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Ðåçþìå. Äëÿ çíàõîäæåííÿ ãðàíèöi îá'¹êòó â ïðóæíié äâîâèìiðíié îáëàñ-
òi çà âiäîìèìè äàíèìè Êîøi íà ¨¨ ãðàíèöi çàñòîñîâàíî ìåòîä íåëiíiéíèõ
iíòåãðàëüíèõ ðiâíÿíü, ùî ãðóíòó¹òüñÿ íà ïðóæíèõ ïîòåíöiàëàõ. Ðîçðîá-
ëåíî iòåðàöiéíèé ìåòîä äëÿ íàáëèæåíîãî ðîçâ'ÿçóâàííÿ îòðèìàíèõ iíòåã-
ðàëüíèõ ðiâíÿíü. Çíàéäåíî ïîõiäíó Ôðåøå âiäïîâiäíîãî îïåðàòîðà i ïîêà-
çàíî ðîçâ'ÿçíiñòü ëiíåàðèçîâàíî¨ ñèñòåìè. Ïîâíó äèñêðåòèçàöiþ çäiéñíåíî
ìåòîäîì òðèãîíîìåòðè÷íèõ êâàäðàòóð. ×åðåç íåêîðåêòíiñòü äî îòðèìàíî¨
ñèñòåìè ëiíiéíèõ ðiâíÿíü çàñòîñîâàíî ìåòîä ðåãóëÿðèçàöi¨ Òiõîíîâà. ×è-
ñåëüíi åêñïåðèìåíòè ïîêàçóþòü, ùî ïðîïîíîâàíèé ìåòîä äà¹ äîáðó òî÷-
íiñòü ðåêîíñòðóêöi¨ ïðè åêîíîìíèõ îá÷èñëþâàëüíèõ çàòðàòàõ.

Abstract. We apply the non-linear integral equation approach based on
elastic potentials for determining the shape of a bounded object in the elasto-
static two-dimensional domain from given Cauchy data on its boundary. The
iterative algorithm is developed for the numerical solution of obtained integral
equations. We �nd the Fr�echet derivative for the corresponding operator and
show unique solviability of the linearized system. Full discretization of the
system is realized by a trigonometric quadrature method. Due to the inher-
ited ill-possedness in the system of linear equations we apply the Tikhonov
regularization. The numerical results show that the proposed method gives a
good accuracy of reconstructions with an economical computational cost.

1. Introduction
The idea to reduce the problem of the boundary reconstruction directly

to non-linear equations and to employ a regularized iterative procedure was
�rstly suggested in [18]. The concept consists in the use of the reciprocity
gap approach based on Green's integral theorem. This approach was success-
fully extended in [9, 13, 16, 18, 20] for the case of the Laplace equation and
in [11, 12, 14, 15] for the Helmholtz equation. The other possible way for it is
related with the Green's function [6,7,10,20]. This method is applicable for the
reconstruction of an inclusion in some canonical domains for which the Green's
functions are known. In this paper we would like to use the potential theory
to receive a system of non-linear integral equations [5] which is equivalent to
an inverse boundary problem for the Navier equation. As motivation for this
research we consider the extension of the potential approach to the system
of di�erential equations in elasticity and on the other hand the problem of the

Key words. Double connected elastostatic domain; boundary reconstruction; elastic po-
tentials; boundary integral equations; trigonometric quadrature method; Newton method;
Tikhonov regularization.
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shape reconstruction in the elastic medium is of interest for the solid mechanics
community.

We assume that D is a doubly connected bounded domain in IR2 with the
boundary ∂D consisting of two disjoint closed C2 curves Γ1 and Γ2 such that
Γ1 is contained in the interior of Γ2.

The corresponding direct problem is: Given a vector function g on Γ2 con-
sider the Dirichlet problem for a vector function u ∈ C2(D)∩C1(D̄) satisfying
the Navier equation

∆∗u = 0 in D (1)

and the boundary conditions

u = 0 on Γ1, (2)

Tu = g on Γ2. (3)

Here ∆∗u = µ∆u+ (λ+ µ) grad div u and

Tu = λdivu ν + 2µ(ν · grad)u+ µdiv(Qu)Qν,

where ν is an outward unit normal vector to the boundary and the matrix Q

is given by Q =

(
0 1
−1 0

)
. Constants µ and λ (µ > 0, λ > −µ) are called

the Lame coe�cients, they characterize the physical properties of the material.
Note that throughout the paper the function spaces have to be understood as
vector valued.

It is well-know that the direct mixed boundary value problem has the unique
solution [21, Chapter X, �10].

The inverse problem we are concerned with is: Given the Neumannn data g
on Γ2 and the Dirichlet data

u = f on Γ2, (4)

determine the shape of the interior boundary Γ1.
As opposed to the forward boundary value problem, the inverse problem is

nonlinear and ill-posed.
The issue of uniqueness, i.e., identi�ability of the unknown curve Γ1 from

the Cauchy data on Γ2, is settled by the following theorem (see [4]).

Theorem 1. Let Γ1 and Γ̃1 be two closed curves contained in the interior of

Γ2 and denote by u and ũ the solutions to the mixed problem (1)�(3) for the

interior boundaries Γ1 and Γ̃1, respectively. Assume that g ̸= 0 and

u = ũ

on an open subset of Γ2. Then Γ1 = Γ̃1.

2. Nonlinear integral equations and iterative schemes

for its solutions

Firstly we introduce the single-layer elasticity potential. As it is well known,
the fundamental solution to the Navier equation (1) is given by

Φ(x, y) =
c1
π

ln
1

|x− y|
I +

c2
π
J(x− y),
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where c1 = λ+3µ
4µ(λ+2µ) , c2 = λ+µ

4µ(λ+2µ) , I is the identity matrix and the matrix J

is de�ned by

J(w) =
ww⊤

|w|2

in terms of a dyadic product of w ∈ IR2 \ {0} and its transpose w⊤. Then the
single-layer potential with vector density ψ on Γℓ is de�ned by

(Uℓψ)(x) :=

∫
Γℓ

Φ(x, y)ψ(y) ds(y), x ∈ D, ℓ = 1, 2.

We search the solution of the boundary value problem (1)�(3) in the form

u(x) = (U1ψ1)(x) + (U2ψ2)(x), x ∈ D. (5)

From the boundary behavior properties of the single-layer elasticity potential
[21], we obtain

u(x) = (Sℓ1ψ1)(x) + (Sℓ2ψ2)(x), x ∈ Γℓ, ℓ = 1, 2 (6)

and

(Tu)(x) =
1

2
ψ2(x) + (D21ψ1)(x) + (D22ψ2)(x), x ∈ Γ2. (7)

Here, the boundary integral operators Sℓk and Dℓk are de�ned by

(Sℓkφ)(x) =

∫
Γℓ

Φ(x, y)φ(y) ds(y), x ∈ Γk ,

(Dℓkφ)(x) =

∫
Γℓ

TxΦ(x, y)φ(y) ds(y), x ∈ Γk .

Taking into account the boundary conditions (2) and (3) we receive from (6) a
system of integral equations

S11ψ1 + S12ψ2 = 0 on Γ1,

1
2ψ2 +D21ψ1 +D22ψ2 = g on Γ2

(8)

and the condition (4) leads to the integral equation

S21ψ1 + S22ψ2 = f on Γ2. (9)

Theorem 2. The inverse boundary value problem (1)�(4) is equivalent to the

system of integral equations (8)�(9).

We will call the equations (8) as the ��eld� equations and the equation (9)
as the �data� equation.

In general, there exist three di�erent iterative methods to solve the system
(8)�(9) by linearization:

A. Given initial guess for the boundary Γ1 and the densities ψ1 and ψ2, we
linearize all three equations in order to update all the unknowns.

B. Given initial guess for the boundary Γ1, we solve the subsystem (8)
to obtain the densities. Then, keeping the densities �xed we solve the
linearized �data� equation (9) to obtain the update for the boundary.

9
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C. Given initial guess for the densities, we solve the linearized ��eld� equa-
tions (8) to obtain Γ1 and then we solve the linearized �data� equation
(9) to obtain the new densities.

The linearization, using Fr�echet derivatives of the operators, and the regulariza-
tion of the ill-posed equations are needed in all methods. However, the iterative
method A requires the calculation of the Fr�echet derivatives of the operators
with respect to all the unknowns and the selection of three regularization pa-
rameters at every step. Thus, we prefer to use one of the so-called two-step
methods B or C. Between the two methods, the method B is preferable since we
solve �rst a well-posed linear system and then we linearize the �data� equation.

3. Implementation of the two-step method B

3.1. Numerical solution of the ��eld� integral equations. Assume that
boundary curves Γ1 and Γ2 have parametric representation

Γℓ = {xℓ(t) = (xℓ1(t), xℓ2(t))| t ∈ [0, 2π]}, ℓ = 1, 2,

where xℓ1, xℓ2 are 2π�periodic and twice continuously di�erentiable functions.
It gives us the following parametric form for the operator Sℓk

(Sℓkψk)(xℓ(t)) =
1

π

∫ 2π

0
Kℓk(t, τ)ψk(τ)dτ, ℓ, k = 1, 2,

where Kℓk(t, τ) = πΦ(xℓ(t), xk(τ)) and ψk(t) = ψ(xk(t))|x′k(t)|. Elementary
calculations yield the representation of the matrix Kℓℓ

Kℓℓ(t, τ) = −c1
2
ln

(
4

e
sin2

t− τ

2

)
I + K̃ℓℓ(t, τ), t ̸= τ,

where

K̃ℓℓ(t, τ) = Kℓℓ(t, τ) +
c1
2
ln

(
4

e
sin2

t− τ

2

)
I, t ̸= τ

with the diagonal term

Kℓℓ(t, t) =
c1
2
ln

(
1

e|xℓ(t)|2

)
I + c2

x′ℓ(t) · x′ℓ(t)⊤

|x′ℓ(t)|2
.

Parametrization of integral operators Dℓk reads as following

(Dℓkψk)(xℓ(t)) =
1

π

∫ 2π

0
Lℓk(t, τ)ψk(τ)dτ

with the matrices

Lℓk(t, τ) = c3
(xℓ(t)− xk(τ)) · x′ℓ(t)
|x′ℓ(t)||xℓ(t)− xk(τ)|2

Q−

−
(xℓ(t)− xk(τ)) ·Qx′ℓ(t)
|x′ℓ(t)||xℓ(t)− xk(τ)|2

{c3I + c4J(xℓ(t)− xk(τ))} .
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Here c3 =
µ

2(λ+ 2µ)
and c4 =

λ+ µ

λ+ 2µ
. The kernels Lℓℓ contain the singularity.

The straightforward calculations lead to the following expression

Lℓℓ(t, τ) =
c3

2|x′ℓ(t)|
cot

t− τ

2
Q+ L̃ℓℓ(t, τ),

where

L̃ℓℓ(t, τ) = Lℓℓ(t, τ)−
c3

2|x′ℓ(t)|
cot

t− τ

2
Q

with the diagonal term

L̃ℓℓ(t, t) =
c3x

′′
ℓ (t) · x′ℓ(t)

2|x′ℓ(t)|3/2
Q+

x′′ℓ (t) ·Qx′ℓ(t)
2|x′ℓ(t)|3/2

[
c3I + c4

x′ℓ(t) · x′ℓ(t)⊤

|x′ℓ(t)|2

]
.

Thus we obtain a system of parametrized integral equations

1

π

∫ 2π

0

{[
−c1

2
ln

(
4

e
sin2

t− τ

2

)
I + K̃11(t, τ)

]
ψ1(τ)+

+K12(t, τ)ψ2(τ)

}
dτ = 0,

ψ2(t)

2|x′2(t)|
+

1

π

∫ 2π

0

{
L21(t, τ)ψ1(τ)+

+

[
c3

2|x′2(t)|
cot

t− τ

2
Q+ L̃11(t, τ)

]
ψ2(τ)

}
dτ = g(t).

(10)

For the numerical solution of integral equations (10) we combine a quad-
rature method and a collocation method based on trigonometric interpola-
tion [3, 17]. For this we choose an equidistant mesh by setting tj = jh, h = π

n ,
j = 0, . . . , 2n− 1 and use the following three quadrature rules

1

2π

∫ 2π

0
g(τ) dτ ≈ 1

2n

2n−1∑
k=0

g(tk), (11)

1

2π

∫ 2π

0
g(τ) ln

(
4

e
sin2 tj −

τ

2

)
dτ ≈

2n−1∑
k=0

R|j−k| g(tk) (12)

and
1

2π

∫ 2π

0
g(τ) cot τ − tj

2
dτ ≈

2n−1∑
k=0

Fj−k g(tk), (13)

with the weights

Rj = − 1

2n

{
1 + 2

n−1∑
m=1

1

m
cosmjh+

(−1)j

n

}
, Fj =

1

n

n−1∑
m=1

sinmjh.

These interpolation quadrature formulas are obtained by replacing g by its
trigonometric interpolation polynomial from the 2n-dimensional space Tn and
then integrating.
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Thus we use quadrature rules (11) and (12) to approximate two types of
integrals in the integral equations (10) and collocate the approximate equations
to obtain the linear system

2n−1∑
k=0

{[
−c1R|j−k|I +

1

n
K̃11(tj , tk)

]
ψ1n(tk)+

+
1

n
K12(tj , tk)ψ2n(tk)

}
= 0,

ψ2n(tj)

2|x′2(tj)|
+

2n−1∑
k=0

{
1

n
L21(tj , tk)ψ1n(tk)+

+

[
c3

|x′2(tk)|
Fj−kQ+

1

n
L̃22(tj , tk)

]
ψ2n(tk)

}
= g(tj)

(14)

for j = 0, 1, . . . , 2n− 1, which we solve for the nodal values ψℓn(tk), ℓ = 1, 2 of
ψℓn ∈ Tn.

The convergence and error analysis for this quadrature method can be es-
tablished on the basis of the collectively compact operators theory (see [8]) or
on the basis of some estimate of trigonometric interpolation in H�older spaces
(see [19]).

Theorem 3. For f ∈ Cp+1,β[0, 2π] and a su�ciently large n the system (14)
has an unique solution with ψℓn ∈ Tn and for the exact solutions ψℓ of (10) we
have the error estimates

∥ψℓ − ψℓn∥m,α ≤ C
lnn

np−m+β−α
∥ψℓ∥p,β, ℓ = 1, 2

for 0 ≤ m ≤ p, 0 < α ≤ β < 1 and some constant C > 0 depending only on

α, β,m, p.

3.2. Numerical solution of �data� integral equation equation. Accord-
ing to our algorithm we need to �nd the correction for Γ1 from the �data�
equation (9), where the densities ψℓ, ℓ = 1, 2 are known. For simplicity we con-
sider only star-like interior curves, i.e., we choose a parametrization in polar
coordinates of the form

x1(t) = {r(t)c(t) : t ∈ [0, 2π]}, (15)

where c(t) = (cos t, sin t) and r : IR → (0,∞) is a 2π periodic function repre-
senting the radial distance from the origin. Also we use the following notation
Srψ = S21ψ. However, we wish to emphasize that the concepts described below,
in principle, are not con�ned to star-like boundaries only.

For the given r and ψℓ, ℓ = 1, 2 we solve the linearized ill-posed integral
equation

(S′[r, ψ1]q)(t) = f(t)− (Srψ1)(t)− (S22ψ2)(t) (16)

12
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with respect to the function q. Here the Fr�echet derivative of the operator Sr
has the following representation

(S′[r, ψ]q)(t) =
1

π

∫ 2π

0
q(τ)Nr(t, τ)ψ(τ)dτ,

where
Nr(t, τ) = −c1 c(τ) · ∇x1(τ) ln |x2(t)− x1(τ)|I+

+ c2 (c(τ), ∂x1(τ))J(x2(t)− x1(τ)).

Here (c(τ), ∂x1(τ))J(x2(t) − x1(τ)) is the tensor obtained by applying (c(τ),
∂x1(τ)) to each column of J(x2(t)− x1(τ)).

Theorem 4. The Fr�echet derivative operator S′[r, ψ̃1] is injective at the exact

solution.

Proof. Assume S′[r, ψ̃1]q = 0. We introduce a function

V (x) =

∫
Γ1

(ζ(y), ∂y)Φ(x, y)ψ1(y) ds(y), x ∈ IR2 \ Γ1,

where ζ(x1(t)) = q(t)c(t), t ∈ [0, 2π].
Clearly the function V satis�es the Navier equation

∆∗V = 0 in IR2 \ Γ1

and by the assumption
V +|Γ1 = 0.

It is known, [13], that for su�ciently small q, the perturbed interior curve as
given in polar coordinates by

Γ1,r+q = {(r(t) + q(t))c(t) : t ∈ [0, 2π]}
can be represented in terms of the outward unit normal vector ν to Γ1,r as
follows

Γ1,r+q = {r(t)c(t) + q̃(t)ν(t) : t ∈ [0, 2π]}.
Hence, the function V can be rewritten in the form

V (x) =

∫ 2π

0
(ν(τ), ∂x1(τ))Φ(x, x1(τ)) q̃(τ)ψ̃1(τ) |x′1(τ)| dτ, x ∈ IR2 \ Γ1.

Recalling

Φ(x, y) =
c1
π

ln
1

|x− y|
I +

c2
π

(xi − yi)(xj − yj)

|x− y|2
e⃗i ⊗ e⃗j ,

and having introduced εij the two-dimensional Ricci tensor

τi = εjiνj , (εij) = Q, ν = −Qτ,
we rewrite the (ν(y), ∂y)Φ(x, y) in terms of the tangential derivative as follows

(ν(y), ∂y)Φ(x, y) =
c1
π

∂

∂ν(y)
ln

1

|x− y|
I−

− c2
π
εik

∂

∂τ(y)

(xi − yi)(xj − yj)

|x− y|2
e⃗k ⊗ e⃗j

13
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By [2, Theorem 4.5] we obtain that the function V can be continuously extended
to the boundary Γ1, i.e.,

V (x1(t))
± = ∓c1ψ̃1(t)q̃(t)+

+

∫ 2π

0
(ν(τ), ∂x1(τ))Φ(x1(t), x1(τ)) q̃(τ)ψ̃1(τ) |x′1(τ)| dτ.

The function V behaves as o(1) at in�nity. By the uniqueness of the exterior
and interior Dirichlet problem [21, p.55] we have

c1ψ̃1(t)q̃(t) = 0, t ∈ [0, 2π].

The function u given by (5) solves the Dirichlet problem in the interior of Γ1.
By uniqueness of the solution to the Dirichlet problem for the Navier equation
u has to vanish in the interior of Γ1 and hence Tu− = 0 on Γ1.

The jump relations imply Tu+ = ψ1. Employing Holmgren's uniqueness
theorem similar to the case for the Helmholtz equation [1, Theorem 2.3.] one
can show that the Cauchy data (u+, Tu+) cannot be identically zero on an

open subset and hence ψ̃1 cannot vanish on an open subset of [0, 2π]. 2

For the numerical solution of (16) we apply tha collocation method with the
approximation of q in the form

qm =

2m∑
i=0

qmili, m ∈ IN, n > m,

where li(t) = cos it for i = 0, . . . ,m and li(t) = sin(m−i)t for i = m+1, . . . 2m.
Then the following linear system needs to be solved

2m∑
j=0

qmjAij = bi, i = 0, . . . , 2n− 1 (17)

with

Aij =
1

n

2n−1∑
k=0

lj(tk)Nr(ti, tk)ψ1n(tk)

and

bi = f(ti)−
2n−1∑
k=0

{
1

n
K21(ti, tk)ψ1n(tk)+

+

[
−c1R|i−k|I +

1

n
K22(ti, tk)

]
ψ2n(tk)

}
.

Due to ill-possedness of (17) and its over-determination we apply the least-
squares method and the Tikhonov regularization with the regularization pa-
rameter α > 0.

14
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3.3. Algorithm for the two-step method B. Now we summarize the algo-
rithm.

1. Choose some starting value r.
2. Solve the system of well-posed integral equations (8) (see subsec. 3.1).
3. For the given r, ψ1 and ψ2 solve the linearized ill-posed integral equation

(9) with respect to function q (see subsec. 3.2).
4. Calculate an approximation for the radial function r = r + βq, where β

is a relaxation parameter for the Newton method.
5. Repeat steps 2-4 until a stopping criterion is satis�ed.

4. Numerical examples

The Cauchy data on Γ2 were generated by solving the direct problem (1)-(3)
for g = (1, 1)⊤ on Γ2 and calculating f = (f1, f2)

⊤ as the restriction of the
solution on Γ2. Note that when generating the �exact� Cauchy data we used a
�ner mesh in order to avoid the �inverse crime�. The noisy data were formed as

f δℓ = fℓ + δ(2η − 1)∥fℓ∥L2(Γ2), ℓ = 1, 2

with the noise level δ and the uniformly distributed random variable η in (0, 1).
The stopping rule was chosen as

∥q∥L2(Γ1)

∥r∥L2(Γ1)
< ϵ.

We demonstrate the feasibility of the proposed methods for the inverse prob-
lem (1)-(3) with µ = λ = 1 and with following boundaries

a). Reconstruction for exact data after
21 iterations (α = 1E − 10)

b). Reconstruction for 5% nosy in the
data after 16 iterations (α = 1E − 2)

Fig. 1. Reconstruction of the boundary Γ1 for Ex. 1

Example 1: The exterior boundary curve Γ2 is a elipse Γ2 = {x2(t) =
(2 cos t, 1.5 sin t), t ∈ [0, 2π]} and the interior boundary curve Γ1 (to be
reconstructed) is peanut-shaped with radial function

r(t) =
√

cos2 t+ 0.25 sin2 t.

15
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Example 2: The exterior boundary curve Γ2 is a rounded rectangle with
radial function

r2(t) = ((1/2 cos t)10 + (2/3 sin t)10)−0.1

and Γ1 is a boundary with radial function

r1(t) = 1 + 0.15 cos 3t.

The results of the numerical experiments for exact and noisy data with δ =
5% are re�ected on Fig. 1 and Fig. 2. Here we used the following discretization
parameters n = 32, m = 4, ϵ = 0.0001 and β = 0.2.

Thus, as we see from this preliminary study the non-linear integral equation
approach provides accurate reconstruction for exact and noisy data.

a). Reconstruction for exact data after
21 iterations (α = 1E − 10)

b). Reconstruction for 5% nosy in the data
after 20 iterations (α = 1E − 2)

Fig. 2. Reconstruction of the boundary Γ1 for Ex. 2
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