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Ðåçþìå. Ó ðîáîòi ïîáóäîâàíî àëãåáðà¨÷íó ôîðìóëó òèïó Åðìiòà äëÿ
îïåðàòîðiâ, âèçíà÷åíèõ ó ôóíêöiîíàëüíèõ ïðîñòîðàõ. Iíòåðïîëÿöiéíà
ôîðìóëà ïîäiáíîãî âèäó, ÿêà ìiñòèòü çíà÷åííÿ äèôåðåíöiàëiâ Ãàòî äî-
âiëüíîãî ïîðÿäêó, ïîáóäîâàíà íà ìíîæèíi ìàòðèöü. Îòðèìàíî ìàòðèöþ,
àíàëîãi÷íó äî ôîðìóëè Ëåéáíiöà. Ñêîíñòðóéîâàíî ôîðìóëó àïðîêñèìàöi¨
äèôåðåíöiàëiâ Ãàòî äîâiëüíîãî ïîðÿäêó ç ìàòðè÷íèìè àðãóìåíòàìè. Íà
îñíîâi ìàòðè÷íî¨ iíòåðïîëÿöiéíî¨ ôîðìóëè òèïó Åðìiòà ïîáóäîâàíî ÷è-
ñåëüíèé ìåòîä äëÿ ðîçâ'ÿçóâàííÿ çàäà÷i Êîøi äëÿ ìàòðè÷íî-äèôåðåíöià-
ëüíîãî ðiâíÿííÿ. Ïðîäåìîíñòðîâàíî ïðèêëàä ÷èñåëüíîãî ðîçâ'ÿçóâàííÿ
çàäà÷i Êîøi äëÿ ìàòðè÷íî-äèôåðåíöiàëüíîãî ðiâíÿííÿ ïåðøîãî ïîðÿäêó.
Ïîáóäîâàíî i äîñëiäæåíî ïàðàìåòðè÷íå ñiìåéñòâî òðèãîíîìåòðè÷íèõ ìàò-
ðè÷íèõ iíòåðïîëÿöiéíèõ ïîëiíîìiâ òèïó Åðìiòà-Áiðêãîôà.
Abstract. For operators de�ned in function spaces, the algebraic interpo-
lation formula of Hermite type is constructed. The interpolation formula of
similar type, containing the value of the Gateaux di�erential of an arbitrary
order, is constructed for operators on the set of matrices. Matrix analogues
of the Leibniz formula are obtained. The formula for approximate calcula-
tion of the Gateaux di�erential of an arbitrary order of the matrix argument
function is constructed. Based on the matrix interpolation formula of the Her-
mite type, the approximate method for solving the Cauchy problem for the
matrix-di�erential equation is obtained. The illustrative example of approxi-
mate solving the Cauchy problem for a �rst-order matrix-di�erential equation
is constructed. A parametric family of trigonometric matrix interpolation
polynomials of Hermite-Birkho� type is constructed and investigated.

1. Introduction
The fundamentals of the theory of operator interpolation are given in [1, 2].

Here, in particular, the problem of operator interpolation of Hermite-Birkho�
type is investigated. The complexity of this problem lies in the fact that even
with di�erent interpolation nodes it can either have a non-unique solution, or do
not have a solution at all. Some basics of matrix interpolation are also contained
in [1, 2]. The theory of matrix interpolation is quite fully given in [3]. The
papers [4�6] are devoted to the construction and research of Hermite-Birkho�
generalized matrix interpolation formulas for concrete Chebyshev systems.

Key words. Generalized interpolation of Hermite-Birkho� type, Gateaux di�erential, Leib-
niz formula, matrix argument function, Cauchy problem for the matrix-di�erential equation.
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In the given work the interpolation formulas for functions of a scalar ar-
gument, constructed and investigated in [7, 8], are summarized to the case of
operators de�ned in functional spaces and on the set of matrices. When prov-
ing the theorems on the ful�llment of interpolation conditions for the respective
polynomials, matrix analogues of the Leibniz formula are used, which are also
obtained in this work. The parametric family of trigonometric matrix Hermite-
Birkho� polynomials is constructed.

2. Algebraic interpolation
Let X be a certain given set of functions x = x(s), de�ned on the segment

[a, b], Y =
{
y(s, t), t ∈ T ⊂ RN

}
� some function space where T is a given

numerical set of N -dimensional space RN , and let F (x) ≡ F (t; x(s)) be an
operator mapping X into Y . Let's assume that in the various elements xk =
xk(s) (k = 0, 1, . . . , n) of the set X, such that xk(s) 6= xν(s) on [a, b], the
values F (xk) of the operator F (x), x ∈ X are known. We choose in the set
X functions h1(s), h2(s), . . . , hn+1(s) such that h1(s)h2(s) · · ·hn+1(s) 6= 0 on
[a, b]. Let the value Dn+1(F ; xn+1) of the operator of the form

Dn+1F (x) = δn+1F [x;h1h2 · · ·hn+1],

where δn+1F [x; h1h2 · · ·hn+1] is the Gateaux di�erential of the order n + 1 of
the operator F (x) at the point x in the directions h1, h2, . . . , hn+1, be known
in the node xn+1 = xn+1(s) ∈ X.

We now consider further the operator polynomials Pn+1 : X → Y of the
form

Pn+1(x) =
n+1∑

ν=0

aν(t, s)xν(s), (1)

where aν(t, s) are some functions of the variables t and s.
We introduce the polynomials ln,k(x) = (x − x0)(x − x1) · · · (x − xk−1)×

×(x− xk+1) · · · (x− xn), ωn(x) = (x− x0)(x− x1) · · · (x− xn).

Theorem 1. The interpolation polynomial

L̃n+1(x) = Ln(x) +
ωn(x)Dn+1F (xn+1)
(n + 1)!h1h2 · · ·hn+1

,

where

Ln(x) =
n∑

k=0

ln,k(x)F (xk)
ln,k(xk)

, (2)

satis�es the interpolation conditions

L̃n+1(xk) = F (xk) (k = 0, 1, . . . , n);

Dn+1

(
L̃n+1; xn+1

)
= Dn+1(F ;xn+1). (3)

The formula (2) is exact for the operator polynomials of the type (1) of the
degree not higher than n + 1.

70



ALGEBRAIC AND TRIGONOMETRIC GENERALIZED ...

Proof. Since ln,k(xi) = δkiln,k(xk), where δki is the Kronecker symbol, and
ωn(xk) = 0, k, i = 0, 1, . . . , n, then the ful�llment of the �rst group of interpo-
lation conditions in (3) is obvious.

Since δn+1Pn[x;h1h2 · · ·hn+1] ≡ 0, where Pn(x) is an arbitrary operator alge-
braic polynomial of a degree not higher than n, then δn+1Ln[x; h1h2 · · ·hn+1] ≡
≡ 0. It is also obvious that δn+1ωn[x; h1h2 · · ·hn+1] = (n + 1)!h1h2 · · ·hn+1.
Taking into account the structure of the polynomial (2), we will obtain that
the last condition in (3) also holds.

We now prove the invariance of the formula (2) with respect to the polyno-
mials of the form (1) of the degree not higher than n + 1. If F (x) = Pn(x),
where Pn(x) is a polynomial of the form (1) of the degree not higher than
n, then as is known in [2, p. 361], Ln(Pn; x) ≡ Pn(x). And since in this
case Dn+1Pn(x) ≡ 0, then L̃n+1(Pn;x) ≡ Pn(x). Let further suppose F (x) =
P̃n+1(x) = = xn+1(s), then Dn+1P̃n+1(x) = (n + 1)!h1h2 · · ·hn+1, and

L̃n+1(P̃n+1; x) = Ln(P̃n+1; x) + ωn(x).

By analogy with to the scalar case [7, p. 6], L̃n+1

(
P̃n+1; x

)
≡ P̃n+1(x).

Thus, the formula (2) is exact for operator polynomials of the form (1) of the
degree not higher than n + 1. ¤

We now consider the problem of interpolating operators on the set of ma-
trices. Let X be the set of functional or stationary square matrices A = A(t),
t ∈ T ⊂ ⊂ R. Let's introduce di�erential operator of type

DnF (A) =
dnF (z)

dzn

∣∣∣∣
z=A

, D =
d

dz
, z ∈ C, A ∈ X, (4)

where F (z) is the entire function.
The value of the operator (4) for the matrix function of the type B1F (A)B2,

where B1 and B2 are some �xed matrices from X, is calculated by the formula
Dn (B1F (A)B2) = B1D

nF (A)B2. The operator D, which is included in (4), for
the function of the type F (cA+B), where c ∈ C, and B is a certain �xed matrix
of X, de�ned by the equality DF (cA+B) = cF ′(z)|z=cA+B, and for the product
U(A)V (A) by the formula D (U(A)V (A)) = DU(A)V (A)+U(A)DV (A). In the
last expression, it is important in what order the multipliers in matrix products
are taken. For example, D (V (A)U(A)) = DV (A)U(A) + V (A)DU(A), and in
the general case, D (U(A)V (A)) 6= D (V (A)U(A)). Similarly, the values of
higher-order operators are calculated, as well as operators from the products of
functions with a number of multipliers more than two.

In mathematical analysis, the Leibniz formula for the derivative of n-th order
(n ∈ N) of the product of two scalar functions is known [9]

(u(z) · v(z))(n) =
n∑

k=0

Ck
nu(n−k)(z)v(k)(z), where Ck

n =
n!

k!(n− k)!
, (5)

which holds if the functions u(z) and v(z) are n times di�erentiable at the
point z ∈ C. We generalize this formula to the case of functions of the matrix
argument and operator of the type (4).
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Theorem 2. If the functions U(z) and V (z), z ∈ C, are di�erentiable n times,
then the formula

Dn (U(A)V (A)) =
n∑

k=0

Ck
nDkU(A)Dn−kV (A), A ∈ X, (6)

is valid.
Proof. We apply the method of mathematical induction. When n = 1 we will
have

D1 (U(A)V (A)) = DU(A)V (A) + U(A)DV (A) =
= C0

1D1U(A)V (A) + C1
1U(A)D1V (A).

Let's assume that the formula (6) is exact for n = k. We prove that it also
holds for n = k + 1.

Dk+1 (U(A)V (A)) = D

[
n∑

k=0

Ck
nDkU(A)Dn−kV (A)

]
=

=
n∑

k=0

Ck
n

[
Dk+1U(A)Dn−kV (A) + DkU(A)Dn−k+1V (A)

]
=

= C0
nD0U(A)Dn+1V (A) +

n∑

k=1

(
Ck−1

n + Ck
n

)
DkU(A)Dn−k+1V (A)+

+Cn
nDn+1U(A)D0V (A).

Since Ck−1
n + Ck

n = Ck
n+1, C0

n = C0
n+1 = 1, Cn

n = Cn+1
n+1 = 1, then

Dk+1 (U(A)V (A)) =
n+1∑

k=0

Ck
n+1D

kU(A)Dn+1−kV (A).

¤
We now introduce the di�erential operator of the form
D̃n+1F (A) ≡ D̃n+1F (A; Hn+1Hn · · ·H1) = δn+1F [A; Hn+1Hn · · ·H1], (7)

where δn+1F [A; Hn+1Hn · · ·H1] is Gateaux di�erential of order n + 1 at the
point A ∈ X in the directions H1,H2, . . . , Hn+1 from X. We assume that
D̃0F (A) ≡ F (A).
Theorem 3. If the functions U(A) and V (A) are Gateaux di�erentiable n
times at the point A ∈ X, then the formula

D̃n (U(A)V (A); HnHn−1 · · ·H1) = (8)

=
n∑

k=0

∑

i1,...,ik
j1,...,jn−k

D̃kU(A; HikHik−1
· · ·Hi1)D̃n−kV (A; Hjn−k

Hjn−k−1
· · ·Hj1)

holds true.
Here, for each value of k (0 ≤ k ≤ n) the summation is over for all disjoint

sets (i1, i2, . . . , ik) and (j1, j2, . . . , jn−k) such that 1 ≤ i1 < i2 < . . . < ik ≤ n;
1 ≤ j1 < j2 < . . . < jn−k ≤ n.
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Proof. We use, as in the proof of theorem 2, the method of mathematical in-
duction. If n = 1 by the de�nition of the Gateaux di�erential we will have

D̃1 (U(A)V (A); H1) = δ [U(A)V (A); H1] = lim
λ→0

(
U(A + λH1)V (A + λH1)

λ
−

−U(A)V (A)
λ

)
= lim

λ→0

(
U(A + λH1)V (A + λH1)− U(A)V (A + λH1)

λ
+

+
U(A)V (A + λH1)− U(A)V (A)

λ

)
= δU [A; H1]V (A) + U(A)δV [A; H1] =

= D̃1U(A; H1)V (A) + U(A)D̃1V (A; H1). (9)
Hereinafter the expression of the form δ [U(A)V (A); H1] should be understood
as the Gateaux di�erential δW [A; H1], respectively, of the function W (A) =
= U(A)V (A) at the point A in the direction H1.

Let's suppose that formula (8) is true when n = m. We show that it holds
for n = m + 1. From (7) � (9) we have

D̃m+1 (U(A)V (A); Hm+1 · · ·H1) = δ
[
D̃m (U(A)V (A); Hm · · ·H1) ; Hm+1

]
=

=
n∑

k=0

∑

i1,...,ik
j1,...,jn−k

(
D̃k+1U (A; Hn+1Hik · · ·Hi1) D̃n−kV

(
A; Hjn−k

· · ·Hj1

)
+

+D̃kU (A; Hik · · ·Hi1) D̃n+1−kV
(
A; Hn+1Hjn−k

· · ·Hj1

))
=

=
n+1∑

k=0

∑

i1,...,ik
j1,...,jn+1−k

D̃kU (A; Hik · · ·Hi1) D̃n+1−kV
(
A; Hjn+1−k

· · ·Hj1

)
.

Here the summation is carried out in the same way as in the formulation
of the theorem, while 1 ≤ i1 < i2 < . . . < ik ≤ n + 1; 1 ≤ j1 < j2 < . . . <
< jn+1−k ≤ n + 1. ¤

In the special case, for example, for n = 3 the formula (8) has the form
D̃3 (U(A)V (A);H3H2H1) = D̃3U (A; H3H2H1) V (A) + D̃2U (A;H3H2)×

×D̃1V (A;H1) + D̃2U (A;H3H1) D̃1V (A; H2) + D̃2U (A; H2H1)×
×D̃1V (A;H3) + D̃1U (A; H1) D̃2V (A; H3H2) + D̃1U (A;H2)×

×D̃2V (A; H3H1) + D̃1U (A; H3) D̃2V (A;H2H1) + U(A)D̃3V (A; H3H2H1) .

We suppose that in the elements Ak(t) of the set X such that Ak(t) −
Aν(t) are invertible matrices, t ∈ T , k, ν = 0, 1, . . . , n, k 6= ν, the values
of the operator F (A) are known, as well as at the node An+1(t) the value
D̃mF (An+1) ≡ D̃mF (An+1; HmHm−1 · · ·H1) of the operator (7) from F (A),
where 1 ≤ m ≤ n, Hk ∈ X (k = 1, 2, . . . , m) is known. Let's introduce the nota-
tions ω(A) = (A−A0)(A−A1) · · · (A−An), lk(A) = (A−A0) · · · (A−Ak−1)(A−
−Ak+1) · · · (A−An), Bk = D̃mlk(An+1), Ãk = BkAn+1+B−1

k

m∑
i=1

D̃m−1lk(An+1;
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Hm · · ·Hi+1Hi−1 · · ·H1)BkHi (k = 0, 1, . . . , n). We will assume that the ma-
trices Bk, lk(Ak), BkAk − Ãk (k = 0, 1, . . . , n) and D̃mω(An+1) are invertible.
Theorem 4. The matrix polynomial of the degree not higher than n + 1

L̃n+1(F ; A) =
n∑

k=0

lk(A)(BkA− Ãk)
[
lk(Ak)(BkAk − Ãk)

]−1
F (Ak)+

+ω(A)
[
D̃mω(An+1)

]−1
D̃mF (An+1) (10)

satis�es the interpolation conditions
L̃n+1(Ak) = F (Ak) (k = 0, 1, . . . , n); D̃mL̃n+1(An+1) = D̃mF (An+1). (11)

Proof. Since lk(Ai) = δkilk(Ak) (k, i = 0, 1, . . . , n), where δki is the Kronecker
symbol, and ω(Ak) = 0 for the same values of k, then the �rst group of the
conditions in (11) is satis�ed. By the formula (8)

D̃m

(
lk(A)(BkA− Ãk);Hm · · ·H1

)
= D̃mlk(A;Hm · · ·H1)(BkA− Ãk)+

+
m∑

i=1

D̃m−1lk(A; Hm · · ·Hi+1Hi−1 · · ·H1)D̃1(BkA− Ãk; Hi).

Due to the fact that D̃1(BkA− Ãk; Hi) = BkHi, then for A = An+1

D̃m

(
lk(A)(BkA− Ãk);Hm · · ·H1

)∣∣∣
A=An+1

= Bk(BkAn+1 − Ãk)+

+
m∑

i=1

D̃m−1lk(A; Hm · · ·Hi+1Hi−1 · · ·H1)BkHi = 0.

Taking into account the structure of the formula (10), we will obtain that
the last condition in equation (11) also holds. ¤

Using the interpolation polynomial (10), we can construct a formula for
approximate calculation of the Gateaux di�erential of the m-th (1 ≤ m ≤ n)
order from the function of the matrix argument F (A) by its values at the nodes
A0, A1, . . . , An. Indeed, the relation

F (A) =
n∑

k=0

lk(A)(BkA− Ãk)
[
lk(Ak)(BkAk − Ãk)

]−1
F (Ak)+

+ω(A)
[
D̃mω(An+1)

]−1
D̃mF (An+1) + Rn(F ;A),

where Rn(F ; A) is the remainder term of the formula (10), holds true. Then,
expressing from the last equality D̃mF (An+1), we will have

D̃mF (An+1) = D̃mω(An+1)ω−1(A)

(
F (A)−

n∑

k=0

lk(A)(BkA− Ãk)×

×
[
lk(Ak)(BkAk − Ãk)

]−1
F (Ak)−Rn(F ; A)

)
. (12)
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Discarding in (12) the remainder term Rn(F ; A) of the formula (10), we will
obtain the required approximate formula for calculating the Gateaux di�erential

δmF [A; HmHm−1 · · ·H1] ∼= D̃mω(An+1)ω−1(A)×

×
(

F (A)−
n∑

k=0

lk(A)(BkA− Ãk)
[
lk(Ak)(BkAk − Ãk)

]−1
F (Ak)

)
. (13)

Here, the matrix A must be such that the matrices entering into the formula
are invertible.

3. The solving matrix-differential equations
Let X be the set of square stationary matrices of �xed size. We consider the

matrix equation containing the �rst-order Gateaux di�erential of the matrix
function

δU [A; H] = F (U,A), U(A0) = U0, A, H ∈ X, (14)
where U(A) is a function of the matrix argument, F is some generally non-
linear function of two arguments, δU [A;H] is the Gateaux di�erential at the
point A in the direction H satisfying the speci�ed in (14) initial condition.

For the approximate solving the Cauchy problem (14), we use the formula
(13) for approximating the Gateaux di�erential of the matrix argument func-
tion. In our case it takes the form

δU [A; H] = δω[A;H]ω−1(An+1)× (15)

×
(

U(An+1)−
n∑

k=0

lk(An+1)(BkAn+1 − Ãk)
[
lk(Ak)(BkAk − Ãk)

]−1
U(Ak)

)
,

where Bk = Bk(A) = δlk[A; H], Ãk = Ãk(A) = Bk(A)A + B−1
k (A)lk(A)×

×Bk(A)H. Here A0, A1, . . . , An are the matrices from X such that the inverse
matrices in (15) exist.

Substituting (15) into (14), we obtain

δω[A; H]ω−1(An+1)

(
Yn+1 −

n∑

k=0

lk(An+1)(BkAn+1 − Ãk)×

×
[
lk(Ak)(BkAk − Ãk)

]−1
Yk

)
= F (Y, A), Y0 = U0, (16)

where Y0, Y1, . . . , Yn+1 is approximate solution of the problem (14) in the ma-
trix nodes A0, A1, . . . , An+1. If now we substitute the matrix nodes Ak (k =
1, 2, . . . , n + 1) instead of A in (16), then we obtain the system (in the gen-
eral case, non-linear) matrix equations. Solving this system by some direct or
iterative method, we obtain the required approximate solution of the problem
(14).
Example. Let X be the set of square matrices of size 2. We consider the

Cauchy problem for the function of the matrix variable U(A), A ∈ X

δU [A; H] = 3U(A) + 2A, U(A0) = U0, (17)
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where A0 =
(

0.312 0.467
0.457 0.02

)
, U0 =

(
0.316 0.338
0.23 0.002

)
, H =

(
0.021 0.43
0.405 0.223

)
.

Let's introduce the matrix nodes A1 =
(

0.11 0.032
0.223 0.155

)
, A2 =

(
0.004 0.085
0.5 0.305

)
,

A3 =
(

0.234 0.028
0.2 0.004

)
, A4 =

(
0.051 0.291
0.176 0.498

)
.

For the approximate solving of the problem (14) we use the formula (16) for
n = 3. We construct a system of matrix equations. In this case, it is linear.
We have

Y0 = U0 =
(

0.316 0.338
0.23 0.002

)
, δω[Ai; H]ω−1(A4)

(
Y4 −

3∑

k=0

lk(A4) ×

×
(
Bk(Ai)A4 − Ãk(Ai)

) [
lk(Ak)

(
Bk(Ai)Ak − Ãk(Ai)

)]−1
Yk

)
=

= 3Yi + 2Ai, i = 1, 2, 3, 4. (18)
Let's present numerically the system of the matrix equations (18) to within

3 signi�cant digits to determine the unknowns Y0, Y1, Y2, Y3, Y4

Y0 = U0, −
(

0.992 0.186
0.180 0.0380

)
Y0 −

(
292 302
47.5 51.9

)
Y1 +

(
0.142 4.05
0.268 6.00

)
Y2 +

+
(

2.49 −15.5
2.00 −12.3

)
Y3 +

(
3.33 4.20
0.815 0.606

)
Y4 =

(
0.22 0.064
0.446 0.31

)
,

(
2.48 14.1
−2.12 −12.1

)
Y0 −

(
1368 2630
−1190 −2289

)
Y1 −

(
246 297
−235 −285

)
Y2 +

+
(−50.8 6.08

52.1 −6.20

)
Y3 +

(−8.96 −14.4
7.56 12.5

)
Y4 =

(
0.008 0.17
1.0 0.61

)
, (19)

(
8.20 −2.04
1.83 −0.441

)
Y0 −

(
211 135
49.2 32.5

)
Y1 +

(
13.7 21.9
2.06 3.15

)
Y2 +

+
(−10.2 −34.7

1.20 8.53

)
Y3 −

(
7.12 12.0
1.92 2.75

)
Y4 =

(
0.468 0.056
0.4 0.008

)
,

(
0.149 0.662
−0.286 −0.975

)
Y0 +

(
230 340
−363 −539

)
Y1 +

(
2.60 3.26
−1.86 −2.36

)
Y2 +

+
(−0.991 0.424

0.727 −0.138

)
Y3 +

(−14.4 −15.6
15.9 21.2

)
Y4 =

(
0.102 0.582
0.352 0.996

)
.

The system of the matrix equations (19) can be written element-by-element,
having obtained a system of 20 linear algebraic equations with respect to 20
unknowns (elements of matrices Y0, Y1, Y2, Y3, Y4). Immediately excluding Y0

from the remaining matrix equations in (19), we will obtain the system of
16 linear algebraic equations that can be solved, for example, by the Gauss
method. According to this method, the solution of the system (19) has the
form

Y0 = U0, Y1 =
(

0.00221 0.00618
−0.00177 −0.00416

)
, Y2 =

(−0.0393 0.00504
0.0264 −0.0223

)
,
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Y3 =
(

0.133 0.132
−0.0130 −0.0395

)
, Y4 =

(−0.171 −0.546
0.148 0.455

)
.

The solution of the problem (17) obtained in the matrix nodes can be re-
stored using the matrix interpolation formula [2, p. 459] of the form Ln0(A) =
n∑

k=0

lk(A)l−1
k (Ak)F (Ak), where, as before, lk(A) = (A − A0) · · · (A − Ak−1)×

×(A − Ak+1) · · · (A − An) (k = 0, 1, . . . , n), satisfying the interpolation condi-
tions Ln0(Ak) = F (Ak) for k = 0, 1, . . . , n. In our case, n = 4, F (Ak) = Yk

(k = 0, 1, 2, 3, 4) and U(A) ≈ Y (A) = L4,0(A).
We introduce the matrices of the form Āi = (Ai−1 +Ai)/2 (i = 1, 2, 3, 4) and

de�ne the norms of the residual matrices between the left and right sides of
the matrix-di�erential equation of the problem (14). We calculate the Gateaux
di�erential δY [A; H] = δL4,0[A; H] by the known [10] formula δY

[
Āi;H

]
=

= lim
λ→0

{
λ−1

[
Y (Āi + λH)− Y (Āi)

]}
.

We denote by Ri = ‖δY [
Āi; H

]− 3Y
(
Āi

)− 2Āi‖2, i = 1, 2, 3, 4, where ‖·‖2

is the spectral norm of the corresponding matrix [11]. In our case, these norms
are equal to R1 = 0.699, R2 = 0.528, R3 = 0.959, R4 = 0.250. The numerical
experiment shows that the discrepancy between the left and right sides of the
equation (14) is small, however, the accuracy of the approximation is not high.
To obtain a higher accuracy of the solution it is necessary to involve more nodes
or to use other methods of approximating the matrix-di�erential operator.

Analogous methods for solving matrix-di�erential equations can be obtained
using the formulas of trigonometric, exponential, and other types of matrix
generalized Hermite-Birkho� interpolation.

4. Trigonometric interpolation
In [7] for 2π-periodic scalar functions the parametric family of trigonometric

interpolation polynomials of degree not higher than n + 1 of the form

Tα,β
n+1(x) = Hn(x) +

Ωα,β
n+1(x)D2n+1(f ; xj)

D2n+1(Ω
α,β
n+1;xj)

, (20)

where Ωα,β
n+1(x) =

(
α sin

x

2
+ β cos

x

2

) 2n∏
k=0

sin
x− xk

2
, α2 + β2 6= 0, Hn(x) is a

trigonometric interpolation polynomial of degree not higher than n of Lagrange
type, and the di�erential operator D2n+1f(x) is de�ned by the formula

D2n+1f(x) = (D2 + n2) · · · (D2 + 12)Df(x), D =
d

dx
,

is constructed. The polynomial (20) satis�es the interpolation conditions

Tα,β
n+1(xi) = f(xi) (i = 0, 1, . . . , 2n); D2n+1(T

α,β
n+1; xj) = D2n+1(f ;xj).

We generalize the formula (20) in the case of functions of the matrix ar-
gument. Let X be the set of square matrices, F (z) be an entire 2π-periodic
function, z ∈ C. In di�erent matrix nodes Ak such that the matrices Ak − Aν
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(k, ν = 0, 1, . . . , 2n) are invertible, the values F (Ak) of the function F (A),
A ∈ X, are known. The value D2n+1(F ;Aj) of the matrix-di�erential operator

D2n+1F (A) = (D2 + n2) · · · (D2 + 12)DF (z)
∣∣
z=A

, D =
d

dz
, (21)

is also known in one of the nodes Aj .
Let's consider the di�erential operator of even order

D2nF (A) =
(
D2 + (n− 1)2

) · · · (D2 + 12
)
D2F (z)

∣∣
z=A

. (22)

The values of the operator for functions of the forms B1F (A)B2, F (cA + B)
and U(A)V (A) are calculated similarly, as are the values of the operator (4)
for functions of this type. We assume that D0F (A) ≡ F (A).

Let's generalize the Leibniz formula (5) to the case of functions of the matrix
argument, and when the di�erential operators (21) and (22) are taken instead
of the derivatives. Is valid
Theorem 5. If the functions U(z) and V (z), z ∈ C, are di�erentiable m times,
then the formula

Dm (U(A)V (A)) = D2p+1 (U(A)V (A)) =
m∑

k=0

Ck
mDm−kU(A)DkV (A), (23)

Dm (U(A)V (A)) = D2p+2 (U(A)V (A)) =
m∑

k=0

Ck
mDm−kU(A)DkV (A)−

−m(m− 1)
4

m−3∑

k=1,3,...

Ck
m−2Dm−k−2U(A)DkV (A), A ∈ X, p = 0, 1, . . . ,

is valid.
The proof of the theorem 5 repeats the proof of the analogous theorem for

the scalar case [8, p. 18-21]. In this case, the order of the multipliers in the
matrix products must be strictly preserved: the values of the operators (21),
(22) from the function U(A) should be located to the left of the values of these
operators from the function V (A).
Lemma 1. For trigonometric polynomials of the form

Pn(A) = sin
A−B1

2
sin

A−B2

2
· · · sin A−B2n

2
,

where B1, B2, . . . , B2n are some matrices from X, the following identities are
valid

DjPn(A) ≡ 0, j = 2n + 1, 2n + 2, . . . (24)

Proof. Let's apply the method of mathematical induction. When n = 1

P1(A) = sin
A−B1

2
sin

A−B2

2
,

and by the formula (23) for m = 3 we have

D3P1(A) = D3 sin
A−B1

2
· sin A−B2

2
+ 3D2 sin

A−B1

2
·D1 sin

A−B2

2
+
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+3D1 sin
A−B1

2
·D2 sin

A−B2

2
+ sin

A−B1

2
·D3 sin

A−B2

2
.

Since
D1 sin

A−Bk

2
= D sin

A−Bk

2
=

1
2

cos
A−Bk

2
,

D2 sin
A−Bk

2
= D2 sin

A−Bk

2
= −1

4
sin

A−Bk

2
,

D3 sin
A−Bk

2
=

(
D3 + D

)
sin

A−Bk

2
=

3
8

cos
A−Bk

2
(k = 1, 2),

then D3P1(A) ≡ 0.
For the operator (21), (22) the properties D2n+2F (A) = DD2n+1F (A),

D2n+3F (A) =
(
D2 + (n + 1)2

)
D2n+1F (A), n ∈ N, where F (A) is some matrix

function for which the values of the operators (21) and (22) at the point A ∈ X
exist, are hold. Then it is obvious that DjP1(A) ≡ 0 when j = 4, 5, . . .

Let's suppose that the relations (24) hold when n = k. We will show that
they are true when n = k + 1. By the formula (23) for m = 2k + 3 we have

D2k+3Pk+1(A) = D2k+3

(
Pk(A)P̃1(A)

)
=

2k+3∑

i=0

Ci
2k+3D2k+3−iPk(A) ·DiP̃1(A),

where
P̃1(A) = sin

A−B2k+1

2
sin

A−B2k+2

2
.

For i ≤ 2, by assumption, the identities D2k+3−iPk(A) ≡ 0 hold, and when
i > 2 the identities DiP̃1(A) ≡ 0 are valid. Therefore D2k+3Pk+1(A) ≡ 0. ¤

Let α and β be some �xed matrices from X that are not simultaneously zero.

Theorem 6. The trigonometric polynomial
Tn+1(A) ≡ Tn+1(A; α, β) =

= Hn(A) + Ωn+1(A)
[
D2n+1(Ωn+1; An+1)

]−1
D2n+1(F ; An+1), (25)

where

Hn(A) =
2n∑

k=0

Ψk(A)Ψ−1
k (Ak)F (Ak), (26)

Ψk(A) = sin
A−A0

2
· · · sin A−Ak−1

2
sin

A−Ak+1

2
· · · sin A−A2n

2
,

Ωn+1(A) ≡ Ωn+1(A; α, β) =
(

α sin
A

2
+ β cos

A

2

) 2n∏

k=0

sin
A−Ak

2
,

satis�es the interpolation conditions
Tn+1(Ak) = F (Ak) (k = 0, 1, . . . , 2n);

D2n+1(Tn+1;A2n+1) = D2n+1(F ; A2n+1). (27)
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Proof. Since Ψk(Ai) = δkiΨk(Ak), where δki is the Kronecker symbol (k, i =
= 0, 1, . . . , 2n), then the polynomial (26) coincides with the operator F (A) at
the interpolation nodes A0, A1, . . . , A2n. It's obvious that Ωn+1(Ak) = 0 when
k = 0, 2n. Therefore, the polynomial (25) coincides with F (A) at the above-
mentioned interpolation nodes.

We show that the last condition in (27) also holds. By the lemma
D2n+1Ψk(A) = 0 for k = 0, 1, . . . , 2n, so D2n+1Hn(A) = 0. Taking into account
the structure of the formula (25), we obtain that the condition stated above for
the polynomial Tn+1(A) is satis�ed. ¤

5. Conclusion
In this work we obtained the following new results: interpolation formulas

for functions of a scalar argument are generalized to the case of operators
de�ned in functional spaces and on the set of matrices. The algebraic operator
and matrix interpolation Hermite�Birkho� polynomials are constructed, as well
as the parametric family of trigonometric matrix interpolation polynomials of
Hermite type. Theorems on the ful�llment of the interpolation conditions are
proved. For the operator interpolation formula, a class of polynomials for which
it is exact is found. Matrix analogues of the Leibniz formula for linear matrix-
di�erential operators of a special form are constructed. Based on the matrix
algebraic interpolation polynomial, the formula for the approximation of the
Gateaux di�erential of an arbitrary order of the matrix argument function is
obtained. This formula is used in the construction of the approximate method
for solving the Cauchy problem with a matrix-di�erential equation of the �rst
order. In the computer algebra system, the illustrative example of a numerical
solving the Cauchy problem of the indicated type is realized.
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