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ON THE FINITE ELEMENT APPROXIMATION OF
A SYSTEM OF ELLIPTIC QUASI-VARIATIONAL
INEQUALITIES RELATED TO HAMILTON-
JACOBI-BELLMAN EQUATIONS

M. BOULBRACHENE

PE3IOME. B po6oti po3BuHYTO HOBMIl miaxix, 3amporoHoBaHWii B [3], mis
BUBYEHHS CKiHYeHHO-eJIeMEeHTHOI allpOKCHMAIil CHCTeM eJINTUIHNX KBa3i-Ba-
pianiiinux HepiBHOCTEH, 110 110B’A3aHi 3 piBHAHHAMEU [amiibroHa- AK06i-Beb-
TpaHa. Meron moenHye B cobl MmiIXomW YACTKOBUX PO3B’SI3KiB, IUCKPETHOL
PeryaspHOCTI [J1s BapialiifiHux HepiBHOCTE Ta reoMeTpUtIHy 3012KHICTD iTepa-
mifiHol cxeMH, 10 HabJ/INKAE PO3B A30K.

ABSTRACT. In this paper, we exploit a new approach, introduced in [3], to
study the finite element approximation of a system of elliptic quasi-variational
inequalities (Q.V.I.) related to Hamilton-Jacobi-Bellman (HJB) equations.
The method combines the concepts of subsolutions, discrete regularity for vari-
ational inequalities, and the geometrical convergence of an iterative scheme
approximating the solution.

1. INTRODUCTION
We are concerned with the standard finite element approximation of the

system of elliptic quasi-variational inequalities (Q.V.1): Find U = (uy, ..., ups) €
(H&(Q))M such that

ai(ui, v —u;) > (fi,v—u;) Yo e Hé(Q),

w < k+uipr, v <k+uiq, (1)

Up+1 = UL,
where, Q is a bounded convex domain of RY with sufficiently smooth boundary

[, f > 0is a right hand in L>(Q), & > 0, (.,.) is the inner product in L?(12),
a(.,.) is the bilinear form defined by: Yu,v € Hl(Q)

N ou Ov
a;(u,v) = bz v+a wv | dz 2
wo= [ S <axaz+z b() )
such that
ai(v,v) = 0 ||UH12L11(Q) Vo € HY(Q),
where the coefficients a?k(x), bi(z), a(z), (j,k = 1,..,N), are sufficiently
smooth such that '
ag(x) > co >0, Ve € Q (3)
Key words. Quasi-variational inequalities, Iterative scheme, Finite element, Discrete regu-

larity, Subsolutions, Error estimate.
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and
Y dp@)&G = alél iz € E€RY, a>0). (4)
1< j,k< N

Denoting by Vp,, the finite element space consisting of continuous piecewise
linear functions vanishing at the boundary, r; the usual interpolation operator,
we define the discrete counterpart of (1) by: find U, = (w14, ..., unm,pn) € (Vh)M
such that

ai(Uip,v —uip) > (f,v—uip) Vv €Vy,
wip < rp(k+wip1n), v < (k4 uivin) (5)
UM+1,n = UL -

This system appears in stochastic control problems related to Hamilton-
Jacobi-Bellman equations (HJB) (see [1], [2]). Its finite element approximation
was studied in (cf..e.g., [4], [5], [6], where different methods were employed.

In this paper, we exploit an idea developed in [3]| to derive optimal conver-
gence order for the system of Q.V.I (1).

This method consists, mainly, of combining, in both the continuous and
discrete contexts, the concept of subsolutions for variational inequalities and
a geometrical convergence of an iterative scheme approximating the solution.
For a computational purpose, this method provides an interesting information
as it permits to control the error between the continuous iterative scheme and
its finite element counterpart.

A brief description of this method is as follows: Let U" = (uf,...,u};)
be the nth iterate of the scheme approximating the solution U, and U;' =
(uly, ..., ulyyy,) its finite element counterpart, approximating Up,.We construct a
sequence of continuous subsolutions 5" = (87, ..., B};) such that

and
16" = UR|lo < Ch* [Inh|?
and a sequence of discrete subsolutions v = (V? By oo ’y}{/[,h) such that:
h < Uy
and
IU™ = Akl < CR? [Inhf>.

In this situation, using a concept of discrete regularity, we establish an opti-
mal error estimate for the iterative scheme:

|U" = Uil < CH? I hf? (6)

and then, combining estimate (6) with the geometrical convergence of the iter-
ative scheme (U") and (U}') to the solutions U and Uj, of systems (1) and (5),
respectively, we also derive error estimate for the system of Q.V.I. (1):

IU = Ul < CR? Il h)? (7)

where
IVlloo = max [oull oy V = (U1, s var)
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and, in all the above error estimates, C' is a constant independent of hoth h
and n.

It is worth pointing out that estimate (6) is new for the system (1).

The paper is organized as follows. In sections 2, we recall the construction
and convergence of the continuous iterative scheme for system (1). In section 3,
we also recall analog discrete results and detail discrete regularity for the dis-
crete iterative scheme. In section 4, we discuss the new approximation approach
and derive the main results of this paper. In section 5, we give a numerical
example and, finally, in section 6, a short conclusion.

2. Tug CONTINUOUS PROBLEM
2.1. A Continuous Iterative Scheme. Let U° = (u},...,u},) € (Hl(Q))M
be such that u? solves the equation
a(ud,v) = (fi,v) Yo € Hy(Q); Vi=1,..., M. (8)
Then, starting from U° solution of (8), we define the continuous sequence

(U™) such that U™ = (u}, ..., u};) and u solves the variational inequality (V.I)

a(uf,v —uf) > (fi,v —uf!) Vo e Hy(9),

20 [

n n—1 n—1

ui <k+ulg,v<k+ul, (9)
n—1 _ n—1

Upryp = Uy

Theorem 1. [5] The sequence (U™) defined in (9) converge decreasingly to the
solution U of of system (1). Moreover, there exists 0 < u < 1 such that

0"~ Ullyy < 1™ |0°). (10)

3. THE DISCRETE PROBLEM
For the sake of simplicity we suppose that €2 is polyhedral. We then consider
a regular and quasi-uniform triangulation 75, of €0, consisting of n-simplices K.
Denote by h = max ger, hi, the meshsize of 7, with hx being the diameter of
K. For each K € 7y, denote by Pj(K) the set of polynomials on K with degree
no more than 1. The P;- conforming finite element space is given by

Vi={v:ive HY(Q)nC(Q), vk € PI(K), VK em}.
Let M;, 1 < ¢ < Nj denote the the vertices of the triangulation 73, and let
vi, 1 <1 < m(h), denote the functions of V}, which satisfy
pi(Mj) = 6ij, 1 <i,5 < Np,

so that the functions ¢; form a basis of Vj,. For every v € HY(Q) N C(), the

function
Np

(@) = 3 v(My) i)
i=1
represents the interpolate of v over 7.
Now, in order to establish existence and uniqueness of a solution to V.I (5),
the stiffness matrix is required to be an M-Matrix.
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Definition 1. A real matrix d x d matrix C' = (¢;5) with ¢ < 0, VI # s,
1 <1l,s <d, is called an M-Matrix if C' is nonsingular and Ct>0 (i.e., all
entries of its inverse are nonnegative).

3.1. Discrete Maximum Principle. Denote by A’ the matrices with generic
coefficient

al, = ai(pn,0s), 1<1,s<Np; i=1,.., M. (11)
Because the bilinear form a;(.,.) is coercive, we have
A" is positive definite (12)
and
ay >0 Vi=1,..,m(h). (13)

Furthermore, if the matrix (a;x) involved in the bilinear form (2) is symmetric
(aji = ak;), then mesh conditions for which the off-diagonal entries of A’ satisfy

al, <0,Vi#j, 1<I,s<m(h) (14)

can be found in [8]. Therefore, combining (12), (13) and (14), we have the
following lemma.

Lemma 1. The matrices A*, i =1,..., M are M-Matrices.

Proof. See [8], [9]. O

3.2. A discrete Iterative Scheme. Let U = (uf},, ...,u};,) such that uf, €
V}, solves the equation

ai(ugh,v) = (fi,v) YveVy i=1,.. M. (15)

Now, starting from Uy = 0, we define the discrete sequence (U}?) such that
Ul = (uy,...uly;,) and uly € Vp solves the variational inequality (V.I)

G(U?h,ﬂ - u?h) Z (fiav - U?h) VU € Vh,
Ui,

<k+u b o <k4+uh) (16)

— i+1h’ i+1h’

n—1 _ . n—1
Uprpip = Urp -

Theorem 2. [5] Under conditions of lemma 1, the sequence (U}') and (Upp)
converges decreasingly to the unique solution solution Uy of Q.V.I (5).Moreover,
there ezists a constant 0 < p < 1 such that

U = Unlloe < w" |UR].. (17)
U = Unll, < 1™ ||U2.. - (18)
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3.3. Discrete regularity. Let w € H{ (Q) be the solution of the V.I

{ a(w,v —w) > (g,v —w)Vv € H} (Q), (19)
v < TRY, W S TRY
and wy, € Vp, its discrete counterpart, the solution of the V.1
{ a(wp,v —wp) > (g,v — wp) Vv € Vp, (20)
v < TRY, wh < TR,

This concept of "discrete regularity"”, introduced in [10], can be regarded as
the discrete counterpart of the Lewy-Stampaccia estimate || Aul|,, < C (A being
the operator associated with bilinear form a(.,.)), extended to the variational
form through the L' — L duality. The main role it plays, in the present paper,
is in the regularization of the obstacles appearing in the discrete problems (16)

Lemma 2. [10] We assume that there exists a constant C independent of h
such that

a(wh, @s)| < Cllesllpri) Vs=1,2,..., Np. (21)
Then, there ezists a family of right hand sides ¢ such that
|+ <<

and
a(wn,v) = (g™™,v) Yo € V.

Theorem 3. Let conditions of lemma 2 hold. Then, there exists a sequence
(g"’(h))n>1 and a constant C' > 0 independent of h and n such that

a(u?ha U) = (g(h)a U) Vv € Vh7
where uly is defined in (16).

g"’(h)Hoo <C,

Proof. The proof will be carried out by induction. For n = 1, let uilh be the
solution of the V.I

a(ub,v—up) > (fi,v —ul) Vv €V,

{ v<k+ul, ul <k+ud,
where

a(udy,v) = (fi,v) Yo €V,

So, clearly

|a(ufy, 05)| < Clleslpiy Vs =1,2,..., Ny (22)
and, using the discrete Levy-Stampachia inequality [4], we have

—(fisps) A alk +uly, 0s) < alugy, i) < (f, 0s).

But

a(k + ufy, ps) = aluy, @s) + (kap (@), ¢s)
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and, using (22), there exists a constant C' such that,
—(fir00) A (=C, ) < alujy, @s) < (f, ¢5)
which implies
|a(ujp, 05)| < Clleslipigy > Vs = 1,2, 0, Ni.
Hence, making use of lemma 2, there exists a family of right-hands side

{gl-l’(h)} € L*°(Q) such that

| <c

and

i)

i) a(u},,v) = (gil’(h),v) Vv € Vy,.

Now, assume that there exists a constant C independent of n such that
a(ult ps) < C sy, Vs=1,2,..,Np. (23)
So, using the discrete Levy-Stampachia inequality , we get

_(f, 905) A a(k + u?h_la 902') < a(u?h, 905) < (fv (ps)
or
—(fy0s) A (a(k + U?}:la ps) < a(“?hv ©s) < (f,@s)
and, as
a(k +up "t ps) = aluy ™, @s) + (kag(x), ¢s)
using (23) as above, we have

—(fi, 05) N (=C,ps) < a(“Za ws) < (f,ps)
which implies
|a(up, ¢s)] < Cllesllpiq) -

So, making use of lemma 2, there exists family of right-hands side {gf’(h)} €

L™ () such that
i)

N
and
it) a(uy,v) = (Q?V(h),v) Yv € Vp,
which completes the proof. ([

Note that, as
a(ugy,,v) = (g?’(h),v)‘v’v eV,

Um0 = (™Y,

one can define

the discrete analog of
U = (ufps o uiigp)

such that
n,(h)

U <C

HWQ,P(Q)
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and
a(u"™ v) = (g" " v) Yo e HY(Q) (24)
and, by standard maximum norm estimates
‘u?““-u% < Ch?|log h|. (25)

4. L*° — ERROR ANALYSIS
From now on, C' will denote an arbitrary constant independent of both h
and n.

4.1. Background. We begin with recalling some useful properties enjoyed by
elliptic variational inequalities. Indeed, let

Definition 2. w € H}(Q) is said to be a subsolution for the VI (19) if
a(w,v) < (g,v)Yv € Hy(Q),v >0,
w < 2.

Theorem 4. [7] The solution w of V.I (19) is the least upper bound of the set
of subsolutions.

Theorem 5. [7] Let w = A(¢)) and & = (). Then, we have
o =l < C =4 _- (27)

Remark 1. Under conditions of lemma 1, the above properties of the solution
of V.I (19) remain valid in the discrete case.

(26)

Indeed, let wp = Op(v) € V}, be the solution of the discrete variational
inequality

{ a(wp,v —wp) > (g,v —wp) Vv € Vp, (28)

wp < TR, v < TRY.

Next, we shall give the discrete analog of Theorems 3, 4. Their respective
proofs will be omitted as they are similar to their continuous counterparts.
Definition 3. wy, € V}, is said to be a subsolution for the V.I (28) if

a(wp, ps) < (g, ¥ VS:].,...,N}L,
(wh, 0s) < (9, ¢s) (20)
wp, < TR

Theorem 6. Under conditions of lemma 1, the solution wy, of V.I (28) is the
least upper bound of the set of discrete subsolutions.

Theorem 7. Let wp, = Op(¢) and ©n, = Op(v0). Then, under conditions of
lemma 1, we have

|wn — Onll o SC’Hw—@Hm- (30)

Lemma 3. [11] If ¢p € W?P(Q) and w € W?P(Q), 2 < p < oo, then the
following error estimate holds

lw —whll,, < Ch*|Inhl*. (31)
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4.2. L°°- Error estimate for the Iterative Scheme. In order to estimate
the error between the continuous iterative scheme and its finite element coun-
terpart, we introduce the following sequences of variational inequalities.

An auxiliary sequence of continuous variational inequalities: We
introduce the sequence U™ = (i, <oy Uy ),>p Such that @ =0 (k: + ﬂ:‘_;llh> €

H () solves the continuous V.I:

ap <k+ul "M o<kl W, (32)

where uzr_ll’(h) is defined in (24).

An auxiliary sequence of discrete variational inequalities We define
the sequence U{L‘ = (@ih,...,@?’h)nx such that ), = On, (/{:—Fu?_;ll) eV
solves the discrete V.1

ai(upy, v —up) > (fi,v—up) Vv €V,

ap <y (k+uly), o< (k+ul), (33)
Uiri = up ™,

where u® and u" are defined in (8) and (9), respectively.
Theorem 8. We have
U™ —T7|, < Ch? [Inh|?. (34)

Proof. As 4!}, is the discrete counterparts of v} and |[uj'||yy2,(q) < C' (indepen-
dent of n) (see [5]), making use of (31), we get the desired error estimates. [

Theorem 9.
IU™ = Ul < CR® k. (35)

Proof. We proceed by induction. Indeed, consider V.I (32) for n = 1:

ai(ﬂ},v —al) > (f,v—1ul) Yve Hol(Q),

0,(h) 0,(h)

uf <k+4ugy’, v<k+uly,

0,(h 0,(h
UM()1:U1()-

So
@ — iy < Ch* b, (36)

Indeed, let @} = d(k +ul\ ), dby, = Ok +ull) and ul, = Ok +ul,, ).
Then, as ﬂ}’h is the discrete analog of 4}, making use of (34), we have

la; — i}, < Ch*|Inhf. (37)
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Moreover, using (30) and standard maximum error estimate, we get

lubn = aball < [[ulsd — ulrs]|
< Ch*|Inh|.
Thus
a7 —winllo < Ml = @inll + l@in — winll
< Ch?Inhf*.
Now, as %} is solution to a V.1, it is also a subsolution, i.e.,
a(a),v) < (fi,v) Yo e H(Q),v >0,
u <k+ u?ﬁl).
But, as
u; <k+ ‘ U?;L(?) - U?+1 hH +ugyy <
< k+Ch*Inhf® +ud 4,
we have

a(a),v) < (f,v)Vv € Hi(Q),v >0,
u; < k+ Ch*|Inh|+ud,,
Hence, 4} is also a subsolution for the V.I With obstacle k-+Ch?|In h|? +u, .

Let @} = A(k + Ch? [Inh|* + u?, ;). Then, as u} = 8(k + u, ), making use of
(27) and standard maximum error estimate

[ufr — ufyr ]| < OB Inhl, (38)
we get
@} —ul|l, < CR? Ihf + [luly; —udyy L <
< Ch?|Inh*.
Hence, making use of Theorem 4, we have

al <ol <ul+Ch?|inh*.

Putting
B =al —Ch?|Inn|* Vi=1,.., M,
we get
Bl <w},Vi=1,.. M. (39)
Further more, using estimate (36), we get
18} = ulpll, < llai —ulpll, +Ch* Inhf* < (40)
< Ch?Inhf*.
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Now consider the discrete V.I (33) for n = 1:
ai(@jy,v — i) > (fi,v —ajp) Vo€ Vy,
{ upy, < (k+udy), v<ry(k+uf,),
’17,21 ,, being also a discrete subsolution, we have
a(t; i) < (fr0i) Vi,
’az{h <7 (k' + U?+1) )
and, from standard maximum error estimate
|u® = up||, < Ch*|Inh|.
So
Uiy <k |uley — ulyipll +rawdiap, <
< k+Ch? Inhf” + rpud .
then
ai(t; . i) < (fi, i) Vi,
afp, < k+Ch? Inh” +rpulyy
because 7, is Lipschitz. So, ﬂih is also a discrete subsolution for the V.I with

obstacle k + Ch? |In h\Q + rhu?+17h. Let J)l{h = Op(k + Ch?|In h\2 + “?+1,h)~ As
“%,h = Op(k + u?H’h), making use of (30) and (38), we get

|@in = uinllog < llufian = wlaanll <
< Ch?|Inh|?
and, applying Theorem 6, we get
aly < @by <ubp, + ChA k).

Now, taking
Yip =y, — CR2 A, Vi=1,..,M,
we have
1 1
Yih < Ui, Vi=1,..., M. (41)
Hence, as ul{h is the discrete analog of u}, making use (30) and (34), we get
i —wtll < llain —ul|l +Cr? Inhf* < (42)
< Ch?|Inh|*.

Thus, combining (39), (40) and (41), (42), we obtain
uzl < ’;/il,h + Ch? In h|2
< uz{h + Ch?|InhJ?
< B!+ Ch?|Inh)?
<wul +Ch?|Inhf?.
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That is
2
Hull - uihHoo < Ch*[Inh|°.
Let us now assume that

( url - uy,fH < Ch2|Inh)?. (43)
Since u;’ ih = = Op(k + uZHl (h)) is the discrete analog of @]’ = d(k + u;:ll’(h))’

making use of (34), we get
\|ag — iy < Ch? [Inh|?. (44)
Let us now prove that
@} — ufy|| . < Ch? [Inh|?. (45)
Indeed, using (44), (30), we get
1 = winll, < Ml = @Eall, + Nl — uinll

2 1,(h) -1
< on?nhf + Jur ™ -t |

< Ch?Inh]?,
On the other hand, the solution of V.I (32) is also a subsolution, that is
a;(u?,v) < (fi,v) Yo e HY(Q), v>0,
{ an < k+ "

i+1
So, using (43), we have

1 —1
ujl <k+’ up - Uit h +u’?+1,h
<k+Ch* Inhf® +up},

and thus,
a;(a?,v) < (fi,v) Yve HY(Q), v>0,
‘"<k+‘

u 1

H—l - 7,+1h

n—1

+ Uit1 o

< k+ Ch*[Inh|* —i—quh

i

So @? is a subsolution for the V.I with obstacle k + Ch? [In h? + uH_1 p- Let

@ = d(k + Ch? [Inh|* + u?+117h). Then, as u} = O(k + ug,; '), making use of
(27), and (43), we get

& = e < OB b + [ur

u 1
H—l h 7,+1

< Ch?|lnh|?.
Hence, applying Theorem 4, we have
a <o <ul' + Ch?[Inh)?.
Now, putting
Bl =al —Ch*|Inh)?, Vi=1,..,M.
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we obtain
g <wulVi=1,..,.M
and, using (45),

Hﬁ?—ugthoo —Ch2\lnh\2—u2

|
o0

< |lap — ||+ Ch? b
< Ch?|Inh|?.
Now, consider the discrete V.I (33)
{ a; (U, v —upy) = (fi,v—ujy,) Vv eV,

i,hﬁrh(k+“?+_1) U<Th(k+“z+1)

u;'), being also a subsolution, we have
ai(ufy, i) < (fi, i) Vi=1,..,m(h),
{ uy, <rp (k—&-uzﬂ)
So, making use of (43), we have
B, S k) — rhe, + e,
<k+ Hrhunﬁl - rhu?ﬁth + U,
<k +Ch* [Inhf” + rpul,

and hence

a(uip, pi) < (fi,pi)  Yei,

ay, < k+ Ch? Inh* + rpal .

So, u;', is a subsolution for the V.I with obstacle k + Ch? [Inh|* + rpu®
Let @}, = On(k + Ch2|Inh|* + TR ). Then, as uy, = Op(k + rpuf sy L),

making use of (30) and (43), we get

@i — uth < Ch?Inh* + ‘

u 1
H—l h H—l h

and, due to Theorem 6, we have
aly < @y < ul, + Ch k).
Now, taking
=, — Ch? [Inh|*, Vi=1,.., M.
we obtain
Yin < Ui
Moreover, 4} being the discrete counterpart of v, using (3

l@in —w?ll, < CR*mnf*, ¥i=1,..M

38
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and therefore

it =l < i =il

< Ch?|Inh|?.
Finally, combining (46), (47) and (50), (51), we obtain
u <M, + Ch? Inhf?
< uip + Ch? |In h|?
< 67 4+ Ch?|Inh|?
<ul + Ch?Inh|*.

+ Ch? |Inh? (51)

That is
[uf = ufy || < Ch?nf Wi=1,.,M
O

4.3. L°°-Error estimate for the system of QVIs. Now combining estimates
(10), (17), and (35), we have:

Theorem 10.
|U = Upll, < CR?[Inh)?. (52)
Proof. Indeed,
IU = Uhlloo S NU = U"loo + IU" = Upll o + 1Ux = Unlls (53)
< p"||U°)| + CRE A + pm || UR)]. -
So, passing to the limit, as n — oo, the desired result follows. [l

Remark 2. For practical purposes, it is interesting to estimate the error be-
tween the exact solution and the actually computed approzimations U, that
18,

U = Upllo < p™ ||U°|, + Ch* [Inh)?. (54)
Proof. Indeed,
U= Uil < IU=U"o + IU" = Ul
<p"||U°| + Ch? Inhf.

5. NUMERICAL EXAMPLE
Let Q= (0,1) x (0,1), M =3, A" = —A, f; =sin’z, fo = cos®x, f3 = €”.
We divide ) into squares with edge h = 1—10, then by diagonals with same
direction divide every square into two triangles. Then the finite dimensional

quasi-variational inequalities system is
{ U € K;,

, . (55)
(AU; = F;,V—-U;) >0, VVEK;, i=1,.,M,
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where A? are the stiffness matrices defined in (11), and the right-hand side F; =
(fisor) 1l =1,...,Np,, K; = {V € RNr such that V < K + Ui1}, Unrg1 = Un,
K = (k,...,k))" The iterative scheme is,
UTL+1 c Kz}n-i—l
7 ?
(Alyntt — FL v — Uty >0, vV e KPP =1, M,

where K"t = {V € RNt such that V < K + U}, UMtin = yln,

We take k£ = 0.01 and solve (56) (Jacobi type) with projected Gauss-Seidel as
inner iteration. The stopping criteria for the inner iteration and outer iteration
both are € = 1076, the initial value is U = (UY,...,UY,), such that AU =
F', i=1,...M.

The computation of the solution for h, h/2 and h/4 leads to a convergence
order p = 2.062, which is in good agreement with the theory.

(56)

6. CONCLUSION

This paper addresses the finite element of the Dirichlet problem for an elliptic
quasi-variational inequalities system. The optimal error estimate is derived,
combining geometric convergence of an iterative scheme and its finite element
error estimate, obtained by means of the concept of subsolutions and discrete
regularity for variational inequalities. A numerical example is also given to
support the theory.

In light of the findings of this work, we wonder whether these can be exploited
to:
1. Extend the study to the noncoercive problem.
2. Derive a posteriori error estimate for this system of Q.V.I.
This will be the focus of our attention in future works.
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