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CONVERGENCE OF A TWO-STEP METHOD FOR
THE NONLINEAR LEAST SQUARES PROBLEM
WITH DECOMPOSITION OF OPERATOR

S. M. SHAKHNO, R.P.TAkYMCHUK, H. P. YARMOLA

PE3IOME. Y po6o0Ti 3arrpomnoHOBaHO JBOKPOKOBUI METO st PO3B’sI3yBaHHS
HeJIHITHOT 33/1a9]l HAIMEHIINX KBA/IPATIB 3 JIEKOMIIO3HUINEIO OIIEPATOPA Ta T0C-
JIAKEHO Horo 301KHICTD 33 KJIACHIHUX yMOB JIinmuiis 718 HOXiJHIX [Iepuroro
i gpyroro mopsaKiB ardepeHIiioBHOT YaCTHHY T MOIIIeHUX PI3HUI IEePIIOro
nopsiaKy HenudepeHIiiioBHOI yacTuHu AexoMno3uiii. BeraHoBieHo mopsimok
i paziyc 3012KHOCTI MeTOZy, & TAKOXK 00JIACTH €IMHOCTI PO3B’A3KY HEJIIHINHOI
3a7ad4i Ipo HaliMenmi kBagpartu. [IpoBeneHo dncesbHI eKCIIepUMEHTH Ha PAIi
TECTOBUX 3aJadax.

ABSTRACT. In this article, we propose a two-step method for the nonlinear
least squares problem with the decomposition of the operator. We investigate
the convergence of this method under the classical Lipschitz condition for the
first- and second-order derivatives of the differentiable part and for the first-
order divided differences of the non-differentiable part of the decomposition.
The convergence order as well as the convergence radius of the method are
studied and the uniqueness ball of the solution of the nonlinear least squares
problem is examined. Finally, we carry out numerical experiments on a set of
test problems.

1. INTRODUCTION
Let us consider the nonlinear least squares problem:

min %F(x)TF(x), (1)

where F' is a Fréchet differentiable operator defined on IR"™ with its values on
IR™, m > n. The best known method for finding an approximate solution of
the problem (1) is the Gauss-Newton method, which is defined as

Tpi1 = xp — [F' () F (2)]  F (o) T F (), k=0,1,2, ... (2)

The convergence analysis of the method (2) under various conditions was con-
ducted in [6-8]. In paper [18], three free-derivative iterative methods were
investigated under the classical Lipschitz conditions. The radius of the conver-
gence ball and the convergence order of these methods were determined. The
study of these methods was conducted in the case of both zero and nonzero
residuals.

Key words. Nonlinear least squares problem, two-step method, Gauss-Newton method,
decomposition of operator, Lipschitz conditions, radius of convergence, uniqueness ball.
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In particular, Shakhno [18]| proposed the Secant-type method, which was
later also studied by Ren and Argyros in [12], as follows

Th1 = T — [F(@g, 2p-1) T F(zg, 2p-1)] " Fag, 1) F(xy),

3
k=0,1,2,... (3)

This study [18] also determines the convergence order of the method (3) in case
L +2‘/5 —1,618....

In [2,4,10,11], there was considered a two-step modification of the Gauss-
Newton method for solving the problem (1)

{ Tr1 = 2 — [F(ze) T F' ()] F (20) T F (), (4)
Ykt = Tho1 — [F'(z1) T F'(2)] 7 F () T F(2g41), B =0,1,2, ..,

of zero residual, which equals to

where 2z = (2 +yx)/2; xo and yo are given. In case when m = n, this method is
equivalent to the methods proposed by Bartish [3] and Werner [23]. On each it-
eration, the method (4) computes the inversion of the matrix [F’(z;,)T F'(z;,)] 7!
only once.

In [17], we proposed the difference variant of the method (4) that uses divided
differences instead of derivatives as follows

{ whpr = ok — [F(r, yp) T F 2k, ye) | F (g, yp) T F (),

Yk+1 = Tk+1 — [F(xlﬁyk)TF(xkvyk)]_lF(xkvyk‘)TF(wk+l)7 k= 07 1727 ( )
5

This method is built on top of the Secant-type method [12,18] (3) for solving the

nonlinear least squares problem. This method can also be applied to problems

with non-differentiable operators.

However, for some problems the nonlinear function in (1) is composed of the
differentiable and non-differentiable parts. In this case, the problem (1) can be
written as

min 2 (F(x) + G(@))" (F(x) + C(x)) (©
z€R" 2
where the residual function F' + G is defined on IR™ with its values on IR™
and it is nonlinear by x; F' is a continuously differentiable function; G is a
continuous function, differentiability of which, in general, is not required. To
solve the problem (6), we proposed in [14,19] a method that takes into account
the specific features of both F' and G as

Tr+1 = T — [AfAk}_lAg(F(xk) + G(xk))u k= 07 17 veey (7)

where Ay = F'(z1) + G(xk, vk—1); F'(x) is a Fréchet derivative of F(z);
G(xg,xk—1) is the divided difference of the first-order of the function G(x)
at points g, xx—1; To, T—1 are given starting points. This method has the

convergence order of for solving the problem (6) with zero residual. In

case when m = n, the method (7) reassembles the well-know Newton-Secant
method for nonlinear equations [1,5,15].
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In this article, we propose a two-step iterative method, for solving the prob-
lem (6), which considers the decomposition of the nonlinear operator, as follows

{ Th+1 = Tk — [AZAk]flAg(F(xk) + G(xk»a (8)
Yr1 = Thp1 — [AL AR AL (F(2pg) + Glaps)), k=0,1,..,
where Ay = F’(MTW)
the local convergence of the method (8) for the problem (6) with zero as well
as non-zero residuals. Additionally, we study both the order and the radius of
the convergence of the method (8) as well as the uniqueness ball of the solution
of the problem (6). To note, this method as well as the method (5) have the
same convergence order of 1 4 V2 in case of zero residual.

In case of m = n, the problem (6) reduces to solving a system of n nonlinear
equations with n unknown and the method (8) reduces to the method [16,20,21].

+ G(xk, yr). The main goal of this paper is to analyze

2. PRELIMINARIES
Let us denote B(x,,7) = {x € D CIR" : ||z — x«|| < r} as an open ball with
the radius r (r > 0) at z., D is an open convex subset of IR".
Let R™*™ m > n, denote a set of all m x n matrices. Then, for a full

rank matrix A € IR™*" its Moore-Penrose pseudo-inverse [8] is defined as
Al = (AT A)7LAT.

Lemma 1 ( [13,22]). Let A, E € R™*". Assume that C = A+ E, ||AT||||E| <
1, and rank(A) = rank(C). Then,

1AT|
Ic| < :
1— ATl £]]

If rank(A) = rank(C) = min(m,n), we can obtain

V2| AT B

lCf - Af| < .
- JATZ]

Lemma 2 ( [6]). Let A,E € R™*". Assume that C = A+ E, |EAT|| < 1,
and rank(A) = n, then rank(C) = n.

3. LocAaL CONVERGENCE ANALYSIS OF THE METHOD (8)
In this section, we investigate the convergence of the method (8) and deter-
mine its convergence radius.

Theorem 1. Let F + G : IR™ — IR™, m > n, be continuous operator, where
F is a twice Fréchet differentiable operator and G is a continuous operator on
a subset D C IR™. Assume that the problem (6) has a solution x. € D and an
operator Ay = F'(x4)+G(x+, ) has full rank. Suppose that Fréchet derivatives
F'(x) and F"(x) satisfy the Lipschitz conditions on D

[F () = F'(y)l < Llz -yl (9)
17" (z) = F"(y)ll < Nz =yl (10)
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and the function G has the first order divided difference G(x,y) and
1G(z,y) = G(u,v)[| < M([lx — ul| + [ly = v]]) (11)

forall x,y,u,v € D; L, N, and M are non-negative numbers.
Also, the radius r > 0 is a root of the equation

BNp? + 1208Tp + 48vV2a3*T — 24 = 0, (12)
where
2v/2a3%T < 1. (13)

Then, for all zo,yo € B(z,r) C D the sequences {xy} and {yi}, which are
generated by the method (8), are well defined, remain in B(z.,r) for all k > 0,
and converge to x4 such that

planes) S T ((N/20)p(a0)® + Tolon)oln) +V3abTR). (149)
plukst) < g (N/20plonsn)® + (15)
+T(p(zk+1) + p(x) + p(yr))p(Tht1) + V2a8T7),
repr = max{p(zpi1), p(ye1)} < qre < - < ¢ g, (16)
where
b = DA L TCo ) o)+ 2/200T) _, 1y
7 o

p(x) = lz—zull, e = (2R, Y1) = erx*lHHwa*ll,Q%: max{p(zo), p(y0)},
+
o= |[F.)+ Gz, B=I(ALA) AT, T = ——, BT < 1.

Proof. From (13) it follows that (12) has the unique positive root, which we
annotate as r.

Let choose arbitrary zo,yo € B(zs,r) and denote A = F’(w> +

2
G(zk,yr). For k =0, we have the following estimate

o +
o= Al = [P/ (52) + Gloo, o) = (F'(@) + Gl )| =
= ”F/<$0;y0>—F/(l‘*)+G(330,y0)—G(90*,$*) <
+
< ||F(B5E) - Fl@)|| + 160, 10) - Glaw, )]l <
L
< 5 (lao = @l + llvo = @) + M(lao = @]l + llyo - al) <
L+2M
< Fg (w0 =@l + llyo — ) = Tlao = @] + llyo — )
and

1(AY A) T AT Ao = Al < BT (|0 — ]| + Ilyo — @) = BT'm0 < 1.
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According to Lemma 1

p _ B
1= BT (w0 = 2l + llyo —z«ll) 1= BT70’

I(AG 40) " AT <

and to Lemma 2

V28T (|0 — @l + llyo — ) _ V28°T7o
1= BT (o — wull + llyo —2ll) 1 =BT

For z1,y; that are generated by (8), we have

1(AG A0) ™1 AG —(ATA) T AL <

X1 — T =To— Ty — [AE‘)FAOT1 AT (F(z0) + G(x0))
= [AT 4] A [Ao(wo — 2.) = (F(x0) + Glxo)) + (F(x.) + Glz.))] +
+[ATA) T AT(F(2.) + G(an) - [ATAo) " AT (F(2.) + Gla.)) =

= [Ang}_l Al [F' <x0—;—x*> (0 — z4) — F(x0) + F(x4)+

)
)

e

+ G(z0, 2+) (20 — 2+) — G(20) + G(24) +
+ <A0 —-F (W) - G(%w*)) (z0 — x*)} +

+ [AT AT AT(F(2.) + G(x)) — [AT Ag) ™ AT (F () + Gla.));

no = we=a -z — [ATA] T AT (F(21) + G(a1)
= [AT 4] AT [Ao(z1 — 20) — (F(21) + G(21)) + (F(x) + G(x))] +
+[AT AT AT(F () + Gaa) — [AT 4] AT (F(2.) + G(a)) =
— [ATA)] AT [F (9”1‘2“’"> (21— 22) — F(z1) + F(z.) +
+ G(z1,24) (21 — 24) — G(21) + G(24) +
- (0P (25 e (-0 +

+[ATA] AT (F(2) + G(x,)) — [ATAg) AT (F () + G(x).

According to Lemma 1 from [23] with the value w = 1/2 we can write

Fo) - F) - F (T52) -9 =

[ (S e be-w)-

—F" (9”"2”/ + %(y - w))] (& — y)*dt.

By setting x = z, and y = zg in the equation above, we receive
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) + Ty
' 5 (z+ — o) || =

fo-oe (2324 ) -

N
— (CCO—;‘$ + 5(330 _ x*)>] (:C* . xo)Zdt‘
1 ! 3 1 3
<3 /0 t(1 = )Ny — @ Pdt = 5 Np(o)™

‘F(x*) — F(zo) — F
1

4

<

Using to the Lipschitz conditions (9) and (11), we get the following estimates

= () - () +

< Tllyo — x|,

o~ P24 ) - tane

+G(20,Y0) — G (0, T4)

xl"i'x*

HAO_F,( 2

) ~Glewad| = |7 () - () +

2 2
+G($07y0) - G(I’l,fl)'*) S
T([[wo — x|l + [lyo — z«)) <
T(llzo — |l + [[o1 — @4l + llyo — z]).-

VANVA

Hence, from (12) it follows that

0<q = PQ/29p0) + T1<2p<;;> +plw)) +2v205T) _
i
B((N/24)r? + 3T + 2/2a8T)

1-206Tr

Thus, by Lemmas 1, 2, conditions (9), (10) and (11), we obtain

B(N/24)p(0)® + Tp(wo)p(yo) + V28T 10)

— X < .
|z1 — 2| T 3T <gro<r
Similarly,
B(N/24)p(a1)? + T(p(wo) + pla1) + plyo))p(a1))
Iy — ol < .
1— 06T
V2a3°TT
I AT SYOST

Therefore, z1,y1 € B(x4,r) and both (14) and (15) follow. Also, (16) is satisfied

r1 = max{||z1 — x|, [Jy1 — x|} < gqro.
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Using mathematical induction, assume that g, yx € B(z«,7) and (16) holds
for k > 0. Then, for £+ 1 from (8) we obtain that

B(N/24)pl1)" + Tola)pls) + V2aSTm)

1— 06T B
B((N/24)p(x0)? + Tp(xo) + 2v/2a6T) 1y
o 1-— ﬁTTO

[Zrt1 — o <

<qgrpy <r

and

B(N/24)p(zk41)® + T (p(zx) + p(zrs1) + p(Yr)) p(Trt1)) N

Hyk+1 —1'*H <

1—06T7
V2082 T _ B((N/24)p(x0)” + T (2p(w0) + p(y0))) N
1-p08Tn. — 1—-p38T7
Qﬂaﬁ2TTk
W =qrg <.

According to (17) and both inequalities (14) and (15), we receive

Prg1 = max{||zrr1 — ||, [Ups1 — 2|} < @rr < Prpoy < -0 < ¢l

Thus, Tg41, Yk+1 € B(xy,r) as well as (14), (15) and (16) hold. O

From (12) it follows that the convergence radius of the method (8) is

. 2(1 — 2¢/2a3°T)
50T +/(56T)2 + LAN(1 - 2v/20/8°T)

Remark 3. Note that the condition (11) can be replaced with the weaker one
1G(z,y) = G(u, v)|| < Mif|lz — ull + Mally — o] (18)

for all x,y,u,v € D, My and My are positive numbers. This enlarges applica-
bility of the method (8).

For zero residual (F(z.)+ G(z,) = 0), the Theorem 1 can be formulated as

Theorem 2. Let F+ G : IR" — IR™, m > n, be continuous operator, where
F is a twice Fréchet differentiable operator and G is a continuous operator
on a subset D C IR™. Assume that the problem (6) has a solution z, € D,
and the operator A, = F'(x.) + G(x«, x«) has full rank. Suppose that Fréchet
derivatives F'(x) and F"(x) on D satisfy the classic Lipschitz conditions as in
(9) and (10), respectively; the function G has the first order divided difference
G(x,y) that satisfies the Lipschitz conditions as in (11). Moreover, the radius
r > 0 is a unique positive root of the following equation

BNp? +1208Tp — 24 = 0.
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Then, the combined method (8) converges to x, for all xo, yo € B(xy,r) C D
such that

p(@p+1) < 1_gT7_k((N/24)p(a:k)3 + Tp(zk)p(yr)), (19)

lyes1) < B((N/24)p(xy11)° + T(Pl(ﬂik;;)T: p(zi) + p(yr))p(Thi1)) (20)
rher = max{p(zpi1), p(Yes1)} < qre < -0 < ¢ g,

where p(z) = ||z — x|, 7 = T(@r, ) = |76 — 2:l| + ||ye — 24|, 70 =

max{p(wo), p(yo)}, B =[(ALA)T ALY, BTmo < 1,

<q = LYot 4 TColen) o)

From Theorem 2, the convergence radius is
2 1

< .
58T +/(58T)2 + N 90T

r =

This radius is two times smaller than the convergence radius of the differential
method (4) from [11] (a two-step modification of the Gauss-Newton method)
and equals to the convergence radius of the difference method (5) from [17].

Corollary 1. Convergence order of the iterative method (8) in case of zero
residual is equal to 1+ V2.

BN/24 6T
_—— = - = b =

Ty ol Al wy ol p(xk), b = p(yk),
k =0,1,2,... Since the residual is zero, i.e. o = ||F(z,)+ G(x,)|| = 0, from the
inequalities (19) and (20) we have

Proof. Let us denote v =

aps1 < ar(vai +nby), (21)
b1 < aprr [YaRey +1/3(ak + appr + by)] < (22)
< apt1 [(’yak + 2n/3)ak + T]bk/?)] <
< agrrax [yr 40l = agrrakdr.

From (21) and (22) for large enough k, it follows
ap+1 < ag(yag +nby) < ap(vap + noragag—1) < afar—1(y +np1) = ajar_1¢s.
From this inequality, we obtain an equation

P’ —2p—1=0.

The positive root of the latter, which is p, = 1++/2, is the order of convergence
of the iterative method (8). O

Under the classic Lipschitz condition a theorem for the uniqueness of the
solution can be written as follow
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Theorem 3. Suppose x. satisfies (6) and F(x) has a continuous derivative
F'(x) and G(z) has a divided difference G(x,y) in D. Moreover, operator
F'(x4) + G(4, ) has full rank; F'(z) satisfies the Lipschitz condition as in
(9); the divided difference G(x,y) satisfies the Lipschitz condition as in (11).
Let r > 0 satisfies

B(Lr/2+ M)+ afy(L +2M) <1,
where Bo = ||(F'(z4) + G2, )T (F'(24) + G(24, 24))||. Then, x. is a unique

solution of the problem (6) in B(z«,r).

The proof of this theorem is analogous to the one in [6].
To note, in case when G(z) = 0, we obtain the same results as in Theorem
2 in [11].

4. NUMERICAL EXPERIMENTS
In this section, we give two examples to show the application of our results.
We consider method (8) and its partial cases, namely the two-step Gauss-
Newton method (G = 0) and the two-step Secant method (F' = 0). We use the

P
norm ||z|| =,/ > 22 for z € RP.
1=1

Example 1. Consider function F 4+ G : D = IR — IR? given by [12]:

F)+ 6 = (a0, ).

where A, u € IR are two parameters.

It is known, that x, = 0 is the unique solution of the considered problem.
Therefore, we can define constants « and (3 as follows:

Let G(z) = (0,0)”. Then

F(z) = ( 2)\951+1 ) F(x) = ( 20/\ )

7@ - Pl = | ( gy )| =20

17w - 7l = | ()| = ok =i

and

L 2|\
That is, we can set constants L =2|\|, N =0, M =0, T = 5= ‘2‘ =

Let F(x) = (0,0)T. Then

TrH-y—p
G y)=| y2go—p—NP—y+p | = < A(x+y)+1>
x—y
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and
6600 - Gluol = ( )| = it = o1+ =,

That is, we can set constants L =0, N =0, M = |\, T =M = |}|.
Then equation (12) for both methods has form
5V2|Alr + 4| Ap| — 2 =0.

It has unique positive solution

0
r—u—+y—v

V2 = 2v/2|Ayf
5[A|

if parameters A and p satisfy

1

Let g = 0.2, yo = 0.2001. For this problem Ay = e +1yk) 41 > in

both cases. Therefore, we get the same result by the two-step Gauss-Newton
method and the two-step Secant method.

TABL. 1. The results for A\=1, u =0

k| p(xg+1)  The right side of (14) | p(yk+1)  The right side of (15)
0 | 1.893e-002 3.946e-002 3.412e-003 7.821e-003

1] 3.229e-005 4.640e-005 3.600e-007 5.190e-007

2 | 5.812e-012 8.220e-012 9.487e-017 1.342e-016

3 0 3.899¢-028 0 0

TaBL. 2. The results for A= 0.5, p =0.2

k| p(xg+1)  The right side of (14) | p(yk+1)  The right side of (15)
0 | 2.624e-002 6.308e-002 1.881e-002 5.121e-002

1] 2.326e-003 4.755e-003 2.230e-003 4.617e-003

2 | 2.284e-004 4.578e-004 2.274e-004 4.564e-004

3 | 2.280e-005 4.560e-005 2.279e-005 4.559e-005

41 2.279e-006 4.558e-006 2.279e-006 4.558e-006

9 | 2.279e-007 4.558e-007 2.279e-007 4.558e-007

6 | 2.279e-008 4.558e-008 2.279e-008 4.558e-008

7| 2.279e-009 4.558e-009 2.279e-009 4.558e-009

8 12.279e-010 4.558e-010 2.279e-010 4.558e-010

If A =1 and pu = 0 we obtain 2v/2a8%T = 0 < 1, ST ~ 0.2829134232 < 1,
q ~ 0.5917483231 < 1, r =~ 0.2828427125 and B(z.,r) C D. If A = 0.5
and p = 0.2 we obtain 2v2a3?T = 0.2 < 1, Ty ~ 0.1414567116 < 1,
g ~ 0.4800775864 < 1, r ~ 0.4525483400 and B(z.,7) C D. From Tables 1,

91



S. M. Shakhno, R. P.Iakymchuk, H. P. Yarmola

2, we can see that sequences {xp} and {yx} converges to the solution z, and
error estimates (14) and (15) are true for all k£ > 0.

Example 2. Consider function F + G : D C IR — IR? given by:

T+ U
Fl)+Gx)=| M3+x—p |,
Az? —1] =\
T+ 0
Fl)y=| M3+z—u |,G(@) = 0 ,
0 Az? —1] =\

where A, u € IR are two parameters.
The unique solution of this problem is xz, = 0. Therefore, we can set con-
stants « and ( as follows:

1
o = Valul, B = =
lul, =75
Let D = {x: |z| < 0.5}. Then
1 0
Flz)=| 3x2*+1 |, F'(z)=| 6\
0 0
and
0
IF"(2) = F'(y)ll = ||| 3= —v?) || =
0

= 3[Allz + yllz —y| < 3|Allz —yl,

0
[1F"(z) = F"(y)ll = ||| 6A(z—y) Hﬁkwy;
0
0
Cla.y) = ’
Y= A2 =1 = A=Ay — 1|+ A
T —y
0 0
0 = 0
_ 2 _ ) =
A1 =22 —1) = A1 —?) Az i)
T—y
and
0
1G(z,y) — G(u,v)|| = 0 <
ANz —u+y—0v)
< Al(Jz = u| + [y — o).
5[l

That is, we can set constants L = 3|A[, N =6|\|, M = |\, T = 5
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Then equation has form
V2IA[r? 4 50V2|A|r + 40| Ap| — 8 = 0.
It has unique positive solution
\/5000|A[2 — 4v/2|A|(40[Au] — 8) — 50V/Z[A
r =
2v/2| )|

if parameters A and p satisfy
1

Let 2o = 0.1, yo = 0.1001. If A = 1 and p = 0 we obtain 2v/2a6%*T =0 < 1,
BTTy ~ 0.3537301673 < 1, ¢ ~ 0.8236105147 < 1, r ~ 0.1128822370 and
B(xy,r) € D. If A = 0.5 and p = 0.2 we obtain 2/2a8%*T = 0.5 < 1,
BTTy ~ 0.1768650836 < 1, ¢ ~ 0.9307554564 < 1, r ~ 0.1128822370 and
B(zy,r) C D.

TaBL. 3. The results for A\=1, p =0

k| p(xg+1)  The right side of (14) | p(yk+1)  The right side of (15)
0 | 1.002e-003 2.765e-002 1.503e-005 5.509e-004

1] 1.216e-010 2.684e-008 1.063e-016 2.189e-013

3 0 2.285e-026 0 0

TaBL. 4. The results for A = 0.5, p = 0.2

k| p(xg+1)  The right side of (14) | p(yk+1)  The right side of (15)
0 | 1.980e-003 7.163e-002 1.494e-003 6.120e-002

1| 4.549e-007 8.738e-004 4.526e-007 8.712e-004

2 1 3.090e-014 2.269e-007 3.090e-014 2.269e-007

3 | 1.185e-017 1.545e-014 1.185e-017 1.545e-014

Therefore, all conditions in Theorem 1 are satisfied for the two-step method
(8). Hence, Theorem 1 applies.

5. CONCLUSIONS

We studied the local convergence of the method (8) for the nonlinear least
squares problem with the decomposition of the operator under the classic Lip-
schitz conditions for the first- and second-order derivatives and for the divided
differences of the first order. We determined the convergence order and the
radius of the method (8) as well as proved the uniqueness ball of the solution
of the nonlinear least squares problem (6). We gave examples that confirm the
theoretical results. Furthermore, the method (8) has promising characteristics
for parallelization, which we plan to utilize for constructing and developing new
parallel methods for solving the problem (6).
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