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ON THE NON-LINEAR INTEGRAL EQUATION
METHOD FOR THE RECONSTRUCTION OF
AN INCLUSION IN THE ELASTIC BODY

R.S. CuAPKO, O. M. IVANYSHYN YAMAN, V. G. VAVRYCHUK

PE3lOME. [lna 3HaxomkeHHs rpaHuIl 06’ €KTy B IpyKHIiH 1BOBAMIpHIiit obirac-
Ti 3a Bimomumu manumu Koimi Ha i1 rpaHuIi 3acTOCOBAHO METOI HEJIIHIAHUX
IHTerpaJbHUX PIBHSHD, IO IPYHTYETHCH Ha IPYKHUX IIOTeHiagax. Po3pob-
JIEHO iTeparifinuii MeTos fis HabJIMKeHOTro PO3B’sI3yBAHHS OTPUMAHMX iHTer-
pasbHUX piBHAHB. 3HaMeHO noxinny Dpeme BiAIOBiAHOTO ONIEpaTOpa i IOKa-
3aHO PO3B’A3HICTH JIiHeAPU30BaHOI cucTeMu. [0BHY quCKpeTU3aIio 3MHCHEHO
METO/IOM TPUTOHOMETPUYIHIX KBaAPaTyp. depe3 HEKOPEKTHICTD [0 OTPUMAHOL
crCTeMu JIHIMHUX PIBHSAHBP 33aCTOCOBAHO MeTos perysgpu3arii Tixonosa. Uu-
CeJIbHI €KCIIEPUMEHTH IIOKA3YIOTh, [0 IPOIOHOBAHUN METOM Ja€ J00py TOdU-
HICTH PEKOHCTPYKINI PN eKOHOMHHUX OOYNCIIOBAILHAX 3aTPATaX.
ABsTrRACT. We apply the non-linear integral equation approach based on
elastic potentials for determining the shape of a bounded object in the elasto-
static two-dimensional domain from given Cauchy data on its boundary. The
iterative algorithm is developed for the numerical solution of obtained integral
equations. We find the Fréchet derivative for the corresponding operator and
show unique solviability of the linearized system. Full discretization of the
system is realized by a trigonometric quadrature method. Due to the inher-
ited ill-possedness in the system of linear equations we apply the Tikhonov
regularization. The numerical results show that the proposed method gives a
good accuracy of reconstructions with an economical computational cost.

1. INTRODUCTION

The idea to reduce the problem of the boundary reconstruction directly
to non-linear equations and to employ a regularized iterative procedure was
firstly suggested in [18]. The concept consists in the use of the reciprocity
gap approach based on Green’s integral theorem. This approach was success-
fully extended in [9, 13,16, 18,20] for the case of the Laplace equation and
in [11,12,14,15| for the Helmholtz equation. The other possible way for it is
related with the Green’s function [6,7,10,20]. This method is applicable for the
reconstruction of an inclusion in some canonical domains for which the Green’s
functions are known. In this paper we would like to use the potential theory
to receive a system of non-linear integral equations [5] which is equivalent to
an inverse boundary problem for the Navier equation. As motivation for this
research we consider the extension of the potential approach to the system
of differential equations in elasticity and on the other hand the problem of the
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shape reconstruction in the elastic medium is of interest for the solid mechanics
community.

We assume that D is a doubly connected bounded domain in IR? with the
boundary 0D consisting of two disjoint closed C? curves I'; and I's such that
I'; is contained in the interior of I's.

The corresponding direct problem is: Given a vector function g on I'y con-
sider the Dirichlet problem for a vector function u € C2(D) N CY(D) satisfying
the Navier equation

Aw=0 inD (1)
and the boundary conditions

u=0 only, (2)

Tu=g ons. (3)

Here A*u = pAu + (A + p) grad div u and
Tu= Mivuv + 2u(v - grad)u + pdiv(Qu)Qr,

where v is an outward unit normal vector to the boundary and the matrix @
0 1
-1 0
the Lame coefficients, they characterize the physical properties of the material.
Note that throughout the paper the function spaces have to be understood as
vector valued.

It is well-know that the direct mixed boundary value problem has the unique
solution |21, Chapter X, §10].

The inverse problem we are concerned with is: Given the Neumannn data g
on I's and the Dirichlet data

is given by @ = . Constants p and A (g > 0,A > —pu) are called

u=f on Iy, (4)

determine the shape of the interior boundary I';.

As opposed to the forward boundary value problem, the inverse problem is
nonlinear and ill-posed.

The issue of uniqueness, i.e., identifiability of the unknown curve I'y from
the Cauchy data on I'y, is settled by the following theorem (see [4]).

Theorem 1. Let I'1 and fl be two closed curves contained in the interior of
I'y and denote by u and u the solutions to the mized problem (1)—(3) for the
interior boundaries 'y and 'y, respectively. Assume that g # 0 and

Uu=1u

on an open subset of I'a. Then I'y = fl.

2. NONLINEAR INTEGRAL EQUATIONS AND ITERATIVE SCHEMES
FOR ITS SOLUTIONS
Firstly we introduce the single-layer elasticity potential. As it is well known,
the fundamental solution to the Navier equation (1) is given by

C1 1
O(x,y) = — In P—

c2
72 _
+ - J(x —y),
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_ A 3p — My
Where A= g ©2 T 12w
is defined by

, I is the identity matrix and the matrix J

’LU’U]T

T e

in terms of a dyadic product of w € IR?\ {0} and its transpose w . Then the
single-layer potential with vector density % on I'y is defined by

<wwmr=£¢mwww@@,xeD,szz

We search the solution of the boundary value problem (1)—(3) in the form
u(z) = (Uryr)(x) + (Uatpe)(z), x € D. (5)

From the boundary behavior properties of the single-layer elasticity potential
[21], we obtain

u(z) = (Sar)(x) + (Spwe)(z), xely, (=1,2 (6)
and
(Tu)(w) = 34a(@) + (Dutn)(@) + (Dot)(@),  w€To (1)

Here, the boundary integral operators Sp, and Dy are defined by

<&wwm3£@mwﬂww@,xem,

(Dup)a) = [ Td(g)olu) dstw). €Ty
4

Taking into account the boundary conditions (2) and (3) we receive from (6) a
system of integral equations

S11P1 + S22 =0 on T4,
1 (8)
W2 + Do191 + Daogthg = g on T'o

and the condition (4) leads to the integral equation
So191 + S22tpe = f on T (9)

Theorem 2. The inverse boundary value problem (1)—(4) is equivalent to the
system of integral equations (8)—(9).

We will call the equations (8) as the “field” equations and the equation (9)
as the “data” equation.
In general, there exist three different iterative methods to solve the system
(8)—(9) by linearization:
A. Given initial guess for the boundary I'; and the densities ¥; and 2, we
linearize all three equations in order to update all the unknowns.
B. Given initial guess for the boundary I';, we solve the subsystem (8)
to obtain the densities. Then, keeping the densities fixed we solve the
linearized “data” equation (9) to obtain the update for the boundary.
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C. Given initial guess for the densities, we solve the linearized “field” equa-
tions (8) to obtain I'; and then we solve the linearized “data” equation
(9) to obtain the new densities.

The linearization, using Fréchet derivatives of the operators, and the regulariza-
tion of the ill-posed equations are needed in all methods. However, the iterative
method A requires the calculation of the Fréchet derivatives of the operators
with respect to all the unknowns and the selection of three regularization pa-
rameters at every step. Thus, we prefer to use one of the so-called two-step
methods B or C. Between the two methods, the method B is preferable since we
solve first a well-posed linear system and then we linearize the “data” equation.

3. IMPLEMENTATION OF THE TWO-STEP METHOD B
3.1. Numerical solution of the “field” integral equations. Assume that
boundary curves I'y and I's have parametric representation

Ty = {2o(t) = (zar(t), z2())] te[0,27]}, £=1,2,

where x¢1, xyo are 2m—periodic and twice continuously differentiable functions.
It gives us the following parametric form for the operator Sy

2w

Sut) @) = = [ Kot.rpulrar, k=12

where Ky (t,7) = 7®(xe(t), zx(7)) and i (t) = Y(zx(t))|x)(¢)]. Elementary
calculations yield the representation of the matrix Kpy,

4 t— ~
Kgg(t,’r):—%ln <Sin2 T>I—|—Kgg(t,7'), t#T,
(&
where
- c1 4  St—T
Kgg(t,T) :Kgg(t,T)-i-Eln — Sin I, t#T
€

with the diagonal term

TSNS S SO/ 0N
Kyt t) = 5 ! <em(t)2>j+ S0k

Parametrization of integral operators Dy reads as following
1 27
Dui)a®) =7 [ Latt.nyvu(r)r
0
with the matrices

(t) — xx(7)) - 74(t)

Ty
Lo(t,7) = c3 |(x, Q-
¢

@Ollze(t) — zx(7)|?

AN QD (s oy~

10
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A
m and ¢y = P * 2,u The kernels Ly contain the singularity.
The straightforward calculations lead to the following expression

Here c3 =

c3 t—T ~
ng(t T) cot Q+ ng(t, T),
2|y (t)] 2
where y
~ C3 — T
Lot = Ly(t, 7) — t
ee(t,7) e(t,7) 20 (1)] cot — Q
with the diagonal term
. cawy (t) - 7y(t) zy (1) - Qy(t) y(t) - ay(t)"
L(t,t) = Q+ el + g
2|y (1) |3/ 2|y (1) |3/ |7y (8)[?

Thus we obtain a system of parametrized integral equations

2m . B
71T/o {[—021111 <i sin? ! 5 T) I+K11(t77)} P1(7)+

+K12(t,7’)’¢2(7’)}d7’ =0,

2w
1?2/@) +1/0 {Lm(t,r)%(ﬂ‘*'

20ze(t)]

(10)

c3 t—T1 ~
t Lig(t dr = g(t).
* [y 57+ Enten) W)} o

For the numerical solution of integral equations (10) we combine a quad-
rature method and a collocation method based on trigonometric interpola-
tion [3,17]. For this we choose an equidistant mesh by setting t; = jh, h = 7,

\

j=0,...,2n — 1 and use the following three quadrature rules
1 2 1 2n—1
= [ anar~ o Y g, (1)
k=0
1 2w 4 2n—
o ), g(7)In (e sin?t; — ) Z Ryj_k 9(tr) (12)
k=
and
1 ot 2n—1
Dy g(T) cot T — dewZ —kg(ty), (13)
0

with the weights

1 n—1 1 (_1)j 1 n—1

R; = o {1+2 Z:lmcosmjh+ n}’ F; = - Z sinmjh.
These interpolation quadrature formulas are obtained by replacing g by its

trigonometric interpolation polynomial from the 2n-dimensional space 1, and

then integrating.

11



R.S.CHAPKO, O. M.IVANYSHYN YAMAN, V. G. VAVRYCHUK

Thus we use quadrature rules (11) and (12) to approximate two types of
integrals in the integral equations (10) and collocate the approximate equations
to obtain the linear system

2n—1
Z { |:CIR|j—kI + % Kll(tjvtk>:| ¢1n(t/€)+
k=0
—i—% K12(tj,tk)¢2n(tk)} =0,
(14)
qu 2n—1
2|xn + Z{ L1 (t5, te)1n (te)+
5(
[ k@ Ll t0)] vt | = o)
)] T B | enlle) = 00

for j =0,1,...,2n — 1, which we solve for the nodal values ¥y, (tx), £ = 1,2 of
wZn € T,.

The convergence and error analysis for this quadrature method can be es-
tablished on the basis of the collectively compact operators theory (see [8]) or
on the basis of some estimate of trigonometric interpolation in Hoélder spaces
(see [19]).

Theorem 3. For f € CPTLP(0,27] and a sufficiently large n the system (14)
has an unique solution with e, € T,, and for the exact solutions v of (10) we
have the error estimates

Inn

%e = Yenllma < CWH@WHP g, £=1,2

for0<m < p, 0<a< B <1 and some constant C' > 0 depending only on
a? ﬁ? m7p

3.2. Numerical solution of “data” integral equation equation. Accord-
ing to our algorithm we need to find the correction for I'; from the “data”
equation (9), where the densities ¢y, £ = 1,2 are known. For simplicity we con-
sider only star-like interior curves, i.e., we choose a parametrization in polar
coordinates of the form

x1(t) = {r(t)c(t) : t € [0, 27|}, (15)

where ¢(t) = (cost,sint) and 7 : IR — (0,00) is a 27 periodic function repre-
senting the radial distance from the origin. Also we use the following notation
Sy = S91%. However, we wish to emphasize that the concepts described below,
in principle, are not confined to star-like boundaries only.

For the given r and 1y, { = 1,2 we solve the linearized ill-posed integral
equation

([, hrl@)(8) = £(£) = (Spipr)(t) — (Sa2tb2) (t) (16)

12
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with respect to the function g. Here the Fréchet derivative of the operator S,
has the following representation

2
Strvlo) = 1 [ arN v,
where
Ny (t,7) = —cre(T) - Vi (7 In |xa(t) — z1(T)| I+
+ 2 (e(7), Oy () (22(t) — 21(7)).
Here (¢(7), 0y, ())J (w2(t) — 21(7)) is the tensor obtained by applying (c(7),
Oz, (7)) to each column of J(w2(t) — z1(7)).

1

Theorem 4. The Fréchet derivative operator S'[r, @Zl] 18 injective at the exact
solution.

Proof. Assume S'[r,41]q = 0. We introduce a function

Viz) = / (1), 0,)B(x, )1 (v) ds(y), =€ RE\T,

where ((z1(t)) = q(t)c(t), t € [0, 27].
Clearly the function V satisfies the Navier equation
A*V =0 inR*\ T,
and by the assumption
V|, =0.
It is known, [13], that for sufficiently small ¢, the perturbed interior curve as
given in polar coordinates by

Lirgg = {(r(t) +q(t))e(t) : t € [0, 2]}
can be represented in terms of the outward unit normal vector v to I'1, as
follows

Tirgq = {r(t)e(t) + qt)v(t) : t € [0,2]}.
Hence, the function V' can be rewritten in the form

21 ~
Vi(z) = /0 (W(7), 02y (1))@ (, 21(7)) G()901 (7) |2y (T)| 7, € R?\ T
Recalling
ca 1 2 (zi —yi) (% — yy)

[0} 1 I+ =
@9) =T+ 2

and having introduced ¢€;; the two-dimensional Ricci tensor

T =¢€jivy, (65) =Q, v=-Qr,

we rewrite the (v(y), 0y)®(x,y) in terms of the tangential derivative as follows

61 8 1
v(y), 0y) P (x,
o 0 (@i—wy)lzj—yj) o _ -
r oy Je—yP O

13
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By [2, Theorem 4.5] we obtain that the function V' can be continuously extended
to the boundary I'y, i.e.,

V(21 ()* = Ferd (1)) +

21 ~
+ / (V(7), Oy (7)) @(21.(8), 21(7)) G(7)1 (7) |2 (7) | .
0

The function V behaves as o(1) at infinity. By the uniqueness of the exterior
and interior Dirichlet problem [21, p.55] we have

Cl&l (t)g(t) =0, te]0,2n].

The function u given by (5) solves the Dirichlet problem in the interior of I';.
By uniqueness of the solution to the Dirichlet problem for the Navier equation
u has to vanish in the interior of I'y and hence Tu™ = 0 on I'y.

The jump relations imply Tut = ;. Employing Holmgren’s uniqueness
theorem similar to the case for the Helmholtz equation [1, Theorem 2.3.] one
can show that the Cauchy data (u™,Tu™) cannot be identically zero on an
open subset and hence Jl cannot vanish on an open subset of [0, 27]. a

For the numerical solution of (16) we apply tha collocation method with the
approximation of ¢ in the form

2m
Qm:Zszlla mem>n>m>
i=0

where [;(t) = cosit for i = 0,...,m and [;(t) = sin(m—1)t for i = m+1,...2m.
Then the following linear system needs to be solved

2m
quinj:bi, Z':(),...,2n—1 (17)
7=0
with
1 2n—1
Aij = = L) No (b, )b (1)
k=0
and
2n—1 1
bi = f(t;) — — Ko (t;,t n(t
f(t) kzzo{n 21 (i, te)Y1n (tr)+

1 |:_01Rz‘_k|l+ % Km(%%)} %Z)Qn(tk)}-

Due to ill-possedness of (17) and its over-determination we apply the least-
squares method and the Tikhonov regularization with the regularization pa-
rameter a > 0.

14
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3.3. Algorithm for the two-step method B. Now we summarize the algo-
rithm.

1. Choose some starting value r.

2. Solve the system of well-posed integral equations (8) (see subsec. 3.1).

3. For the given r, 1 and 9 solve the linearized ill-posed integral equation
(9) with respect to function g (see subsec. 3.2).

4. Calculate an approximation for the radial function r = r + 8q, where 3
is a relaxation parameter for the Newton method.

5. Repeat steps 2-4 until a stopping criterion is satisfied.

4. NUMERICAL EXAMPLES
The Cauchy data on I'y were generated by solving the direct problem (1)-(3)
for g = (1,1)T on I'y and calculating f = (f1, f2)' as the restriction of the
solution on I'y. Note that when generating the “exact” Cauchy data we used a
finer mesh in order to avoid the “inverse crime”. The noisy data were formed as

1= fet @0 =Dl fellors, £=1,2
with the noise level § and the uniformly distributed random variable 7 in (0, 1).
The stopping rule was chosen as
lgllzo(r)
”THLQ(H)

We demonstrate the feasibility of the proposed methods for the inverse prob-
lem (1)-(3) with 4 = A =1 and with following boundaries

a). Reconstruction for exact data after b).Reconstruction for 5% nosy in the
21 iterations (o = 1E — 10) data after 16 iterations (a = 1E — 2)

Fia. 1. Reconstruction of the boundary I'; for Ex.1
Example 1: The exterior boundary curve I'y is a elipse I's = {x2(t) =

(2cost,1.5sint),t € [0,27]} and the interior boundary curve I'y (to be
reconstructed) is peanut-shaped with radial function

r(t) = Vcos? t + 0.25sin? .

15
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Example 2: The exterior boundary curve I'y is a rounded rectangle with
radial function

ro(t) = ((1/2cost)!? + (2/3sint)0) =01
and ['7 is a boundary with radial function
r1(t) = 14 0.15cos 3t.

The results of the numerical experiments for exact and noisy data with § =

5% are reflected on Fig. 1 and Fig. 2. Here we used the following discretization
parameters n = 32, m =4, ¢ = 0.0001 and 8 = 0.2.

Thus, as we see from this preliminary study the non-linear integral equation

approach provides accurate reconstruction for exact and noisy data.

a
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). Reconstruction for exact data after b). Reconstruction for 5% nosy in the data
21 iterations (o = 1E — 10) after 20 iterations (o = 1E — 2)

Fi1G. 2. Reconstruction of the boundary I'y for Ex. 2
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