end{aligned}
$$

Hence, \bar{u}_{i}^{1} is also a subsolution for the V.I with obstacle $k+C h^{2}|\ln h|^{2}+u_{i+1}^{0}$. Let $\bar{\omega}_{i}^{1}=\partial\left(k+C h^{2}|\ln h|^{2}+u_{i+1}^{0}\right)$. Then, as $u_{i}^{1}=\partial\left(k+u_{i+1}^{0}\right)$, making use of (27) and standard maximum error estimate

$$
\begin{equation*}
\left\|u_{i+1}^{0}-u_{i+1, h}^{0}\right\|_{\infty} \leq C h^{2}|\ln h| \tag{38}
\end{equation*}
$$

we get

$$
\begin{aligned}
\left\|\bar{\omega}_{i}^{1}-u_{i}^{1}\right\|_{\infty} & \leq C h^{2}|\ln h|^{2}+\left\|u_{i+1}^{0}-u_{i+1, h}^{0}\right\|_{\infty} \leq \\
& \leq C h^{2}|\ln h|^{2} .
\end{aligned}
$$

Hence, making use of Theorem 4, we have

$$
\bar{u}_{i}^{1} \leq \bar{\omega}_{i}^{1} \leq u_{i}^{1}+C h^{2}|\ln h|^{2} .
$$

Putting

$$
\beta_{i}^{1}=\bar{u}_{i}^{1}-C h^{2}|\ln h|^{2}, \forall i=1, \ldots, M,
$$

we get

$$
\begin{equation*}
\beta_{i}^{1} \leq u_{i}^{1}, \forall i=1, \ldots, M . \tag{39}
\end{equation*}
$$

Further more, using estimate (36), we get

$$
\begin{align*}
\left\|\beta_{i}^{1}-u_{i, h}^{1}\right\|_{\infty} & \leq\left\|\bar{u}_{i}^{1}-u_{i, h}^{1}\right\|_{\infty}+C h^{2}|\ln h|^{2} \leq \tag{40}\\
& \leq C h^{2}|\ln h|^{2} .
\end{align*}
$$

Now consider the discrete V.I (33) for $n=1$:

$$
\left\{\begin{array}{l}
a_{i}\left(\bar{u}_{i, h}^{1}, v-\bar{u}_{i, h}^{1}\right) \geq\left(f_{i}, v-\bar{u}_{i, h}^{1}\right) \quad \forall v \in \mathbb{V}_{h} \\
\bar{u}_{i, h}^{1} \leq r_{h}\left(k+u_{i+1}^{0}\right), v \leq r_{h}\left(k+u_{i+1}^{0}\right)
\end{array}\right.
$$

$\bar{u}_{i, h}^{1}$ being also a discrete subsolution, we have

$$
\begin{aligned}
& a\left(\bar{u}_{i, h}^{1}, \varphi_{i}\right) \leq\left(f, \varphi_{i}\right) \quad \forall \varphi_{i} \\
& \bar{u}_{i, h}^{1} \leq r_{h}\left(k+u_{i+1}^{0}\right)
\end{aligned}
$$

and, from standard maximum error estimate

$$
\left\|u^{0}-u_{h}^{0}\right\|_{\infty} \leq C h^{2}|\ln h|
$$

So

$$
\begin{aligned}
\bar{u}_{i, h}^{1} & \leq k+\left\|u_{i+1}^{0}-u_{i+1, h}^{0}\right\|_{\infty}+r_{h} u_{i+1, h}^{0} \leq \\
& \leq k+C h^{2}|\ln h|^{2}+r_{h} u_{i+1, h}^{0} .
\end{aligned}
$$

then

$$
\begin{aligned}
a_{i}\left(\bar{u}_{i, h}^{1}, \varphi_{i}\right) & \leq\left(f_{i}, \varphi_{i}\right) \quad \forall \varphi_{i} \\
\bar{u}_{i, h}^{1} & \leq k+C h^{2}|\ln h|^{2}+r_{h} u_{i+1, h}^{0}
\end{aligned}
$$

because r_{h} is Lipschitz. So, $\bar{u}_{i, h}^{1}$ is also a discrete subsolution for the V.I with obstacle $k+C h^{2}|\ln h|^{2}+r_{h} u_{i+1, h}^{0}$. Let $\bar{\omega}_{i, h}^{1}=\partial_{h}\left(k+C h^{2}|\ln h|^{2}+u_{i+1, h}^{0}\right)$. As $u_{i, h}^{1}=\partial_{h}\left(k+u_{i+1, h}^{0}\right)$, making use of (30) and (38), we get

$$
\begin{aligned}
\left\|\bar{\omega}_{i, h}^{1}-u_{i, h}^{1}\right\|_{\infty} & \leq\left\|u_{i+1, h}^{0}-u_{i+1, h}^{0}\right\|_{\infty} \leq \\
& \leq C h^{2}|\ln h|^{2}
\end{aligned}
$$

and, applying Theorem 6 , we get

$$
\bar{u}_{i, h}^{1} \leq \bar{\omega}_{i, h}^{1} \leq u_{i, h}^{1}+C h^{2}|\ln h|^{2}
$$

Now, taking

$$
\gamma_{i, h}^{1}=\bar{u}_{i, h}^{1}-C h^{2}|\ln h|^{2}, \quad \forall i=1, \ldots, M
$$

we have

$$
\begin{equation*}
\gamma_{i, h}^{1} \leq u_{i, h}^{1}, \forall i=1, \ldots, M \tag{41}
\end{equation*}
$$

Hence, as $u_{i, h}^{1}$ is the discrete analog of u_{i}^{1}, making use (30) and (34), we get

$$
\begin{align*}
\left\|\gamma_{i, h}^{1}-u_{i}^{1}\right\|_{\infty} & \leq\left\|\bar{u}_{i, h}^{1}-u_{i}^{1}\right\|_{\infty}+C h^{2}|\ln h|^{2} \leq \tag{42}\\
& \leq C h^{2}|\ln h|^{2}
\end{align*}
$$

Thus, combining (39), (40) and (41), (42), we obtain

$$
\begin{aligned}
u_{i}^{1} & \leq \gamma_{i, h}^{1}+C h^{2}|\ln h|^{2} \\
& \leq u_{i, h}^{1}+C h^{2}|\ln h|^{2} \\
& \leq \beta_{i}^{1}+C h^{2}|\ln h|^{2} \\
& \leq u_{i}^{1}+C h^{2}|\ln h|^{2} .
\end{aligned}
$$

That is

$$
\left\|u_{i}^{1}-u_{i, h}^{1}\right\|_{\infty} \leq C h^{2}|\ln h|^{2}
$$

Let us now assume that

$$
\begin{equation*}
\left\|u_{i}^{n-1}-u_{i, h}^{n-1}\right\|_{\infty} \leq C h^{2}|\ln h|^{2} \tag{43}
\end{equation*}
$$

Since $\tilde{u}_{i, h}^{n}=\partial_{h}\left(k+u_{i+1}^{n-1,(h)}\right)$ is the discrete analog of $\bar{u}_{i}^{n}=\partial\left(k+u_{i+1}^{n-1,(h)}\right)$, making use of (34), we get

$$
\begin{equation*}
\left\|\bar{u}_{i}^{n}-\tilde{u}_{i, h}^{n}\right\|_{\infty} \leq C h^{2}|\ln h|^{2} . \tag{44}
\end{equation*}
$$

Let us now prove that

$$
\begin{equation*}
\left\|\bar{u}_{i}^{n}-u_{i, h}^{n}\right\|_{\infty} \leq C h^{2}|\ln h|^{2} . \tag{45}
\end{equation*}
$$

Indeed, using (44), (30), we get

$$
\begin{aligned}
\left\|\tilde{u}_{i}^{n}-u_{i, h}^{n}\right\|_{\infty} & \leq\left\|\bar{u}_{i}^{n}-\tilde{u}_{i, h}^{n}\right\|_{\infty}+\left\|\tilde{u}_{i, h}^{n}-u_{i, h}^{n}\right\|_{\infty} \\
& \leq C h^{2}|\ln h|^{2}+\left\|u_{i+1}^{n-1,(h)}-u_{i+1, h}^{n-1}\right\|_{\infty} \\
& \leq C h^{2}|\ln h|^{2},
\end{aligned}
$$

On the other hand, the solution of V.I (32) is also a subsolution, that is

$$
\left\{\begin{array}{l}
a_{i}\left(\bar{u}_{i}^{n}, v\right) \leq\left(f_{i}, v\right) \quad \forall v \in H^{1}(\Omega), \quad v \geq 0 \\
\bar{u}_{i}^{n} \leq k+u_{i+1}^{n-1,(h)}
\end{array}\right.
$$

So, using (43), we have

$$
\begin{aligned}
\bar{u}_{i}^{n} & \leq k+\left\|u_{i+1}^{n-1}-u_{i+1, h}^{n-1}\right\|_{\infty}+u_{i+1, h}^{n-1} \\
& \leq k+C h^{2}|\ln h|^{2}+u_{i+1, h}^{n-1}
\end{aligned}
$$

and thus,

$$
\begin{aligned}
a_{i}\left(\bar{u}_{i}^{n}, v\right) & \leq\left(f_{i}, v\right) \quad \forall v \in H^{1}(\Omega), \quad v \geq 0 \\
\bar{u}_{i}^{n} & \leq k+\left\|u_{i+1}^{n-1}-u_{i+1, h}^{n-1}\right\|_{\infty}+u_{i+1, h}^{n-1}, \\
& \leq k+C h^{2}|\ln h|^{2}+u_{i+1, h}^{n-1} .
\end{aligned}
$$

So \bar{u}_{i}^{n} is a subsolution for the V.I with obstacle $k+C h^{2}|\ln h|^{2}+u_{i+1, h}^{n-1}$. Let $\bar{\omega}_{i}^{n}=\partial\left(k+C h^{2}|\ln h|^{2}+u_{i+1, h}^{n-1}\right)$. Then, as $u_{i}^{n}=\partial\left(k+u_{i+1}^{n-1}\right)$, making use of (27), and (43), we get

$$
\begin{aligned}
\left\|\bar{\omega}_{i}^{n}-u_{i}^{n}\right\|_{\infty} & \leq C h^{2}|\ln h|^{2}+\left\|u_{i+1, h}^{n-1}-u_{i+1}^{n-1}\right\|_{\infty} \\
& \leq C h^{2}|\ln h|^{2} .
\end{aligned}
$$

Hence, applying Theorem 4, we have

$$
\bar{u}_{i}^{n} \leq \bar{\omega}_{i}^{n} \leq u_{i}^{n}+C h^{2}|\ln h|^{2} .
$$

Now, putting

$$
\beta_{i}^{n}=\bar{u}_{i}^{n}-C h^{2}|\ln h|^{2}, \quad \forall i=1, \ldots, M .
$$

we obtain

$$
\begin{equation*}
\beta_{i}^{n} \leq u_{i}^{n}, \forall i=1, \ldots, M \tag{46}
\end{equation*}
$$

and, using (45),

$$
\begin{align*}
\left\|\beta_{i}^{n}-u_{i, h}^{n}\right\|_{\infty} & \leq\left\|\bar{u}_{i}^{n}-C h^{2}|\ln h|^{2}-u_{i, h}^{n}\right\|_{\infty} \tag{47}\\
& \leq\left\|\bar{u}_{i}^{n}-u_{i, h}^{n}\right\|_{\infty}+C h^{2}|\ln h|^{2} \\
& \leq C h^{2}|\ln h|^{2} .
\end{align*}
$$

Now, consider the discrete V.I (33)

$$
\left\{\begin{array}{l}
a_{i}\left(\bar{u}_{i, h}^{n}, v-\bar{u}_{i, h}^{n}\right) \geq\left(f_{i}, v-\bar{u}_{i, h}^{n}\right) \quad \forall v \in \mathbb{V}_{h}, \tag{48}\\
\bar{u}_{i, h}^{n} \leq r_{h}\left(k+u_{i+1}^{n-1}\right), v \leq r_{h}\left(k+u_{i+1}^{n-1}\right),
\end{array}\right.
$$

$\bar{u}_{i, h}^{n}$ being also a subsolution, we have

$$
\left\{\begin{array}{l}
a_{i}\left(\bar{u}_{i, h}^{n}, \varphi_{i}\right) \leq\left(f_{i}, \varphi_{i}\right) \quad \forall i=1, \ldots, m(h), \tag{49}\\
\bar{u}_{i, h}^{n} \leq r_{h}\left(k+u_{i+1}^{n-1}\right) .
\end{array}\right.
$$

So, making use of (43), we have

$$
\begin{aligned}
\bar{u}_{i, h}^{n} & \leq k+r_{h} u_{i+1}^{n-1}-r_{h} u_{i+1, h}^{n-1}+r_{h} u_{i+1, h}^{n-1} \\
& \leq k+\left\|r_{h} u_{i+1}^{n-1}-r_{h} u_{i+1, h}^{n-1}\right\|_{\infty}+r_{h} u_{i+1, h}^{n-1} \\
& \leq k+C h^{2}|\ln h|^{2}+r_{h} u_{i+1, h}^{n-1}
\end{aligned}
$$

and hence

$$
\begin{aligned}
a\left(\bar{u}_{i, h}^{n}, \varphi_{i}\right) & \leq\left(f_{i}, \varphi_{i}\right) \quad \forall \varphi_{i}, \\
\bar{u}_{i, h}^{n} & \leq k+C h^{2}|\ln h|^{2}+r_{h} \hat{u}_{i+1, h}^{n-1} .
\end{aligned}
$$

So, $\bar{u}_{i, h}^{n}$ is a subsolution for the V.I with obstacle $k+C h^{2}|\ln h|^{2}+r_{h} u_{i+1, h}^{n-1}$. Let $\bar{\omega}_{i, h}^{n}=\partial_{h}\left(k+C h^{2}|\ln h|^{2}+r_{h} u_{i+1, h}^{n-1}\right)$. Then, as $u_{i, h}^{n}=\partial_{h}\left(k+r_{h} u_{i+1, h}^{n-1}\right)$, making use of (30) and (43), we get

$$
\left\|\bar{\omega}_{i, h}^{n}-u_{i, h}^{n}\right\|_{\infty} \leq C h^{2}|\ln h|^{2}+\left\|u_{i+1, h}^{n-1}-u_{i+1, h}^{n-1}\right\|_{\infty}
$$

and, due to Theorem 6, we have

$$
\bar{u}_{i, h}^{n} \leq \bar{\omega}_{i, h}^{n} \leq u_{i, h}^{n}+C h^{2}|\ln h|^{2} .
$$

Now, taking

$$
\gamma_{i, h}^{n}=\bar{u}_{i, h}^{n}-C h^{2}|\ln h|^{2}, \quad \forall i=1, \ldots, M .
$$

we obtain

$$
\begin{equation*}
\gamma_{i, h}^{n} \leq u_{i, h}^{n} . \tag{50}
\end{equation*}
$$

Moreover, \bar{u}_{h}^{n} being the discrete counterpart of u^{n}, using (34), we have

$$
\left\|\bar{u}_{i, h}^{n}-u_{i}^{n}\right\|_{\infty} \leq C h^{2}|\ln h|^{2}, \quad \forall i=1, \ldots, M
$$

and therefore

$$
\begin{align*}
\left\|\gamma_{i, h}^{n}-u_{i}^{n}\right\|_{\infty} & \leq\left\|\bar{u}_{i, h}^{n}-u_{i}^{n}\right\|_{\infty}+C h^{2}|\ln h|^{2} \tag{51}\\
& \leq C h^{2}|\ln h|^{2}
\end{align*}
$$

Finally, combining (46), (47) and (50), (51), we obtain

$$
\begin{aligned}
u_{i}^{n} & \leq \gamma_{i, h}^{n}+C h^{2}|\ln h|^{2} \\
& \leq u_{i, h}^{n}+C h^{2}|\ln h|^{2} \\
& \leq \beta_{i}^{n}+C h^{2}|\ln h|^{2} \\
& \leq u_{i}^{n}+C h^{2}|\ln h|^{2} .
\end{aligned}
$$

That is

$$
\left\|u_{i}^{n}-u_{i, h}^{n}\right\|_{\infty} \leq C h^{2}|\ln h|^{2} \quad \forall i=1, \ldots, M
$$

4.3. L^{∞}-Error estimate for the system of QVIs. Now combining estimates (10) , (17), and (35), we have:

Theorem 10.

$$
\begin{equation*}
\left\|U-U_{h}\right\|_{\infty} \leq C h^{2}|\ln h|^{2} \tag{52}
\end{equation*}
$$

Proof. Indeed,

$$
\begin{align*}
\left\|U-U_{h}\right\|_{\infty} & \leq\left\|U-U^{n}\right\|_{\infty}+\left\|U^{n}-U_{h}^{n}\right\|_{\infty}+\left\|U_{h}^{n}-U_{h}\right\|_{\infty} \tag{53}\\
& \leq \mu^{n}\left\|U^{0}\right\|_{\infty}+C h^{2}|\ln h|^{2}+\mu^{n}\left\|U_{h}^{0}\right\|_{\infty}
\end{align*}
$$

So, passing to the limit, as $n \rightarrow \infty$, the desired result follows.
Remark 2. For practical purposes, it is interesting to estimate the error between the exact solution and the actually computed approximations U_{h}^{n}, that $i s$,

$$
\begin{equation*}
\left\|U-U_{h}^{n}\right\|_{\infty} \leq \mu^{n}\left\|U^{0}\right\|_{\infty}+C h^{2}|\ln h|^{2} \tag{54}
\end{equation*}
$$

Proof. Indeed,

$$
\begin{aligned}
\left\|U-U_{h}^{n}\right\|_{\infty} & \leq\left\|U-U^{n}\right\|_{\infty}+\left\|U^{n}-U_{h}^{n}\right\|_{\infty} \\
& \leq \mu^{n}\left\|U^{0}\right\|_{\infty}+C h^{2}|\ln h|^{2}
\end{aligned}
$$

5. Numerical example

Let $\Omega=(0,1) \times(0,1), M=3, \mathcal{A}^{i}=-\triangle, f_{1}=\sin ^{2} x, f_{2}=\cos ^{2} x, f_{3}=e^{x}$. We divide Ω into squares with edge $h=\frac{1}{10}$, then by diagonals with same direction divide every square into two triangles. Then the finite dimensional quasi-variational inequalities system is

$$
\left\{\begin{array}{l}
U_{i} \in K_{i} \tag{55}\\
\left(A^{i} U_{i}-F_{i}, V-U_{i}\right) \geq 0, \quad \forall V \in K_{i}, \quad i=1, \ldots, M
\end{array}\right.
$$

where A^{i} are the stiffness matrices defined in (11), and the right-hand side $F_{i}=$ $\left(f_{i}, \varphi_{l}\right), l=1, \ldots, N_{h}, K_{i}=\left\{V \in R^{N_{h}}\right.$ such that $\left.V \leq K+U_{i+1}\right\}, U_{M+1}=U_{1}$, $K=(k, \ldots, k))^{T}$.The iterative scheme is,

$$
\left\{\begin{array}{l}
U_{i}^{n+1} \in K^{i, n+1} \tag{56}\\
\left(A^{i} U^{i, n+1}-F^{i}, V-U^{i, n+1}\right) \geq 0, \quad \forall V \in K^{i, n+1}, \quad i=1, \ldots, M
\end{array}\right.
$$

where $K^{i, n+1}=\left\{V \in R^{N_{h}}\right.$ such that $\left.V \leq K+U^{i, n}\right\}, U^{M+1, n}=U^{1, n}$.
We take $k=0.01$ and solve (56) (Jacobi type) with projected Gauss-Seidel as inner iteration. The stopping criteria for the inner iteration and outer iteration both are $\epsilon=10^{-6}$, the initial value is $U^{0}=\left(U_{1}^{0}, \ldots, U_{M}^{0}\right)$, such that $A^{i} U_{i}^{0}=$ $F^{i}, \quad i=1, \ldots, M$.

The computation of the solution for $h, h / 2$ and $h / 4$ leads to a convergence order $p=2.062$, which is in good agreement with the theory.

6. Conclusion

This paper addresses the finite element of the Dirichlet problem for an elliptic quasi-variational inequalities system. The optimal error estimate is derived, combining geometric convergence of an iterative scheme and its finite element error estimate, obtained by means of the concept of subsolutions and discrete regularity for variational inequalities. A numerical example is also given to support the theory.

In light of the findings of this work, we wonder whether these can be exploited to:

1. Extend the study to the noncoercive problem.
2. Derive a posteriori error estimate for this system of Q.V.I.

This will be the focus of our attention in future works.
Acknowledgments The author would like to thank the referee for her-his careful reading of the paper and for valuable comments and suggestions.

Bibliography

1. Evans L.C. Optimal stochastic switching and the Dirichlet Problem for the Bellman equations / L.C. Evans, A. Friedman // Transactions of the American Mathematical Society. 1979. - 253. - P. 365-389.
2. Lions P.L. Optimal control of stochastic integrals and Hamilton Jacobi Bellman equations (part I) / P.L. Lions, J.L. Menaldi // SIAM control and optimization. - 1979. - 20.
3. Boulbrachene M. On the finite element approximation of variational inequalities with noncoercive operators / M. Boulbrachene // Numerical Functional Analysis and Optimization. - 2015. - 36. - P. 1107-1121.
4. Cortey Dumont P. Sur l' analyse numerique des equations de Hamilton-Jacobi-Bellman / P. Cortey Dumont, // Math. Meth in Appl. Sci. - 1987. - 9. - P. 198-209.
5. Boulbrachene M. The Finite element approximation of Hamilton-Jacobi-Bellman equations / M. Boulbrachene, M. Haiour // Computers \& Mathematics with Applications.2001. - Vol. 41. - 993-1007.
6. Boulbrachene M. Optimal L^{∞}-error estimates of a finite element method for Hamilton-Jacobi-Bellman Equations / M. Boulbrachene, P. Cortey Dumont / / Numerical Functional Analysis and Optimization. - 2009. - No. 30, (5-6). - P. 421-435.
7. Bensoussan A. Applications of variational inequalities in stochastic control problems. / A. Bensoussan, J.L. Lions. - North Holland, 2000.
8. Lu C. Maximum principle in linear finite element approximations of anisotropic diffusion-convection-reaction problems / C. Lu, W. Huang, J. Qiu // Numer. Math. - 2014. - 127.P. 515-537.
9. Vejchodsky T. The discrete maximum principle for Galerkin solutions of elliptic problems / T. Vejchodsky // Centr. Eur. J. Math. - 2012. - 10 (1). - P. 25-43.
10. Cortey Dumont P. Contribution a l' approximation des inequations variationnelles en norme $L^{\infty} /$ P. Cortey-Dumont // C.R.Acad. Sci. Paris Ser.I Math. - 1983.- 296, 17.P. 753-756.
11. Cortey-Dumont P. On the finite element approximation in the L^{∞} norm of variational inequalities with nonlinear operators, / P. Cortey-Dumont // Numer.Num. - 1985. - 47.P. 45-57.

M. Boulbrachene,

Department of Mathematics, Sultan Qaboos University, P.O. Box 36, Muscat 123, Sulltanate of Oman.

[^0]: Key words. Quasi-variational inequalities, Iterative scheme, Finite element, Discrete regularity, Subsolutions, Error estimate.

 2000 Mathematics Subject Classification. 35 J85, 65N30, 65N15.

