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FOR OPERATORS DEFINED ON FUNCTIONAL
SPACES AND FUNCTIONS OF MATRIX
VARIABLE, AND THEIR APPLICATIONS
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PE3IOME. VY pobori nobymosano asnrebpaiuny dopmyny tuny Epmita s
omepaTopiB, BHU3HAUEHUX y (YHKIOHATHHUX [IPOCTOPAX. I[HTEpIIOIAIiiHA
dopmysia moaibHOTO BHIY, SKa MICTUTHh 3HauUeHHs audepenmiamis [ato mo-
BIJIBHOT'O TIOPA/KY, 1100y 1I0BaHa Ha MHOXKUHI MaTpulb. OTPUMAHO MATPHUILO,
anasoriuay 10 dopmymu Jleibuima. CkoHcTpyiioBaHO HOPMYILY arrpoOKCHUMAIIT
mudepenmianis ['aTo TOBLIHHOTO TOPSIKY 3 MATPUIHUMA aprymenTtamu. Ha
ocHOBl MarTpuvHOi iHTeprosaniiinoi dopmynu tumy Epwmita mobymosamo wwm-
CeJIbHUIT MeTOT Jjis po3B’si3yBanud 3agaui Ko qyisa MarpuyaHo-audepeHtria-
JIbHOTO PiBHsHHs. [IPO/IEMOHCTPOBAHO TIPUKJIA] YHCETHHOTO PO3B’sI3yBaHHS
3amaqi Komi g MmarpuaHo-qudepeHniaIbHOro PiBHSIHHS IIEPIIOT0 HOPSIKY.
TTo6ymoBano i 10CIIiIKEHO MapaMeTPpUYHEe CIMEHCTBO TPUTOHOMETPHIHIX MaT-
pudHHUX iHTeproAmiitHuxX mosinomiB Tuny Epwmita-Bipkroda.

ABSTRACT. For operators defined in function spaces, the algebraic interpo-
lation formula of Hermite type is constructed. The interpolation formula of
similar type, containing the value of the Gateaux differential of an arbitrary
order, is constructed for operators on the set of matrices. Matrix analogues
of the Leibniz formula are obtained. The formula for approximate calcula-
tion of the Gateaux differential of an arbitrary order of the matrix argument
function is constructed. Based on the matrix interpolation formula of the Her-
mite type, the approximate method for solving the Cauchy problem for the
matrix-differential equation is obtained. The illustrative example of approxi-
mate solving the Cauchy problem for a first-order matrix-differential equation
is constructed. A parametric family of trigonometric matrix interpolation
polynomials of Hermite-Birkhoff type is constructed and investigated.

1. INTRODUCTION

The fundamentals of the theory of operator interpolation are given in [1,2].
Here, in particular, the problem of operator interpolation of Hermite-Birkhoff
type is investigated. The complexity of this problem lies in the fact that even
with different interpolation nodes it can either have a non-unique solution, or do
not have a solution at all. Some basics of matrix interpolation are also contained
in [1,2]. The theory of matrix interpolation is quite fully given in [3]. The
papers [4-6] are devoted to the construction and research of Hermite-Birkhoff
generalized matrix interpolation formulas for concrete Chebyshev systems.

Key words. Generalized interpolation of Hermite-Birkhoff type, Gateaux differential, Leib-
niz formula, matrix argument function, Cauchy problem for the matrix-differential equation.
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In the given work the interpolation formulas for functions of a scalar ar-
gument, constructed and investigated in [7, 8], are summarized to the case of
operators defined in functional spaces and on the set of matrices. When prov-
ing the theorems on the fulfillment of interpolation conditions for the respective
polynomials, matrix analogues of the Leibniz formula are used, which are also
obtained in this work. The parametric family of trigonometric matrix Hermite-
Birkhoff polynomials is constructed.

2. ALGEBRAIC INTERPOLATION

Let X be a certain given set of functions z = z(s), defined on the segment
[a,b], Y = {y(s,t),t eT C RN} — some function space where T is a given
numerical set of N-dimensional space RV, and let F(x) = F(t;2(s)) be an
operator mapping X into Y. Let’s assume that in the various elements xj =
zr(s) (k = 0,1,...,n) of the set X, such that zx(s) # z,(s) on [a,b], the
values F'(zy) of the operator F(z), v € X are known. We choose in the set
X functions hq(s), ha(s), ..., hpt1(s) such that hi(s)ha(s) - hnt1(s) # 0 on
[a,b]. Let the value D,,y1(F; x,+1) of the operator of the form

Dy 1F(z) = 6" Fla; hihg - - - By,

where 0"t F[x; hihg - - - hyy1] is the Gateaux differential of the order n + 1 of
the operator F'(x) at the point x in the directions hy, ha, ..., hyt1, be known
in the node z,41 = zp+1(s) € X.

We now consider further the operator polynomials P,41 : X — Y of the

form
n+1

Pn+1(x> = Z al/<t7 S).%'V(S), (1)
v=0

where a,(t, s) are some functions of the variables ¢ and s.
We introduce the polynomials [, ;(z) = (x — xo)(x — 1) -+ (x — Tp—1) ¥
X(x = Ty1) (@ — x), wp(z) = (2 — x0) (2 — 1) -+ (T — Tp).

Theorem 1. The interpolation polynomial

5 wn(2) Dyg1 F(@n41)
Ly, =Ln ’
+1(z) (z) + (n+ 1) hihy - hpta

where
"~ Ly () F(x
) =3 ), @)

satisfies the interpolation conditions

Ln+1(ack) = F(Zk) (k‘ = 0, 1, . ,n);

Dyiq (Ln+1;l’n+1) = Dp1(Fmp41)- (3)

The formula (2) is exact for the operator polynomials of the type (1) of the
degree not higher than n + 1.
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Proof. Since I k(x;) = Okilnk(vr), where 6, is the Kronecker symbol, and
wn(zg) =0, k,i=0,1,...,n, then the fulfillment of the first group of interpo-
lation conditions in (3) is obvious.

Since 6" P, [z; hihs - - - hpy1] = 0, where P, () is an arbitrary operator alge-
braic polynomial of a degree not higher than n, then ontir, [x;hihg - hpy1] =
= 0. It is also obvious that 0" lw,[x;hihg -+ hypi1] = (n+ 1) hihy - Byt
Taking into account the structure of the polynomial (2), we will obtain that
the last condition in (3) also holds.

We now prove the invariance of the formula (2) with respect to the polyno-
mials of the form (1) of the degree not higher than n + 1. If F(z) = P,(z),
where P, (x) is a polynomial of the form (1) of the degree not higher than
n, then as is known in (2, p. 361|, L,(Py; =) = P,(x). And since in this
case Dy 1Py(z) =0, then Ly 1(Py;z) = Py(x). Let further suppose F(z) =
]5n+1(:1:) = = 2"*1(s), then DnH]an(x) = (n+1)!h1hg - hpy1, and

Lypt1(Poy1;7) = Ly(Poy1; ) + wn (7).

By analogy with to the scalar case [7, p. 6], Lny1 <]5n+1; x) = Pi(x).

Thus, the formula (2) is exact for operator polynomials of the form (1) of the
degree not higher than n + 1. O

We now consider the problem of interpolating operators on the set of ma-
trices. Let X be the set of functional or stationary square matrices A = A(t),
t € T C CR. Let’s introduce differential operator of type

_ I'F(2) D=2 .cc aex (4)

D"F(A
(4) dz" | ._4’ dz

where F'(z) is the entire function.
The value of the operator (4) for the matrix function of the type B F(A)Ba,
where B and Bs are some fixed matrices from X, is calculated by the formula
D™ (B1F(A)By) = B1D"F(A)Bs. The operator D, which is included in (4), for
the function of the type F'(cA+ B), where ¢ € C, and B is a certain fixed matrix
of X, defined by the equality DF(cA+B) = cF'(2)|,_.4, p, and for the product
U(A)V(A) by the formula D (U(A)V(A)) = DU(A)V(A)+U(A)DV (A). In the
last expression, it is important in what order the multipliers in matrix products
are taken. For example, D (V(A)U(A)) = DV(A)U(A) +V(A)DU(A), and in
the general case, D (U(A)V(A)) # D(V(A)U(A)). Similarly, the values of
higher-order operators are calculated, as well as operators from the products of
functions with a number of multipliers more than two.
In mathematical analysis, the Leibniz formula for the derivative of n-th order
(n € N) of the product of two scalar functions is known [9]
(u(z) - v(z)™ = ZCﬁu("_k) (z)o®)(2), where C* =
k=0

n!

kl(n — k)’ (5)

which holds if the functions u(z) and v(z) are n times differentiable at the

point z € C. We generalize this formula to the case of functions of the matrix
argument and operator of the type (4).
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Theorem 2. If the functions U(z) and V(2), z € C, are differentiable n times,
then the formula

D" (U(A)V(A)) = ancsDkU(A)D"—kV(A), Ac X, (6)

1s valid.

Proof. We apply the method of mathematical induction. When n = 1 we will
have
D' (U(A)V(A)) = DU(A)V(A) + U(A)DV (A) =
= CYD'U(A)VV(A) + C{U(A)D'V (A).
Let’s assume that the formula (6) is exact for n = k. We prove that it also
holds for n = k + 1.

DFFL(U(A)V(A) =D Zn: CFDFU(A) D™ FV (A)

- i Cl [DM1U(A) D"V (A4) + DRU(A) D"V ()] =
k=0

= QDU (A)D™ IV (A) + Y (cﬁ—l + cﬁ) DFU(A)D"FH1V (A)+

+Cm D" U (A) DOV (A).
Since CE 1+ Ck=CF, . CO=0CY,, =1, Cn=Cl =1, then

n+1
Dk+1 ( Z +11)I€ DnJrlfkv(A).

O

We now introduce the differential operator of the form

Dy1F(A) = D1 F(A; Hpgi Hy - Hy) = 6" F[A; Hyy Hy - Hi], (7)
where 6"t F[A; H, 1 H, --- Hy] is Gateaux differential of order n + 1 at the
ppint A € X in the directions Hi, Ha,...,Hpy1 from X. We assume that
DyF(A) = F(A).
Theorem 3. If the functions U(A) and V(A) are Gateaur differentiable n
times at the point A € X, then the formula

n
:Z Z DkU A H sz 1 Hll)Dn_kV(A H]n kH]n k— lHjl)
k=0 i1,.. ,zk
Jlseeosdn—k

holds true.

Here, for each value of k (0 < k < n) the summation is over for all disjoint
sets (il,ig, ce ,ik) and (jl,jg, - ,jn,k) such that 1 < iy < ig < ... <1 < n;
1< <ga<... <Jni <n.
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Proof. We use, as in the proof of theorem 2, the method of mathematical in-
duction. If n =1 by the definition of the Gateaux differential we will have

) (U(A+)\H1)V(A+ AH])

Dy (U(AV(A); Hy) = 8 [U(A)V(A); Hy] = lim .

A—0
U(A)V(A)> _ <U(A+)\H1)V(A+)\H1) —U(A)V(A+ \H,)
—————= | = lim +
A A—0 A
UA)V(A+ \H,) —U(A)V(A)
A
= D1U(A; H))V(A) + U(A)D1V(A; Hy). (9)
Hereinafter the expression of the form § [U(A)V (A); Hi] should be understood
as the Gateaux differential dW[A; H;]|, respectively, of the function W(A) =
=U(A)V(A) at the point A in the direction Hj.
Let’s suppose that formula (8) is true when n = m. We show that it holds
for n =m+ 1. From (7) — (9) we have

+

) _ SUA; RV(A) + U(A)SV[A; Hy] —

Dot (U(A)V(A); Hoy -+ Hy) = 8 | Dy (U(A)V(A); Hy -+ HL) s Hyn | =

= Z (DIC—HU (A7 Hn-i-lHik T Hi1) Dn—kv (A7 Hjn—k e Hjl) =+

k=0 i1,...,0%
j17~--7jn—k
+DU (A; Hy, -+ Hy,) DV (A Hy Hj, -+ Hj1)) =
n+1 B N
= Z Z DU (A, sz T Hzl) Dn+1ka(A; Hjn+1—k e Hjl)‘
k=0 il,.‘..,ik

j17~~~7‘7n+17k:
Here the summation is carried out in the same way as in the formulation
of the theorem, while 1 < i1 < ig < ... < ip <n—+ 11 <1 <jo<...<
<jn+1—k §n+1 O

In the special case, for example, for n = 3 the formula (8) has the form
D3 (U(A)V (A); HyHyHy) = D3U (A; HsHoHy) V(A) + DoU (A; HyHy) x
x D1V (A; Hy) 4+ DoU (A; HsHy) D1V (A; Hy) + DoU (A; HyHyp) X
><D1V (A, Hg) + DlU (A, Hl) DQV (A, H3H2) + DlU (A, Hg) X
x DoV (A; H3Hy) + DU (A; Hy) DoV (A; HoHy) + U(A)D3V (A; H3sHayHy) .

We suppose that in the elements Ag(t) of the set X such that Ag(t) —
A, (t) are invertible matrices, t € T, k,v = 0,1,...,n, k # v, the values
of the operator F(A) are known, as well as at the node A,11(¢) the value
D F(Ani1) = D F(Apt1; HyHyy—1 - - - Hy) of the operator (7) from F(A),

where 1 <m <n, H, € X (k=1,2,...,m) is known. Let’s introduce the nota-
tions w(A) = (A—Ag)(A—A1)--- (A—A,), lx(A) = (A—Ag) -+ (A—A_1)(A—

—Agy1) - (A=A, By = Dipli(Ant1), Ax = BrAny1+B. 'Y Dino1li(Ana;
=1
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Hy, - -Hi1H;i - -'Hl)BklfIi (k=0,1,...,n). We will assume that the ma-
trices By, lk(Ag), BrAr — A (k=0,1,...,n) and D,,w(A,+1) are invertible.
Theorem 4. The matriz polynomial of the degree not higher than n + 1

. _ 1-1
Lyy1(F; A) Zlk )(BrA — Ay) [lk(Ak)(BkAk - Ak:)] F(Ap)+

+0(A) [Dneo(Ans1)|  DnF(Ani) (10)
satisfies the interpolation conditions
Lny1(Ag) = F(Ag) (k=0,1,...,n); Dplnii(Ani1) = DpF(Ani). (11)

Proof. Since l;(A;) = dkilk(Ax) (k,i = 0,1,...,n), where dx; is the Kronecker
symbol, and w(Ag) = 0 for the same values of k, then the first group of the
conditions in (11) is satisfied. By the formula (8)

Din (lk(A)(BkA A Hy - Hl) — Donlio(A; Hon - H) (BRA — Ay)+

+ Z Din—1ly(A; Hy -+ Hiy1Hi—q - - - Hy) Dy (BRA — Ay; Hy).

i1
Due to the fact that Dl(BkA — Ay H;) = ByH;, then for A = A, 11
Dp, (lk(A)(BkA Ap) H Hl)‘ = Bp(BrAns1 — Ap)+
A:An+1
‘I'ZDm k(A - Hiy1Hi_y--- Hy)BiH; = 0.

Taking into account the structure of the formula (10), we will obtain that
the last condition in equation (11) also holds. O

Using the interpolation polynomial (10), we can construct a formula for
approximate calculation of the Gateaux differential of the m-th (1 < m < n)
order from the function of the matrix argument F'(A) by its values at the nodes
Ag, A1, ..., An. Indeed, the relation

= Z lk(A)(BkA — Ak) [lk(Ak)(BkAk — Ak)] - F(Ak)+

£ 4) [ Do Anin)] DnF(Ani) + Ba(F3 4),

where R, (F;A) is the remainder term of the formula (10), holds true. Then,
expressing from the last equality D,, F(Ap+1), we will have

Dy F(Apy1) = Dypw(Apy1)w™H(A) (F(A) — ) le(A)(BrA — Ap)x

-1

X [lk(Ak:)(Bk:Ak - Ak)} F(Ag) — Ry (F; A)> : (12)
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Discarding in (12) the remainder term R, (F; A) of the formula (10), we will
obtain the required approximate formula for calculating the Gateaux differential

S F[A; Hy Hypoy -+ - Hy] 2 Dy (Apyr )w ™' (A) %

X (F(A) - i I(A)(BrA — Ay) [lk(Ak)(BkAk - Ak)} B F(Ak)> - (13)
k=0

Here, the matrix A must be such that the matrices entering into the formula
are invertible.

3. THE SOLVING MATRIX-DIFFERENTIAL EQUATIONS
Let X be the set of square stationary matrices of fixed size. We consider the
matrix equation containing the first-order Gateaux differential of the matrix
function

SU[A; H] = F(U, A), U(Ay) = Uy, A, H € X, (14)

where U(A) is a function of the matrix argument, F' is some generally non-
linear function of two arguments, dU[A; H] is the Gateaux differential at the
point A in the direction H satisfying the specified in (14) initial condition.

For the approximate solving the Cauchy problem (14), we use the formula
(13) for approximating the Gateaux differential of the matrix argument func-
tion. In our case it takes the form

SU[A; H] = dw[A; Hlw (A1) x (15)

n . Loq-1
X (U(An—i-l) — Zlk(An+1)(BkAn+1 — Ayg) [lk(Ak)(BkAk - Ak)} U(Ak)> ;
k=0
where By = By(A) = 0lx[A; H]|, Ay, = Ap(A) = Br(A)A + B (A)lk(A)x
X Bi(A)H. Here Ag, A1, ..., A, are the matrices from X such that the inverse
matrices in (15) exist.
Substituting (15) into (14), we obtain

dw[A; Hlw™ (Ant1) <Yn+1 = b(Aps1)(BrAni1 — Ag)x

k=0
|
X [lk(Ak)(BkAk - Ak)} Yk) = F (Y, A), Yo = U, (16)
where Y0, Y1,...,Yy41 is approximate solution of the problem (14) in the ma-
trix nodes Ag, A1, ..., Apt1. If now we substitute the matrix nodes Ay (k =

1,2,...,n+ 1) instead of A in (16), then we obtain the system (in the gen-
eral case, non-linear) matrix equations. Solving this system by some direct or
iterative method, we obtain the required approximate solution of the problem
(14).

Example. Let X be the set of square matrices of size 2. We consider the
Cauchy problem for the function of the matrix variable U(A), A € X

SU[A; H] = 3U(A) + 24, U(Ag) = Us, (17)
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where Ay = (0.312 0.467>’ Uy — <0.316 0.338>’ [’ (0.021 0.43)_

0.457 0.02 0.23 0.002 0.405 0.223

. . (011 0.032 ~(0.004 0.085
Let’s introduce the matrix nodes A1 = (0'223 0155), Ay = < 0.5 0‘305>,
Ao — (0234 0028, (0.051 0.291

370 02 0004) 747 \0.176 0.498)

For the approximate solving of the problem (14) we use the formula (16) for
n = 3. We construct a system of matrix equations. In this case, it is linear.
We have

3
0.316 0.338 _

x (Bu4)As — Ay(4)) [140) (BiA) 4k — Ar(a))] Yk> -

—3Y, +24;, i =1,2,3,4. (18)
Let’s present numerically the system of the matrix equations (18) to within
3 significant digits to determine the unknowns Yy, Y1,Ys, Y3, Y}

0.992  0.186 292 302 0.142 4.05
Yo=Uo, = <0.180 0.0380) Yo - <47.5 51.9> it (0.268 6.00> Y2t

2.49 —15.5 333 4.20 0.22  0.064
* (2.00 —12.3> Yat <0.815 0.606) Ya= <O.446 0.31 ) ’

248 141 1 2 246 2
( 8 )YO_(368 630>Yl_< 6 97>Y2+

—2.12 —12.1 ~1190 —2289 —235 285
—50.8  6.08 ~8.96 —14.4 0.008 0.17
* ( 52.1 —6.20) Yt ( 756 125 ) Ya= < 1.0 0.61) (19

820 —2.04 211 135 13.7 21.9
(1.83 —0.441) Yo~ <49.2 32.5) hit <2.06 3.15> Y2+
~10.2 347 712 120 0.468 0.056
+< 120 853 ) Y3 - (1.92 2.75) Ya= < 0.4 0.008> ’

14 662 2 4 2. 2
(0 9  0.66 >YO+(30 30)Y1+< 60 36)Y2+

~0.286 —0.975 ~363 —539 ~1.86 —2.36
~0.991  0.424 —14.4 —15.6 0.102 0.582
* ( 0.727 —0.138) Yat < 159 212 ) Ya= <0.352 0.996> '

The system of the matrix equations (19) can be written element-by-element,
having obtained a system of 20 linear algebraic equations with respect to 20
unknowns (elements of matrices Yy, Y1, Y2, Y3, Ys). Immediately excluding Yp
from the remaining matrix equations in (19), we will obtain the system of
16 linear algebraic equations that can be solved, for example, by the Gauss
method. According to this method, the solution of the system (19) has the
form

0.00221 0.00618 —0.0393 0.00504
Yo="Uo, 11= (—0.00177 —().00416) V2= < 0.0264 —0.0223> ’
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Y, — < 0.133 0.132 ) Y, — (-0.171 —0.546>'

—0.0130 —0.0395 0.148  0.455

The solution of the problem (17) obtained in the matrix nodes can be re-
stored using the matrix interpolation formula [2, p. 459] of the form L,o(A) =

z e(A) M (AR)F(Ag), where, as before, Ij(A) = (A — Ag) -+ (A — Ap_1)x

(A Agy1)---(A—A,) (k=0,1,...,n), satisfying the interpolation condi-
tions Lpo(Ag) = F(Ag) for K = 0,1,...,n. In our case, n = 4, F(A;) = Y}
(k=0,1,2,3,4) and U(A) = Y(A) = Lyo(A).

We introduce the matrices of the form A; = (4;_1+ A4;)/2 (i = 1,2,3,4) and
define the norms of the residual matrices between the left and right sides of
the matrix-differential equation of the problem (14). We calculate the Gateaux
differential 6Y[A; H] = 6Ly 0[A; H] by the known [10] formula 6Y [A;; H| =

= lim (A" [Y(4; + AH) - Y (4)] }.

We denote by R; = ||6Y [A;; H| — 3Y (4;) — 24,2, i = 1,2,3,4, where |||
is the spectral norm of the corresponding matrix [11]. In our case, these norms
are equal to R; = 0.699, Rs = 0.528, R3 = 0.959, R4 = 0.250. The numerical
experiment shows that the discrepancy between the left and right sides of the
equation (14) is small, however, the accuracy of the approximation is not high.
To obtain a higher accuracy of the solution it is necessary to involve more nodes
or to use other methods of approximating the matrix-differential operator.

Analogous methods for solving matrix-differential equations can be obtained
using the formulas of trigonometric, exponential, and other types of matrix
generalized Hermite-Birkhoff interpolation.

4. TRIGONOMETRIC INTERPOLATION
In [7] for 2m-periodic scalar functions the parametric family of trigonometric
interpolation polynomials of degree not higher than n 4 1 of the form

Q%P (2) Doy, (X
T2 (1) = Hy(a) + 222 2a+61(f 1), (20)
Don1(0,11525)

where anl( ) = (a51n§+ﬂcos—> Hsm a?+ 32 £0, Hy(z) is a

trigonometric interpolation polynomlal of degree not hlgher than n of Lagrange
type, and the differential operator Daoy,11f(x) is defined by the formula

d
dz’
is constructed. The polynomial (20) satisfies the interpolation conditions

T (@) = f(23) (1 =0,1,...,2n); Dop1(T55;2)) = Dansr (f;25).

We generalize the formula (20) in the case of functions of the matrix ar-
gument. Let X be the set of square matrices, F(z) be an entire 2m-periodic
function, z € C. In different matrix nodes A such that the matrices Ay — A,

Dopy1f(z) = (D* +n?) - (D* +1*)Df(z), D =
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(k,v = 0,1,...,2n) are invertible, the values F(Ag) of the function F(A),
A € X, are known. The value Doy, 11(F; Aj) of the matrix-differential operator
d

Don 1 F(A) = (D* +n?) -+ (D* + 12)DF(Z)‘Z:A7 D = 12 (21)

is also known in one of the nodes A;.
Let’s consider the differential operator of even order
Do F(A) = (D*+ (n—1)%)--- (D> +1*) D*F(2)| _, - (22)

The values of the operator for functions of the forms B F(A)Ba, F(cA + B)
and U(A)V(A) are calculated similarly, as are the values of the operator (4)
for functions of this type. We assume that DoF'(A) = F(A).

Let’s generalize the Leibniz formula (5) to the case of functions of the matrix
argument, and when the differential operators (21) and (22) are taken instead
of the derivatives. Is valid

Theorem 5. If the functions U(z) and V(z), z € C, are differentiable m times,
then the formula

Dy (U(A)V(A)) = Daps1 (U(A)V(A)) =D C Dy kU(A) DV (A),  (23)
k=0

Dy (U(A)V(A)) = Dapya (U(A)V(A)) = > Ch Dy kU (A) DV (A)—

k=0
m(m — 1) e
_? Z CﬁL—QDm—k‘—QU(A>DkV(A>7 A S Xa = 07 ]-a ey
k=1,3,...
1s valid.

The proof of the theorem 5 repeats the proof of the analogous theorem for
the scalar case [8, p. 18-21|. In this case, the order of the multipliers in the
matrix products must be strictly preserved: the values of the operators (21),
(22) from the function U(A) should be located to the left of the values of these
operators from the function V(A).

Lemma 1. For trigonometric polynomials of the form

P,(A) A, A B -'-Smﬂ,
2 2 2
where By, Ba, ..., By are some matrices from X, the following identities are
valid
D;P,(A)=0,j=2n+1,2n+2,... (24)

Proof. Let’s apply the method of mathematical induction. When n =1
A— B A— By

Pi(A) =sin 5 sin 5
and by the formula (23) for m = 3 we have
A-B A-B A-B A-B
D3Pi(A) = Dsin — L sin 5 2 4+ 3Dysin 5 L. Dy sin 5 24+
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3D sin AP pyan AP L AP p g AP
Since
DlsinA_Bk :DsinA;Bk = %COSA;Bk,
Dy sin 4= B :D2sinA_ZBk :—isinA_QBk,
Dgsinﬁ = (D*+ D) sinA_QBk = gcosA;Bk (k=1,2),

then D3P (A) = 0.

For the operator (21), (22) the properties Doy y2F(A) = DDapi1F(A),
Dopi3F(A) = (D? + (n + 1)) Dy F(A), n € N, where F(A) is some matrix
function for which the values of the operators (21) and (22) at the point A € X
exist, are hold. Then it is obvious that D;Pi(A) =0 when j =4,5, ...

Let’s suppose that the relations (24) hold when n = k. We will show that
they are true when n = k + 1. By the formula (23) for m = 2k + 3 we have

2%+3
Dogi3Pp11(A) = Dogy3 (Pk(A)Pl(A)) =) Ciy3Darss—iPu(A) - DiPi(A),
i=0

where

A—-B -

241 o A Bak+2

2 2
For i < 2, by assumption, the identities Dogy3-iPr(A) = 0 hold, and when
i > 2 the identities D; P1(A) = 0 are valid. Therefore Dogy3Pp11(A) =0. O

Pi(A) = sin

Let o and 8 be some fixed matrices from X that are not simultaneously zero.

Theorem 6. The trigonometric polynomial
Tn+1(A) = Tn—i—l(A; «, ﬁ) =

= Hu(A) + Qi1 (A) [D2nt1(Qni1; Ani1)] ™ Doni1(F; Angr),  (25)

where
2n
Hy(A) =) W (AU, (Ap)F(Ap), (26)
k=0
Uy (A) = sn A=A g AT A g AT A A A
2 2 2
2n
_ . A A . A— A
Qni1(A) = Q1(450,8) = <a sin = + B cos 2) kl:[()sm 5
satisfies the interpolation conditions
Tn+1(Ak) = F(Ak?) (k = Oa ]-a .. ,2’”)7
Daopi1(Thg1; Azng1) = Danga (F5 Aangr). (27)
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Proof. Since Vy(A;) = 0k Vi (Ag), where 0y; is the Kronecker symbol (k,i =
=0,1,...,2n), then the polynomial (26) coincides with the operator F'(A) at
the interpolation nodes Ag, Ay, ..., Aa,. It’s obvious that €,,11(A;) = 0 when
k = 0,2n. Therefore, the polynomial (25) coincides with F(A) at the above-
mentioned interpolation nodes.

We show that the last condition in (27) also holds. By the lemma
Dopi1Vi(A) =0for k=0,1,...,2n,s0 Dopr1Hp(A) = 0. Taking into account
the structure of the formula (25), we obtain that the condition stated above for
the polynomial T),+1(A) is satisfied. O

5. CONCLUSION

In this work we obtained the following new results: interpolation formulas
for functions of a scalar argument are generalized to the case of operators
defined in functional spaces and on the set of matrices. The algebraic operator
and matrix interpolation Hermite—Birkhoff polynomials are constructed, as well
as the parametric family of trigonometric matrix interpolation polynomials of
Hermite type. Theorems on the fulfillment of the interpolation conditions are
proved. For the operator interpolation formula, a class of polynomials for which
it is exact is found. Matrix analogues of the Leibniz formula for linear matrix-
differential operators of a special form are constructed. Based on the matrix
algebraic interpolation polynomial, the formula for the approximation of the
Gateaux differential of an arbitrary order of the matrix argument function is
obtained. This formula is used in the construction of the approximate method
for solving the Cauchy problem with a matrix-differential equation of the first
order. In the computer algebra system, the illustrative example of a numerical
solving the Cauchy problem of the indicated type is realized.
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