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COUPLING OF LAGUERRE TRANSFORM AND FAST
BEM FOR SOLVING DIRICHLET INITIAL-BOUNDARY
VALUE PROBLEMS FOR THE WAVE EQUATION

A.R.HLOVA, 5. V. LITYNSKYY, YU. A. MUZYCHUK, A. O. MUZYCHUK

PEe3toME. Ilomano mormmbsiennit aHasi3 JBOX MAXOIB 10 PO3B’S3yBaHHS
II0YaTKOBO-KpaiioBol 3azadi /lipixse 119 OOJHOPLIHOTO XBH/IBOBOIO DIBHAHHA,
AKWil 0a3y€eThCs Ha MOEMHAHHI IepeTBOpeHHs Jlarepa 3a 4acoBOi0 3MIHHOIO i
Metony rpanunarux eneventis (MI'E) y meoGmexkemiii TpocTOpoBiii 06/1acTi.
B pesyabpraTi 00maBa TiIX0MM TPUBOMATD JI0 Ti€l K CaMOl HECKIHYEHHOI TPU-
KyTHOI CHCTEMU I'DAHUYHUX IHTErPaJIbHUX pPiBHAHbL. AHasi3 npoBeieHo y
BaroBux mpocropax CobosieBa, esleMeHTaMu AKUX € GYHKIHI 9acoBol 3MIHHOI,
skl HaOyBaIOTh 3HAaYEHb y BigmoBimumx npocropax Cobosesa.

i1t 3MenIeHHs 1oTpebu B O0YNCIIOBAIbBHIX PECyPCaxX Peasi30BaHO IIBU/I-

kit MI'E, BUKODHCTOBYIOUN aJAlITUBHY II€PEXPECHY AIPOKCUMAIIII0 OTPUMA-
HuX Marpuns. KpiMm Toro, Meros momupeHo Ha po3B’s3yBanHHd 3a1a¢di ipixie
B 00/1aCTi 3 BK/IIOUEHHAM. TaKOXK IIOJAHO YHCE/IbHI Pe3yIbTaTH I MOIEIb-
HPX 33729, fKi LIIOCTPYIOTh TOYHICTH i OUiKyBaHMIA TOPSIIO0K 301KHOCTI 3ar-
POITOHOBAHOT'O METOy.
ABsTrRACT. We present an improved analysis of two approaches to solving of
the Dirichlet initial-boundary value problem for a homogeneous wave equa-
tion, which are based on the combination of the Laguerre transform for the
time variable with the Galerkin-BEM in an unbounded spatial domain. Both
approaches lead to the same infinite triangular system of boundary integral
equations as a result. The analysis is done in weighted Sobolev spaces of
functions of the time variable taking values in suitable Sobolev spaces.

For reducing both storage and computational costs we implement the fast
BEM using adaptive cross approximation of obtained matrices. Furthermore,
we extend this method for solving the Dirichlet problem in the domain with
an inclusion. We also present numerical results for some model problems
which illustrate the accuracy and estimated convergence order of the proposed
method.

1. INTRODUCTION

In recent years, many studies have been dedicated to the development of
effective methods for the numerical solution of time domain boundary integral
equations (TDBIEs), which arise from initial-boundary value problems (IBVPs)
for the wave equation. Comprehensive lists of related works are presented
in [11,35]. A common feature of these studies is the usage of deep analytical
concepts to take into account the dependence of the solutions on the time
variable. However, as noted in [10], the computational complexity of proposed
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approaches is still high for problems in 3D domains and the development of
effective numerical methods remains actual.

In this paper we present new results of solving both IBVPs and TDBIEs
by approach, which is based on the Laguerre transform (LT) [18,25] in the
time variable. The advantage of this transform is that an inverse LT is easy
to calculate. Moreover, for solving both boundary value problems (BVPs) and
boundary integral equations (BIEs) in the Laguerre domain, efficient recur-
sive algorithms can be constructed using techniques well developed for elliptic
problems and their BIEs.

We distinguish two approaches with respect to the order in which the LT is
applied in solving IBVPs. In the first case, the transform is applied directly
to the IBVP, and as a result, a BVP for infinite triangular system of elliptic
equations is obtained. Such approach was used (without much theoretical justi-
fication) for solving different evolutional IBVPs in papers [4,5,13,28,29,33,37],
in which for the problems in the Laguerre domain a suitable representation of
the solution was also constructed and corresponding BIEs were derived. Varia-
tional formulations for such problems and associated BIEs were proposed and
justified for the first time in [30].

Theoretical aspects of another approach, when the LT is directly applied to
retarded potentials, were investigated in [24,25]. The results for Dirichlet and
Neumann IBVPs obtained therein have enabled to substantiate the equivalence
between each of these problems and infinite triangular systems of corresponding
BIEs in the Laguerre domain and also to define the scope of the problems that
can be solved with help of the LT.

Both aforementioned approaches lead to the same infinite triangular system
of BIEs. This fact creates a basis for the justification of the first approach, as
well as for the effective implementation of the BEM for numerical solution of
the system of BIEs. These two aspects determine the main research goal of this
article.

We begin in Section 1 with a brief description of the second approach, where
the LT is applied to the TDBIE, which arose from the Dirichlet IBVP by using
a retarded single layer potential. We introduce the needed functional spaces,
give a definition of the LT and obtain an infinite sequence of BIEs.

In Section 2 we transform the IBVP to the BVP for an infinite system of
elliptic equations and explain how this approach leads to a sequence of BlEs.
After that we derive the representation of the solution of the IBVP in the form of
the Fourier-Laguerre series, which coefficients represent the solution of the BVP
in the Laguerre domain. Then in Section 3 we consider the IBVP in the half-
space with some inclusion and obtain the representation of its solution using a
Green’s function for such domain. At the end in Section 4 we demonstrate the
implementation of the Galerkin-BEM and its fast modification, and present the
results of the numerical experiments.

2. REDUCTION OF THE IBVP TO THE INFINITE SYSTEM OF BIES .
Let Q™ be a bounded domain in R? with Lipschitz boundary I, Q := R3\Q—,
Ry :=(0,00), Q := QxR; and ¥ := ' xR;. We consider the initial-boundary
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value problem for the homogeneous wave equation

2U X
‘578({;1*) — Au(z,t) =0, (z,t) €Q, (1)

3
where A := 3" 9%/02? is the Laplace operator. We find a function u(z,t),
i=1
(z,t) € Q, which satisfies (in some sense) the equation(1), homogeneous initial
conditions

0 0
u(z,0) =0, M:o, x € Q, (2)
ot
and the Dirichlet boundary condition
u(z,t) = g(x,t), (x,t) €, (3)

where function g is given on 3. We also call (1)-(3) a Dirichlet problem.
To solve the IBVP (1)-(3) we use a retarded single layer potential

S0 = 1 [, ey e (@

where p: I' x R — R is an unknown density. It is known (see, e.g., [34]) that if
an arbitrary function p(y,7) is smooth enough and p(y,7) = 0 for y € I' and
7 < 0, then function

u(x’t) = (SH)(xvt)v (xvt) € @v (5)

satisfies (in the classical sense) the wave equation and initial conditions. The
function u satisfies also the boundary condition (3), if x is a solution of such
TDBIE

(Vi) () = ;/“(y’ Tx_JZI_ War, = g@t), @oes. 6

Let X be a Hilbert space with an inner product (-, -)x and an induced norm
[| - [lx. In order to construct a generalized solution of the IBVP (1)-(3) we
consider spaces of functions of the time variable which have values in some
Hilbert space X. For such functions the weighted Lebesgue space L2 (R, ; X) [9]
with weight py(t) = e 7! (t € Ry and parameter o > 0) is the simplest Hilbert
space. Elements v € L2(R,; X) are measurable functions v : Ry — X such

that [ ||v(t)|/% e %dt < oco. This space is equipped with the inner product
Ry

(v’w)Lg(R_._;X) = / (U(t)vw(t))x 6_gtdt7 v, w € L?r(R+;X)’ (7)
Ry

and the norm

10l r2 @, x) = /(0 0) 12 R, x), v € L2(Ry; X). (8)
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We also consider the weighted Sobolev spaces
HPR;X) = { ve L3Ry X)| o € L2(Ry; X),

v®(0) =0, k=0,m} ©)

where m € N (N is the set of natural numbers), with norm

" 1/2
— |
1ol i) = (kzzo HU ’ ‘L?,(R+;X)) ' (10)

Here derivatives v(*), k € N, are understood in terms of the space D'(Ry; X),
elements of which are distributions with values in the space X. We assume
that elements of the space HJ'(R4; X) are extended with zero for non-positive
arguments.

It is well known [18], that Laguerre polynomials { Lx ()} keny:=nufoy form an
orthogonal basis in the space L2(R;) := L2(R,;R), that is, for every function
f € LE(R) there exists its expansion in the Fourier-Laguerre series

F&) =" frLi(ot), t € Ry, (11)
k=0

where Fourier-Laguerre coefficients fo, f1, ..., fx, ... have the representation for-
mula

foimo / F(8) Li(ot) e=tdt, k€ Ny, (12)
Ry
We write a sequence of any elements of the set X as a vector-column v :=

(v, 1, ...)" and denote by X a set of all possible sequences of elements of the
set X. In particular, we consider a space of numerical sequences [? := {v €

[e.e] [e.e]
R>| 3 |vj|* < 400} with the inner product (v,w) = > vjw; and the
j=0 j=0

o 1/2
norm ||v||;2 := <Z UjP) for v,w € I2.
j=0
We recall [18] that the Laguerre transform (LT) is a mapping £ : L2(Ry) —

12, which maps an arbitrary function f to a sequence £ = (fo, f1, ..., fr,-..) |
according to the rule (12). We will also use the notation L f = (Lf)(k) =
fr Vk € Ny. Note that the Parseval equality holds
1 o0
2 _ 1 2
22 ®y) = UZ\fk! : (13)
k=0
The LT £ is a bijective mapping and its inverse £~! : [ — L2(R,) maps an
arbitrary sequence h = (hq, h1, ..., hg,...)" to a function
(o)
(L7'h)(t) = g Li(ot), t € Ry. (14)
k=0
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For the arbitrary function f € L2(R,) we have an equality
L7t =f. (15)

In [24] the LT was extended on functions of time variable with values in the
Hilbert space X. LT was considered as a mapping £ : L2 (R ; X) — X which
operates according to the rule (12).

Let
oo
P(X)={veX®| Y |vl}k < +oo}
§=0
be a Hilbert space with the inner product (v,w) = ) (vj,w;)x and the norm

5=0
00 1/2

il = (zo ||vj||?x) viw e B2(X).
]:

Proposition 1 ( [24], Theorem 2). The mapping £ : L2(Ry; X) — X that
maps an arbitrary function f to a sequence f:= (fo, fi,..., fr,...)" according
to the formula (12), is injective and its image is the space I>(X), and

1 o0
|’f”%§(]1{+;X) 5 Z ka”%( (16)
k=0

In addition, for the arbitrary function f € L2(Ry; X) we have an equality
LLf =, (17)

where the mapping £L71 : 12(X) — L2(R,; X) is the inverse to £ and maps the
arbitrary sequence h := (hg, h1, ..., hy,...) | to the function h according to the
formula (14).

Definition 4 ( [24]). Let ¢ > 0 and X be a Hilbert space. Mappings
L:L2Ry;X) —13(X) and L£7':1%(X) — LEZ(R.; X),

mentioned in theorem 1, are called, respectively, direct and inverse Laguerre
transforms, and the formula (16) is an analogue of the Parseval equality.

Definition 5 ( [23]). Let X, Y, Z be arbitrary sets and ¢ : X XY — Z be
some mapping. By a g-convolution of sequences u € X*° and v € Y™ we
understand the sequence w := (wo, w1, ..., w;, )T € Z°°, whose elements are
obtained by the rule
J J
wj = Zq (uj—i,v;) = Zq (ui,vj—i), j € No; (18)
i=0 i=0

the g-convolution of u and v is shortly written in form w =uowv.
q

If X = L(Y,Z) is a space of linear operators acting from the space Y into
the space Z and ¢(A,v) = Av, A € L(Y,Z), v € Y, then components of
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the g-convolution of arbitrary sequences A € (/L(Y, Z))Oo and v € Y are
represented by the formula

J
w; = ZAJ',{UZ', j € Np. (19)
=0

In this case we write w = A ov.
Note that for any function f € L2( Ry; X) the Fourier-Laguerre series of the

function f(t—a), a > 0, can be expressed in terms of the sequence f := Lf [24,
Lemma 1]:

f(._a):e—mz@jcj (o) L) i R X), (20

7=0
where

Co(s) =1, Ck(s):=Lg(s) — Lr_1(s), s€ R =[0,0), keN. (21)

Let H'(Q) and HY?(I') denote the usually defined (see, e.g., [17]) Sobolev
spaces and H—Y2(T') := (HY?(T")). Consider now the retarded single layer
potential (4) and TDBIE (6). Assuming the density u € L2(Ry; H-/2(T)) is
sufficiently smooth, we can write the expansion [24]:

(Sp)(x,t) Zu] , (z,t) € Q, (22)

where coefficients u; := £; Su, j € Ng, are components of the g-convolution
=(S o , €. 23
u(w):= (8 o W)@). z (23)

Here p := Lp and the sequence S consists of operators Sy : H-Y2(I') —
H(Q), k € Ny, acting on any function ¢ € L?(T") according to the rule

(Ské)(x /f ex(z —y)dl'y, e, (24)

where

—alz] —olz]

(& (&

(Lk(a|z|) — Lk_l(a\z|)), 2 €eR? \ {0}, keN.
(25)
One can extend the expression (24) to the H~'/2(T") x H'/?(T') duality product
(Sk€)(x) = (&(-), ex(x — -))p, « € €, for elements & € H-2(T) [24].
Similarly, applying the LT to the equation (6), we obtain an infinite trian-
gular system of BIEs

eo(z) :== , ex(z) ==

4r|z| 47 |z|

V o =g onl, 26
AN (26)

where g := Lg and V is a sequence of boundary operators Vj, : H-/2(I') —
Hl/Q(F), k € Ny, which may be expressed as a composition Vi := 79 o Si of
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operator Sy, with trace operator 7g. In case of & € L?(T") we have

(Vi) (z) = / £(y)en(z —y)dT,, zeT. (27)

T

Proposition 2 ( [24], Theorem 1). Let g € HI"4(Ry; HY?(T')) for some
oo > 0 and m € Nyg. Then there exists a unique generalized solution of the
problem (1)-(3), it belongs to the space HI'" (Ry; H'(Q)) and for any o > oy
such an inequality holds

[ulliro @i @) < Cllgllmpes @y my), (28)

where C' > 0 is a constant that is not dependent on g.
In addition, the generalized solution of the problem (1)-(3) can be represented
as a sum of series (22), that is convergent in the space L7 (Ry; H'(Q)), which

coefficients u are defined by formula (23), where the sequence p € 12(H~'/2(T))
is a solution of the system of the BIEs (26) with g := Lg.

Note that the assumption about the function g in the proposition 2 guaran-
tees the applicability of the LT at all stages of constructing of the numerical
solution to the problem (1)-(3) without any additional assumption about re-
lation between parameters m and og. On theoretical aspects of generalized
solutions to such problems in other functional spaces, see, for example, in |21].

3. SYSTEM OF THE CONVOLUTIONAL TYPE AND ITS SOLUTION
We can also obtain both the representation (22) of the generalized solution of
the problem (1)-(3) and the system of the BIEs (26) in another way. For this we
use such property of the LT for the derivatives of the function f € H2(Ry; X):

2 k
£k<88";§t)> :oQZZ(;(k—Hl)LZ(f(t)), k € Np. (29)

By applying the LT to the wave equation (1) directly and using (29), in 2 we
obtain the following infinite triangular system of elliptic equations

PUO == 0,
ciug + Puyp =0,
coug + ciui + Pug = 0, (30)

cpug + cp—qu1 + ... + Pup =0,

where up := Lru, k € Np, are the unknown functions and P := ¢ol — A, ¢ :=
(k +1)o?, I is the identity operator. Henceforth we denote u := (ug, ug,...)"
and G the infinite triangular matrix in the left hand side of (30). This allows
us to rewrite the system in form

Gu=0 in Q. (31)
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By the LT we obtain from the condition (3) a sequence of boundary conditions
regarding the unknown functions

yu=g:=LgonTl. (32)

Theorem 1. Let the given function g satisfies the condition of the proposition
2, that is, g € Hc’,’é+4(R+;H1/2(I‘)) for some oy > 0 and m € Ny. Then the
unique generalized solution v € HJ"W (Ry; H'(Q)) of the problem (1)-(3) can

be represented by the solution u := (ug,u1,...)" of the boundary value problem
(31), (32) as the sum of a series

u(z,t) =Y uj(x) Li(ot), (x,1)€ Q. (33)
j=0

Proof. Let us consider a top part GF¥uf=0 of the system (31) for any fixed
k € Np, which consists from the k£ + 1 equations. According to the [30, Lemma
2| its any solution u* := (ug, u1, ..., ux) | can be represented in Q by the formula

U](l‘) = Z </li(')v€j*i(x - ')>I" WS Qa j € N07 (34)

1=0

where 1, j € Np, are some elements of the space H_l/z(F) and functions

ej, j € Np, may be expressed through a fundamental solution E := (Ey, F, )T
of the operator G in form
ey := Fy, ej = Ej — Ej_l, 7 €N. (35)

In addition, if the sequence p* := (,uo,ul, ey Mk)T is obtained as a solution of
the system of BIEs

J
Z <Mi(-),€j,i($ — )>1" =g, T € I, €0k, (36)
=0

then the sequence u* will be the solution of suitable Dirichlet problem for the
system GFuf=0.

Notice that (35) may be reduced to form (25) [31, Theorem 1|. Therefore,
the formula (34) coincides with the representation of the Fourier-Laguerre coef-
ficients of the retarded potential (4) and BIEs in the system (36) are the same
as in the infinite system (26). So sequence p := (Mo,/ﬁl, )T coincides with
LT of the solution u of the TDBIE (6) and, as a consequence, the solution u
of the problem (31), (32) coincides with LT of the solution u of the problem
(1)-(3). As a conclusion from the Proposition 2 we have that pu € 12(H~Y/2(I"))
and u € ?(HY()).
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Using the notation (21), in the case p; € L2(I') we can rewrite the formula
(34)

=0
(37)
—Glr yl
By substituting the expression (37) into the partial sum
k
W, t) ==Y () Li(ot), (x,1) €Q, (38)
§=0

and taking the external sum into the integral over I' we obtain
. e—olz—yl
(1) = / g p— ZZM )j—i(ole =y Lj(et)dTy, (2.t) € Q. (39)
7=0 =0

Taking into account, that pu € I2(H~'/2(T)) and formula (20) holds for this
sequence, putting k — oo we finally get

wat) = [ oot =l —udr, @HEQ @0
r

where p = £ 'p. Since u is the solution of the TDBIE (6), the retarded
potential (40) coincides with potential (4). Therefore, (40) is the solution of
the problem (1)-(3). O

Taking into account that the system (26) is triangular we rewrite it as a
sequence of BIEs

(Voro)(z) = go(),
(Vo) () = g1 (x),
(41)
(Vour)(x) = gr(z), k€N, zel,
with recurrent expressions in right-hand sides
k—1
ge(x) = gr(2) = Y _(Ve—ipi)(z), keN. (42)

.

Since the boundary operator Vj is H~1/2(T')-elliptical [6,17], for arbitrary fixed
k € Ny the k—th equation in (41) with g, € H'/?(I') has a unique solution py, €
H~Y2(T"). We can choose (by some criteria) the value of parameter N and find
from (41) the first components for the sequence p := (,u,o, U1y -y N, 0,0, )T
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Using it for calculation a sequence uV = (uo,ul, e un, 0,0, )T by the for-
mula
N N
u'(r)=(S o x), x €, 43
@=(5,2. #)@ (43)
we obtain an approximate solution @'Y (z,t) of the problem (1)-(3) as a partial
sum (38) of the expansion (22) of the exact solution u(x,t).

4. PROBLEMS IN THE DOMAIN WITH AN INCLUSION
Reducing the IBVP (1)-(3) to the BVP (31), (32) allows us to solve it by
numerical approaches, which have been successfully used for solution of the
elliptic problems. In particular, it concerns the use of surface potentials, which
are based on Green’s function [8] for specific domain g instead of the funda-
mental solution (25) for operator G in R3. Suppose I'g is a Lipschitz boundary
of Q().

Definition 6 ( [31]). Let N(xz,y) := (No(z,y), N1(z,y),...) ", (z,9) € Qo x Qo
be a solution of the equation

Gu =4, in (D'(Q))”, (44)

where &, := (§(- —y), 0, 0, ..)". We say that N is Green’s function for the
Dirichlet problem for the system (31) in the domain € if all its components
vanish for (z,y) € T'o x Q.

Building the Green’s function for the domain with arbitrary geometry isn’t a
simple task in general. But for domains with a certain type of symmetry it can
be built analytically by the reflection method [31]. Without loss of generality
we present here the Green’s function for the Dirichlet problem in case of the
half-space Qg = R? x R :

Ni(z,y) = ex(x —y) —ex(x — y*), k € Ny, (45)

where y* is a point symmetric to the point ¥ in regards to the plane I'g and
functions ey, are defined by (25).

Let us denote the unit exterior normal vector to the surface I'g as v. Consider
a sequence D which consists of operators Dy : HY/?(I'g) — H'(Q)), k € Ny,
that act on an arbitrary function & € H'/2(I'g) according to the rule

(Dxé)(x) = / £(y) ,Ni(xy) dTy, = € Qo (46)
To

where 8, is the notation of the normal derivative. If X € I2(H'/?(Tg)) is an
arbitrary sequence then a sequence

u(z) .= —(D A)(z), z €, (47)

o
HY(Q)

satisfies the system (31) [31].
Let bounded domain €2~ with a Lipschitz boundary I' is an inclusion in
the domain Qp (I'o NI = @) and Q := Qp \ Q~. For an arbitrary function
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€ L2(Ro; H Y/2(1)) let us consider q-convolution
1% o\ D+ q

u(z) := (§ p)(z), =€, (48)

O
HY(Q)

of sequences p = Ly and S := (§0, Sy, ...)T, where operators Sy : H'2(T) —
H(Q)), k € Ny, act on an arbitrary ¢ € L*(T') according to the rule

(8k6) (s / E(y) Ne(a,y) Ty, @€ Q. (49)

For ¢ € H'/2(T") one can extend the expression (49) to the H~1/2(T") x H'/?(T")
duality product (Sp€)(z) = (€(-), Ni(z —))p with = € Q. It is easy to see that
for arbitrary functions p € L2(Ry; H-Y2(I") and A € L2(R,; HY/?(Iy)) a
combination of the sequences

u(z) := (S Hlisz) p)(z) — (D HlCZQ) A)(z), z €Q, (50)

satisfies the system (31) in  and the boundary condition you = X on I'y.

Suppose u satisfies the wave equation (1) and initial conditions (2) in 2 and
traces yp,0u = A and 7p,1u = g are given on the cylinders ¥g := I'g x Ry and
> = T' x Ry respectively. Then unknown sequence p for the representation
(50) can be obtained from the system of BIEs

\Y% = D o A r 1
A g +70,1( 10 ) onl, (51)

where g := Lg and the components of the sequence V are boundary operators
Vi == 70,1 © S, Vi : H~'Y2(T') — HY?(T'), k € Ny. Note that the resulting
system can be reduced to the sequence of BIEs similar to (41) and has only one
solution.

5. FasT BEM AND RESULTS OF NUMERICAL EXPERIMENTS

Both (26) and (51) systems are triangular so one can solve their equations
sequentially. For this we use Galerkin-BEM and it fast modification [16, 36].

Let TM = Ul]\il 7; be some approximation of the boundary I' by triangular

boundary elements {Tl}l]\il and {go?}?il be a set of linearly-independent on T'™
piece-wise constant functions

1, z e

0 o ) 1y

A ={ 5 15T 52)

Treating a value h := max (f ds) 1/2 as a parameter of the spatial approx-
I=1,M

imation, we will consider a finite-dimensional space S§(I') := span {cpl }l 1

and represent a numerical solution of the system (41) by a sequence pu™" :=
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T . . L .
(,ug, ,u?, . ,LL}]{,,O,O, ) which components are linear combinations of piece-
wise constant functions

M
ph = i) € SpT), ke N (53)
=1
M
Here { LLZ7Z} = NZ € RM is a vector of unknown coefficients which can be
found from the following system of linear algebraic equations
k—1
Viur =gr— > Viul, keN, (54)
§=0

where gp[i] = fﬂ_ gk (x)ds,, i = 1,M, and elements of the matrix V;’ have
following form

Vph[i,ﬂ = / / ep(x — y)dsydsy, i,l=1,M, p € Ny. (55)
Ti YTl

Notice, that for any k£ > 1 the components ug, t1, ..., ig—1, obtained from BIE
(41) on previous steps, are included into the expression in the right-hand side
of the current equation. The evaluation of the surfaces integrals (55) has been
discussed in [32].

We interpret sequences

l‘l/N’h = (thu]ll? "‘7”?\[707 07"‘)T
and
uVh = (ug,u?, ...,u%,0,0, )T

with some fixed value of the parameter N as numerical solutions of the sys-
tems of BIEs (26) and the BVP (31)-(32), respectively. As well, a partial sum
N

aNh(z,t) == S ul(z)L;(ot) we use as a numerical solution of the problem

i=o 7
(1)-3).

Let us assess the accuracy of the proposed method. Taking into account an
obvious inequality |lu — aN’hHHC}_(R_‘_;Hl(Q)) < lu — @™ grw, ) + @Y —
ﬂN’hHH;(R+;HI(Q))7 in this paper we restrict ourselves to examining the poste-
riori error of the numerical solution, which corresponds to the second term in
the right hand part of this inequality. An asymptotic error of the numerical
solution in this case has been investigated in [22].

In the following we demonstrate numerical solutions of some model problems
for the wave equation in the domain = R3\Q~, where Q= = (—1,1)x(—1,1)x
(—=1,1). For generating boundary values we use a spherical impulse represented
by the formula

w(x,t) := |z| " w(t — o] + 1)I(t — |z + 1), (z,t) € R®\ {0} x Ro,  (56)
with a cubic B-spline w* and the Heaviside step function 9(¢). Notice that the

function w satisfies (1) and (2).

93



A.R.HLOVA, S. V.LITYNSKYY, YU.A. MUZYCHUK, A. 0. MUZYCHUK

Example 1. We consider the problem (1)-(3) in  x Ry with the given trace
data g = w on X and analyze accuracy and convergence of numerical solutions
uZ and ™" on the sequence of discretization I'M with increasing M and with

N = 20.

TaBL. 1. Convergence analysis of ug, u}fO and ™" for Exam-
plel with 0 =4, N = 20 and increasing M

M ug () U}fo u™vh

3 ~ N,h
5h eocy € 5 eocrg €l SR eoc " Nk

108 1.92-10~¢ 3.24 2.92.1073 22.21 2.40-1072 4.66
300 7.01.107° 2.03 1.18 8.46:107* 2.43 6.43 8.11-1073% 2.13 1.57
768 3.22-107° 242 0.54 2.97-107* 2.23 2.26 3.09-1073 2.05 0.60
1452 1.83-10~® 2.24 0.31 1.49-10~* 2.16 1.14 1.62-10~% 2.03 0.31
1728 1.55-107° 2.16 0.26 1.24-10~* 2.14 0.94 1.36-102 2.02 0.26
2700 1.02-107® 2.14 0.17 7.72:107° 2.12 0.59 8.63-10~% 2.03 0.17
4800 5.93-1076 2.11 0.10 4.22:107° 2.10 0.32 4.83-10~* 2.02 0.09

At first we consider the impact of the parameter h on the approximation
error of numerical solutions uz, k € 0,N, and ™" with some fixed value
of the parameter N. For this we compute values 67 := |[u} — ug||r2(q, ,) and

u.,b)
= 5?/Huk|’L2(Qa7b)*100 %, and also values 6™/ := ’|aN’h_ﬂN’|L3(R+;L2(Qa’b))

and eNl = gN’h/\]HN|]L3(R+;L2(QM)) *100 %, where (a,b) =: Q44 is a spatial
interval from which observation points are taken. Notice that we provide es-
timates in the norm of such Lebesgue space with aim to simplify calculations
in the unbounded exterior domain 2. Using a sequence of finite-dimensional
spaces Sy (I') with decreasing h for both kinds of numerical solutions we eval-
uate estimated orders of convergence [36] eocy := ln(éZj_l/5Zj)/ln(hj_1/hj),
k €0,N, and eoc™" := In(6N-hi-1 JgNi) /in(hj_1/h;), where hj_ and h; are
consequent values of the parameter h.

Computed in Q3 with @ = (1.2,0,0) and b = (10,0,0), some results of
the series of numerical experiments are given in Table 1. They highlight that
eoc =~ 2 for both numerical solutions uZ and a™V".

Now we assume that the cube Q7 is included in the half space Qy = R? x
(—2,00) and Q = Qy \ Q. For generating boundary functions in this case we
use a function @w(z,t) := w(x,t) —w(z*,t), where z* is a point symmetric to the
point = with respect to the plane I'g = {(z1,x2,x3) | 3 = —2}. It is obvious
that function @ satisfies (1) and (2) and w(z,t) =0 on I'y.

Example 2. We consider the problem (1)-(3) in € x Ry with traces ypou =
A =0and vy, u = g = @ given on the cylinders ¥y :=T'o x Ry and ¥ =T' xR
respectively, and analyze accuracy and convergence of numerical solutions UZ

and @™V"" on the sequence of discretization I'™ with increasing M and with
N = 20.
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We solve this problem by modified BEM using the representation (50) based
on Green'’s functions for the Dirichlet problem for the system (31) in the domain
Qo. In this approach after discretization of BIEs we obtain matrices {/'Z similar
to the VP, k € Ny. Results of the numerical experiment are plotted in Figure
1.

As we can see from the Table 2 numerical solutions, obtained in this ap-
proach, have the same accuracy and the convergence order as in the previous
example. Notice that some complication of the method due to the use of Green’s
functions does not lead to significant increase of computational resources for
solving the problem in the domain with inclusion. The fact that we have avoided
solving BIEs on the unbounded surface I'g is an advantage of the modified BEM
in solving such problems.

TABL. 2. Convergence analysis of ull,ufy and @™" for Exam-
ple2 with 0 =4, N = 20 and increasing M

N %) o
Sh eocy €} st eocyp €, SNh coc’h gk
108 8.58-107° 3.24 1.36-1073 7.59 1.78-1072 3.35

300 3.14-107° 2.03 1.19 3.33-107* 2.76 1.85 4.96:107% 2.50 0.94
768 1.44-107° 2.42 0.55 9.97-107° 2.56 0.56 1.77-107% 2.20 0.33
1452 8.14-107% 2.23 0.31 4.64-107° 240 0.26 9.06-10~* 2.10 0.17
1728 6.93-107% 2.16 0.26 3.79-107°5 2.31 0.21 7.57-10~* 2.05 0.14
2700 4.56:107¢ 2.13 0.17 2.27-107° 2.29 0.13 4.79-10~* 2.06 0.09

We now wish to notice that matrices VZ and \N/'Z, k € 0,N, which arise
after discretization of boundary operators in equations (26) and (51), are fully
populated and can reach large sizes. So for their calculation we apply the Fast
BEM which based on adaptive cross approximation (ACA) of these matrices
[3,12]. Because this approach is universal in relation to the function in the
kernel of boundary operators, an efficient algorithm can be constructed for
calculating all the above matrices.

It can be checked that functions in the sequence e(z —y) = (eg(z —y), e1(z —

Y), ...ep(z—y), )T are asymptotically smooth [3, Definition 3.2.]. This ensures
that for each of the matrices VI ACA algorithm admits admissible partitions
into blocks that can be approximated by the product of matrices of smaller rank.
For example, if some block A € R"™*" in VZ is admissible it can be approxi-
mated with arbitrary small error ¢ in Frobenius norm by the matrix S, := QT ,
where Q € R™*" and T € R™" are matrices of rank r < min(m,n). To do
this we have to calculate and store in RAM only a subset of elements of the
block A [3, Chapter 3].

In order to demonstrate efficiency of the ACA we apply Fast BEM to the
problem which we have considered in the Example 1. As we can see from the
Figure 2, memory consumption for storing data of the approximated matrix
VSL depends on the parameter M almost linearly. By contrast, we need to store
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uhN(z,t)

FiG. 1. Numerical solution of the problem in Example 2 in two
sets of the observation points {(z1,0,0)} and {(0,0,z3)}
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Fia. 2. Memory consumption for storing data of the matrix V(})‘
for the Fast BEM (¢ = 1072 and € = 1072 ) and for the ordinary
BEM (¢ = 0)

M? elements of V} using ordinary BEM. The same dependency concerns the
time needed for calculating data of Vg by the fast and the ordinary BEM.
Note that according to the ACA algorithm admissible blocks are allocated
outside of the main diagonal of the matrix. So their approximation doesn’t
require high accuracy. On Figure 3 we demonstrate the error of the numerical
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Fia. 3. Error 019" of numerical solutions for Example 1, which
was obtained by the Fast BEM ( ¢ = 1072 and € = 1073) and
by the ordinary BEM (e = 0)

solutions for Example 1, which were obtained by the Fast BEM with approxi-
mation of admissible blocks in matrices VZ with some fixed values of the error
. As we can see, the numerical solution in case of ¢ = 103 has almost the
same error 6" as in case of the application the ordinary BEM, when all ele-
ments of matrices VZ were calculated (on the figure we denote this solution by
e=0).

6. CONCLUSIONS

We have described two approaches based on the Laguerre transform in the
time domain, that require the solution of a sequence of boundary integral equa-
tions to obtain an approximate solution of the Dirichlet problem for the wave
equation. After an additional justification for such transform, we have shown
the application of the boundary elements method for solving integral equa-
tions in the Laguerre domain and derived a representation of the approximate
solution of the wave equation.

In solving evolutional problems the coupling of the LT and the BEM makes
it possible to use other techniques, that have been developed for elliptical prob-
lems. In particular, we have modified this method for solving Dirichlet problem
in the domain with an inclusion, using Green’s functions for the representation
of the solution. Also we have implemented the Fast BEM using adaptive cross
approximation for reducing both the storage and computational costs.

Finally, we can point out that in this article we have confined ourselves to
considering a problem with a Dirichlet boundary condition in order to simplify
the presentation. For other boundary conditions the approaches considered
above will lead to other boundary integral equations that will need to be solved
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by another implementation of the BEM. We also remark that the Laguerre
transform can be combined with other suitable methods. For example, for
solving more general second-order hyperbolic equations, which coefficients are
variable in the space domain, the Laguerre transform can be similarly combined
with the finite elements method.

10.

11.

12.

13.

14.

15.

o8

BIBLIOGRAPHY

Bamberger A. Formulation variationnelle pour le calcul de la diffraction d’une onde acous-
tique par une surface rigide / A. Bamberger, T. Ha Duong // Math. Methods Appl. Sci.—
1986.— Ne8.— P. 598-608.

BanjaiL. Fully discrete Kirchhoff formulas with CQ-BEM /L. Banjai, A.R. Laliena, F.-
J.Sayas //IMA J.Numer. Anal. - 2015. - Ne35. - P. 859-884.

Bebendorf M. Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary
Value Problems / M. Bebendorf. — Springer Science & Business Media, 2008.

ChapkoR. Numerical solution of the Dirichlet initial boundary value problem for the
heat equation in exterior 3-dimensional domains using integral equations /R.Chap-
ko, B.Johansson //Journal of Engineering Mathematics, Springer.— 2016.— DOI
10.1007/s10665-016-9858-6. — 17 P.

ChapkoR. On the numerical solution of initial boundary value problems by the Laguerre
transformation and boundary integral equations /R.Chapko, R.Kress //Integral and
Integrodifferential Equations: Theory, Methods and Applications. Series in Mathematical
Analysis and Applications. — 2000. - Ne2. - P. 55-69.

Costabel M. Boundary integral operators on Lipschitz domains: elementary results
/ M. Costabel //SIAM Journal on Mathematical Analysis. - 1988. - Ne19. - P. 613-626.
Costabel M. Time-dependent problems with the boundary integral equation method
/ M. Costabel //Encyclopedia of Computational Mechanics. — Chichester, 2004. - John
Wiley and Somns, Ltd. - P. 703-721.

Dautray R. Mathematical analysis and numerical methods for science and technology.
Volume 4 Integral Equations and Numerical Methods /R.Dautray, J.L. Lions. — Berlin:
Springer-Verlag, 1992. - 493 p.

Dautray R. Mathematical analysis and numerical methods for science and technology.
Volume 5 Evolution problems I / R. Dautray, J.L. Lions. — Berlin: Springer-Verlag, 1992. -
742 p.

Davies P.J. Numerical approximation of first kind Volterra convolution integral equations
with discontinuous kernels / Penny J. Davies, Dugald B. Duncan // J.Integral Equations
Applications. — 2017.— Ne29 (1). - P. 41-73.

Dominguez V. Recent progress in time domain boundary integral equations / V. Domin-
guez, N. Salles, F.-G. Sayas // Journal of Integral Equations and Applications. - 2017.—
Ne29 (1).- P.1-4.

Hackbusch W. Hierarchical Matrices: Algorithms and Analysis / W. Hackbusch // Sprin-
ger Series in Computational Mathematics. — 2015. - Vol. 49. - 511 p.

Halazyuk V.A. Metod integral’nykh rivnyan’ u nestatsionarnykh zadachakh dyfraktsiyi
/ V.A.Halazyuk, Y.V. Lyudkevych, A.O. Muzychuk. — L’viv. un-t. — 1984. — Dep. v UkrNI-
INTI, # 601 Uk-85 Dep. (in Ukrainian).

Hassell M. A new and improved analysis of the time domain boundary integral opera-
tors for acoustics / M. Hassell, T.Qiu, T.SanchezVizuet, F.-J. Sayas // Department of
Mathematical Sciences. - 2015. - P. 1-22.

Ha-Duong T. On retarded potential boundary integral equations and their discretisation
/ T.Ha-Duong.— In P.Davies, D. Duncan, P. Martin, B. Rynne, eds. // Topics in compu-
tational wave propagation. Direct and inverse problems. — Berlin: Springer-Verlag, 2003. -
P. 301-336.



COUPLING OF LAGUERRE TRANSFORM AND FAST BEM ...

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Hsiao G.C. Boundary element methods: foundation and error analysis /G.C.Hsiao,
W.L. Wendland. — In E. Stein, R.de Borst, T.Hughes, eds. //Encyclopaedia of Com-
putational Mechanics. — John Wiley and Sons, Ltd., 2004. - P. 339-373.

Hsiao G.C. Boundary Integral Equations / G.C. Hsiao, W.L. Wendland // Applied Math-
ematical Sciences. — Springer-Verlag Berlin Heidelberg, 2008. - 620 p.

Keilson J. The bilateral Laguerre transform /J. Keilson, W. Nunn, U. Sumita // Applied
Mathematics and Computation.— 1981.— Vol. 8, Issue 2. — P. 137-174.

Laliena A.R. A distributional version of Kirchhoft’s formula / A.R.Laliena, F.J. Sayas
// Journal of Mathematical Analysis and Applications.— 2009.— Ne1.— P.197-208.
Laliena A.R. Theoretical aspects of the application of convolution quadrature to scat-
tering of acoustic waves / A.R.Laliena, F.J. Sayas // Numer. Math. - 2009. - Ne112 (4). -
P.637-678.

Lions J.L. Non-Homogeneous Boundary Value Problems and Applications. Volume 2
/ J.L. Lions, E. Magenes. — Berlin: Springer-Verlag, 1972.— 242 p.

Litynskyy S.V. Combination of the Laguerre transform and the boundary elements
method for the solution of retarded potential integral equations /S.V.Litynskyy,
Yu.A. Muzychuk, A.O. Muzychuk // Journal of Mathematical Sciences. - 2017. - Vol. 224,
No.3.— C.89-101.

Litynskyy S. On week solutions of boundary value problems for an infinite system of
elliptic equations / S. Litynskyy, Yu. Muzychuk, A. Muzychuk //Visn. L’viv. un-tu. Ser.
prykl. matem. ta inform.— 2009.— Issue 15. — P.52-70. (in Ukrainian).

Litynskyy S. Solving of the initial-boundary value problems for the wave equation by
the use of retarded potential and the Laguerre transform /S.Litynskyy, A.Muzychuk
// Matematychni Studii.— 2015.— Ne2 (44). — P. 185-203.

Litynskyy S. On the generalized solution of the initial-boundary value problems with
Neumann condition for the wave equation by the use of retarded double layer poten-
tial and the Laguerre transform /S. Litynskyy, A. Muzychuk // J. of Computational and
Appl. Math. - 2016. - No 2 (122). - P. 21-39.

Litynskyy S. On the numerical solution of the initial boundary value problem with Neu-
mann condition for the wave equation by the use of the laguerre transform and boundary
elements method / S. Litynskyy, Y. Muzychuk, A. Muzychuk // Acta Mechanica et Auto-
matica, The J. of Bialystok Techn. Univ.— 2016.— Vol. 10, No 4. — P. 285-290.

Lubich Ch. On the multistep time discretization of linear /newline initial-boundary value
problems and their boundary integral equations / C. Lubich // Numerische Mathematik. —
1994. - Ne 3. — P. 365-389.

LyudkevychY.V. Numerical solution of boundary problems for wave equation
/Y. V.Lyudkevych, A.E. Muzychuk. - L’viv: LDU, 1990. (in Russian).

LyudkevychY.V. Chysel’'ne rozvyazuvannya krayovoi zadachi Dirikhle dlya rivnyan-
nya teploprovidnosti metodamy integral’nykh peretvoren’ ta integral’'nykh rivnyan’ u
vypadku nezamknutykh osesymetrychnykh poverkhon’ /Y.V.Lyudkevych, R.B. Skaskiv
// Visn. L’viv. un-t. Ser. mekh.-mat. — 1989.— Ne31.— P. 2-8.

Muzychuk Y.A. On variational formulations of inner boundary value problems for
infinite systems of elliptic equations of special kind /Y.A.Muzychuk, R.S.Chapko
// Matematychni Studii.— 2012. - Ne1 (38).— P. 12-34.

Muzychuk Yu. On the boundary integral equation method for boundary-value problems
for a system of elliptic equations of the special type in partially semi-infinite domains
/ Yu. Muzychuk, R. Chapko // Reports of the National Academy of Sciences of Ukraine. —
2012.— Ne11.— P.20-27. (in Ukrainian).

Muzychuk Yu. On the boundary integral equation method for exterior boundary value
problems for infite systems of elliptic equations of special kind /Y. Muzychuk //J.of
Computational and Appl. Math.— 2014. — Ne2 (116). - P. 96-116.

Pasichnyk R.M. Chyslennoe reshenye hranychno-vremennoho intehral’noho uravnenyya
tipa volnovoho potentsyala: Intehral’nye uravneniya v prikladnom modelyrovanii
/ R.M. Pasichnyk // Tezysy dokl. 2-y resp. nauch.-tekhn. konf. - Kyiv, 1986. - P. 175-176.

29



A.R.HLOVA, S. V.LITYNSKYY, YU.A. MUZYCHUK, A. 0. MUZYCHUK

34.

35.

36.

37.

Polozhyy H. Equations of mathematical physics / H. Polozhyy. — M: Nauka. 1964. (in Rus-
sian).

SayasF.-J. Retarded potentials and time domain boundary integral equations: a road-
map / F.-J. Sayas. — Springer International Publishing, 2016.— 241 p.

Steinbach O. Numerical Approximation Methods for Elliptic Boundary Value Problems.
Finite and Boundary Elements /O.Steinbach. - New-York: Springer Science, 2008.—
383 p.

Vavrychuk V.H. Numerical solution of mixed non-stationary problem of thermal con-
ductivity in partially unbounded domain /V.H. Vavrychuk // Visnyk of the Lviv uni-
versity. Series of Applied mathematics and informatics. — 2011. — Issue 17.— P. 62-72. (in
Ukrainian).

A.R.HrovA, S. V. LITYNSKYY, YU. A. MUZYCHUK, A.O. MUZYCHUK,
Facurry or APPLIED MATHEMATICS AND INFORMATICS,

IvAN FRANKO NATIONAL UNIVERSITY OF Lwv1v,

1, UNIVERSYTETS’KA STR., Lviv, 79000, UKRAINE.

60

Received 16.03.2018; revised 02.05.2018



