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THE CLASSICAL ORTHOGONAL POLYNOMIALS
IN RESONANT EQUATIONS

1. GAVRILYUK, V. MAKAROV

PE3IOME. VY crarTi 3aIpOIIOHOBAHO TEODII0 Ta AJTOPUTM sl 3HAXOIZKEH-
HY YACTKOBUX PO3B’9I3KiB PE30HAHCHUX DIBHAHD, IIOB’SI3aHUX 13 KIACHIHIMEI
OPTOTOHAJIBHUME IIOJIHOMAMHU. Lle 1a€ MOXKJIMBICTH OTPUMATH 3arajbHUH
PO3B’M30K y {BHOMY BULJIsl. AJIrOpUTM LJAXOAUTH 30KpeMa i CUCTEM
xoMIT'1oTepHol anrebpu, Hanpukiaaa, Maple. Pesonanchi piBHsAHHS € HEBi T €M-
HOIO 9aCTHUHOIO Pi3HUX 3aCTOCYBaHb, HAIIPUKIIA, €(peKTUBHOTO OYHKITIOHATH-
nOo-muckpernoro merony (FD-meron) mus po3s’s3yBaHHs onepaTopHUX Pis-
HAHL 1 nmpobleMy BJIACHUX 3HAYEHb HA OCHOBI 30ypeHsb i imel romoromil. Ili
PIBHSHHS BHHHUKAIOTH TAaKOXK I B KOHTEKCTI CYIMEPCHUMETPUYHHX OIE€PATOPiB
Kaszimipa just ai-cuinosoi aimrebpu, a rakox piBHsap tuny A2u = f 3 3asaHum
oneparopoM A B JiesKoMy GaHAXOBOMY ITPOCTODI, HAIPHUKJIA, 6irapMOHITHOTO
PiBHAHHS.

ABSTRACT. In the present paper we propose a theory and an algorithm for
particular solutions of resonant equations related to the classical orthogonal
polynomials. This enable us to obtain the general solution in explicit form.
The algorithm is particulary suitable for computer algebra tools like Maple.
The resonant equations are an essential part of various applications e.g. of the
efficient functional-discrete method (FD-method) for solving operator equa-
tions and of eigenvalue problems based on the perturbation and the homotopy
ideas. These equations arose also in the context of supersymmetric Casimir
operators for the di-spin algebra as well as of the equations of type A%u = f
with a given operator A in some Banach space, for example, of the biharmonic
equation.

1. INTRODUCTION

There are various definitions of resonant equations, see e.g. [1, 2|, where
a boundary value problem is called resonant, when the operator, defined by
the differential equation and by the boundary conditions does not possess the
inverse. In the present paper we follow the definition from [7,16,19] and call
an equation of the form Lf = g with Lg = 0 resonant. In other words, the
right-hand side of the resonant equation belongs to the kernel K (L) of the
operator L. These equations are interesting both from theoretical point of view
and from the practical side in various applications. For example, in [16] was
proposed the so called functional-discrete method (FD-method) for solving of
operator equations and of eigenvalue problems. The method is based on the
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ideas of perturbation of the operator involved and on the homotopy idea. This
approach was applied to various problems in particulary to eigenvalue problems
in [9-13] and has been proven to possess a super exponential convergence rate.
An essential part of the algorithm are some inhomogeneous equations with a
resonant component in the sense of the definition above. Resonant equations
arise in the theory of supersymmetric Casimir operators and of di-spin algebra
[7]. They can be used to study the equations of the type A%u = 0 with some
given operator A. Substituting Au = v we reduce this equation to the pair
Av = 0, Au = v where the second equation is resonant.

Their importance for praxis can be explained by the following example. Let
the mathematical model of some system be the operator equation

Au—du=f

in some Hilbert space H, where the system is characterized by the operator
A and the parameter \. The element f describes external perturbation. The
operator A is completely defined by its eigenvalues Aq, Ag, ... and by the corre-
sponding eigenvectors uj, ug, ... If the perturbation is of the kind f = awuy for
some fixed «, k, i.e, the equation is resonant, then the solution of the mathe-
matical model is u = y%5uy. One can see that the norm [lul|, which can be
interpreted as “amplitude”, tends to infinity as the system parameter A tends
to the so called resonant frequency Ar. This phenomenon is called resonance
and can be observed in the nature and many technical applications, e.g. in
magnetic resonance imaging or nuclear spin tomography etc.

The present article deals with the resonant equations associated with the or-
dinary differential operators of the hypergeometric or confluent hypergeometric
type, defining the classical orthogonal polynomials, i.e.

d? d
@ + T(l‘)%

where o(z) = asz? + a17 + ap is a polynomial of the degree not greater then
two, 7(x) = bix + by - a polynomial of the degree not greater then one and
An = A(n) = —nby — n(n — 1)as depends on the integer parameter n > 0
but not on the variable x. We consider the differential operators defining the
classical orthogonal polynomials (as the first linear independent solution of
the corresponding homogeneous differential equation) and the corresponding
functions of the second kind (the second linear independent solution) and the
resonant equations of the first and of the second kind with the corresponding
right hand side. We propose a theory describing particular solutions of the
inhomogeneous resonant equations. We propose a theory and an algorithm to
compute such solutions, which is especially convenient for the computer algebra
tools like Maple and prove that the functions generated by this algorithm satisfy
the resonant differential equation. Incidently we prove a new differentiation
formula which represents the derivative of a classical orthogonal polynomial
through the linear combination of the same and of a neighboring polynomial
and which is unified for all classical orthogonal polynomials. Its coefficients
are expressed through the coefficients of o(z),7(z) and the coefficients of the

A, =o(x) + A (1)
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recurrence relation. Such formulas are well known in the literature (see e.g.
[5,5,24,28]), but for each concrete orthogonal polynomial only.

2. REPRESENTATION OF PARTICULAR SOLUTIONS OF
RESONANT EQUATIONS
A classical orthogonal polynomial (Jacobi, Laguerre or Hermite) P, (z) (see
e.g. [6,24,28]) satisfies the homogeneous differential equation

Anu(z) =0 (2)

and is called also the function of the first kind. Let Qn(a:) be the second linear
independent solution of the homogeneous differential equation, which is called
the function of the second kind. Then the general solution of the homogeneous
differential equation (2) is given by

u(z) = e1Po(x) + c2Qn (), (3)

where ¢, co are arbitrary constants.
Let us consider the resonant equations of the type

Apun(z) = Ry (). (4)

In the case when R, (x) is a classical orthogonal polynomial P, (z) (the function
of the first kind), the inhomogeneous differential equation (4) is called the res-
onant equation of the first kind. The inhomogeneous differential equation (4)
with the right-hand side Q,, () instead of Ry, (z) is called the resonant differen-
tial equation of the second kind. Both functions P, (z) and Q,(z) satisfy the
same homogeneous differential equation (2) and the same recurrence relation

Rus1(2) = (a(n)a + ) Ru(@) = Y(n)Ruoa(0), n =12, (5)

with some coefficients a(n) = ay, B(n) = Bn,v7(n) = v, (see e.g. [6,23,24,28]).
If we change in the differential operator A4, the integer n > 0 to a real v
then the corresponding solutions P, (), Q,(x) become the hypergeometric or
confluent hypergeometric functions [5,6]. Since Ry, (z) satisfies the homogeneous
differential equation (2), then we can differentiate this equation by n in the
following way: 1) switch from the integer n > 0 to a real v, 2)differentiate
by v and 3)replace the real v by the integer n. In regard of (1) we obtain

An% =—-XN(n)R, or A, <—ﬁ%> = R,, which means that the function
1 dR,

un(z) = " X(n) dn ©)
is a particular solution of the resonant equation. Using this relation and differ-
entiating (5) by n we obtain

1

N+ [N (n)(a(n)z + B(n)) un(2)+
+ X (0 = 1) ()1 (2)+ @)

+ (&/(n)z + B'(n)) Ru(z) — v (n)Rp—1(z)], n=1,2,...

un+1($) = -
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The general solution of the resonant equation (4) is given by
(@) = &1 Pu(a) + 6200 (2) + ulP) (@), (8)
(k)

where uy, ' (z),k = 1,2 is a particular solution of the corresponding inhomoge-
neous resonant equation. Below we propose an algorithm to find the particular
solutions, which is especially suitable for computer algebra tools like Maple etc.
Since our algorithm below for particular solutions of the resonant differential
equations of the first and of the second kind (3) is based on the same recurrence
relation (5) it is valid for the resonant equations of both types and we use the
notation R, (z) below for both P, (z) and Q,(z). The following general result
on the particular solutions of the resonant equations has been proven in [19].

Theorem 1. Let A: X — X be a linear operator acting in a Banach space X,
the set K(A) C X be the kernel of A and a connected set X.(A) in the complex
plane be the spectral set of A. If f(\) € K(A—AE), X € X(A) is a differentiable
function then the solution of the resonant equation

(A= AE)u = f(}) (9)
can be represented by
_df())
u(h) = = (10)
The proof of this theorem is based on the equivalent equation
A)— f(A
(a2 TN TR0 _ g5
— Ao

with some fixed A9 and on passing to the limit A — Xg.

3. AN ALGORITHM FOR COMPUTATION OF PARTICULAR SOLUTIONS.
A QENERAL DIFFERENTIATION FORMULA FOR CLASSICAL
ORTHOGONAL POLYNOMIALS
Now we are at the position to formulate an algorithm for the particular
solutions of the resonant equations associated with a differential operator of the
hypergeometric type, defining classical orthogonal polynomials. This algorithm
is especially suitable for computer algebra tools like Maple etc.

Algorithm 1. Problem: Given a resonant equation of the first or of the second
kind, return a given number N of particular solutions.

Inputs: The number N and the right hand side R,(z) of the resonant equa-
tion.

Outputs: The particular solutions ug(x),u1(z), ..., un(z).

1. Find

1 dR,(z) 1 dR,(z)

Nw)  dv |, xa(@) = CN(v)  dv

Due to (6) these are particular solutions.
2. Compute uz(x) in accordance with (7) using the initial conditions

ug(x) = xo(x) + coPo(x) + doQo(x), ui(x) = x1(x) + c1P1(z) + d1Q1(x) (12)

Xo(z) = (11)

v=1
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with undefined coefficients cg, c1,dp, d;.

3. Find co,c1,dy,dy from the condition that ua(x) satisfies the resonant dif-
ferential equation (3).

4. Forn=2 step 1 until n = N compute un(z) by (7) and return up,(z).

Using Theorem 1 we prove below that the sequence u,(z) generated by this
algorithm satisfy the resonant equation for all n =0,1,2,....

Theorem 2. All functions u,y1(x) generated by the recursion (7) with the
initial conditions (12) satisfy the resonant differential equation (4).

Proof. We use the mathematical induction and, first of all, note that the func-
tions up(x), p=0,1,2 satisfy the resonant equation by construction and due
to Theorem 1. Let us assume that all the functions u,(z),p = 0,1,...,n
satisfy the resonant differential equation (4) and prove that then the function
Un+1 () is its solution too.

First of all we notice that

d?u,, duy,
Appiun(x) = U(%‘)W + 7(x)—— T +AXn+ Du, =
= Antn(z) + (A(n + 1) = A(n))un = Rn(z) + (A(n + 1) — A(n))un,
Api1tun-1(z) = Ap1tun—1(2) + (An +1) = A(n — 1))up—1 =
= Rp1(z) + (An+1) = A(n — 1))up—1, (13)

d
[0/ () + B (1) Ra() = 7/ () Ra-1(2)] =
dR,(x) , dRp_1(x)

Further we use the differentiation formula for the classical orthogonal poly-
nomials (which is the same for the functions of the second kind too) and which
represents the derivative of these functions through the same functions of index
n and the function of the index n — 1 with some coefficients independent of x

(see, e.g. |23, §4, (12)] or |6, p.171,(15); p.189, (12); p.193, (14)| for concrete
classical orthogonal polynomials):

oln)

= o/ (n)Rn(x) + (o (n)z + §'(n))

= [g1(n)z + @2(n)|Rn(z) + s(n) Rp—1(z) =
= [QLnx + q2,n]Rn($) + San_l(.’E).

(14)

Substituting this expression as well as (13)into the formula for A, 1t,+1(x),
we obtain

N (n)
N(n+1)
(@' (n)z 4 B'(n))(A(n + 1) — A(n)) Ry (2)+ (15)
()
TN+

(a(n)z + B(n))(A(n + 1) = A(n))un(z)

Api1tuns1(x) =

o
N(n+1)

(a(n)z + B(n)) Rn(z)—
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20() , dup(z) ,,  dRn(x)
"Nt D =X (n)a(n) Ty +a (n)T _
@) ,
_ m [—/\ (n)a(n)un(z) — « (n)Rn(x)] _
1 /
N(n+1) (N (n = 1)y(n)(A(n +1) = A(n = 1))un-1(2)+
+ N (n = 1)y(n) Ry (2)~

N(
— 7' (n)(An+1) = A(n —1))Rp_1(x)) =
)

—XL a(n)x n n —Xn
— e { el + BN+ 1) = A+
T 20(n) [ () &+ @2 ()] + Ar(2) } un(e) +
XD )M+ 1) — A)) + 2a(n)s (1) } i (2) + R(2),

N(n+1)
where R(z) contains the functions R,_1(x), R,(z) and its derivatives but not
Un—1(x), up(x). Setting the coefficients in front of u,_1(z), u,(z) equal to zero,
we obtain

7(n)

s(n) = —m [b1 + (2n — 1)ag] ,
q1(n) = —% [b1 + A(n + 1) — A(n)] = nax, (16)
go(n) = —%0 _ g&)) A+ 1) — A(n)] = —%0 + f;gz) by + 2nas] .

It is easy to check that the coefficients of the differentiation formulas for all
classical orthogonal polynomials satisfy (16). For example, the Laguerre poly-
nomials are defined by the confluent hypergeometric differential equation with
o(x) = agx® + axx + a9 = x,7(z) = bix +bp = a+1—-x,) = An) =
—nby —n(n — 1)ag = n; i.e. ag = 0,a1 = —1,a90 = 0,01 = —1,bp = a + 1.
Besides they satisfy the recurrence relation |6, §10.2]

(n+1) Ly ()= 2n+a+1—2x)Ly(x)+ (n+a)ly_(x) =0, (17)

ie. a(n)= —n%rl,,é’(n) = %,y(n) = — "¢ Due to (16) we obtain s(n) =

n+a,qi(n) =0,qz(n) = =2 4 20etl — p and (14) implies the well known
differentiation formula (see e.g. [6, §10.2])

dL%(z
P80 ) 4 (o)L ). (18)
Now, using the recurrent relation (5) we obtain from (15) the equality
An-f—lun—‘,—l(x) - Rn—‘rl(x)a (19)
which proves the assertion. ([

Remark 1. At once with (16) we have obtained the coefficients of the general
differentiation formula (14) which is valid for the general classical orthogonal
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polynomials and contains all particular cases of the polynomials by Jacobi, La-
guerre, Hermite known from the literature [6, 24, 28]. This formula is much
more convenient for use then the corresponding formula from [23, 24].

4. EXAMPLES
Example 1. This example demonstrates the use of Algorithm 1 for the repre-

sentation of the general solution of the following Laguerre resonant equation of
the first kind

xdi;;(;) +(1+a—a:)cmd(;)+nu(w) = L3 () (20)
where
Lg(w) _ w—;!l)n@(—n,a + 17-%') =
_ D(a+1+n) =~ n+a) ()t @)
S Tlat Uity Cmetho= Z( n—k ) k!

k=0

is the Laguerre polynomial satisfying the corresponding homogeneous differ-
ential equation and ®(—n,a + 1,z) is the confluent hypergeometric function
satisfying a degenerate form of the hypergeometric differential equation when
two of the three regular singularities merge into an irregular singularity [5, p.
189, formula (14)] and (a)o = 1,(a), = ala+ 1)(a +2)---(a +n — 1) is the
Pochhammer-Symbol.

The second linear independent solution of the homogeneous differential equa-
tion is the Laguerre function of the second kind [$(z) (see e.g. [25, pp.16,20]).
The general solution of the homogeneous Laguerre differential equation is given
by

u(x) = 1 Ly (x) + caly () (22)

with arbitrary constants cj,ca. The general solution of the Laguerre resonant
(inhomogeneous) equation is given by
u(z) = 1 LY (x) + el (x) + up(x) (23)
where ¢, co are arbitrary constants and u,(z) is a particular solution of the
inhomogeneous (resonant) equation.
Solving the corresponding differential equation for the Laguerre function of

the second kind [25, pp.16,20] by Maple we obtain the following representation
of this function for non-integer o

Iy(z)=T1—-a)Lo(x) — (—x) " *1Fi(—n—a,—a+ 1;z) =
=I'(1 —a,—z)Ly(z) — (=) “py(2) exp(x),

Prn(e) = ——=[Cn+a+1-2)pi() - (n+a) ph4(2)],  (24)
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For non-negative natural o € N we have
Iy (2) = Bl (=2) Ly (x) — (=2)"“py (2) exp(x),
pli(z) = (@ = 1)), (25)
P (@) = 297 2% [U (2,2, —2) + (~1)%al UL+ a, 1+ a, —a)],

where
oo ,—t
Biy(2) = / i, JArg()] < (26)

is the exponential integral and U(a, b, z) is the Kummer’s function of the second
kind. The last one is a solution of the Kummer’s differential equation

d
z2— + (b— )d—f—aw—o (27)

The other linear independent solution of this differential equation is the Kum-
mer’s function of the first kind M defined e.g. by the hypergeometric series:

_ > (a)n2" _ B
M(a) ba Z) - r;) (b)nn' - 1F1(CL, b7 Z)' (28)
The Kummer’s function of the second kind can be represented also as
I'(1-0b)
=——"—M
reop-1)

I=bpr 1—b,2—b,2).
T(a) z (a+ b,2 —b,2)

Note that the function at the second initial condition in (25) solves the following
difference initial value problem

pi(z) =apyH(2) +(a=1)!, a=12,..,
po(z) =0.
Using Theorem 1 we can represent the particular solutions of the Laguerre
resonant equation of the first kind also by
0 T(a+1+n)
ov MNa+1)I'(n+1)

(30)

u, () = O(—n,a+1,z) ,n=0,1,.. (31)

n=v

From this expression we extract the following particular solutions containing
the elementary functions only

X3 (@) = ug(z) = —In(z Z Lo Pyt

p-|—1 $p+1’
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where

kpy1(a pzk‘ 2, .., a—1,

(33)
ki(a) = (a;l)’ ko(a) = —a—2, a=2,3,...,
At the first step of our Algorithm 1 we use the ansates
ug (2) = xo () + coLg (x) + dolg (z), (3)

uf (2) = X7 (2) + e L7 (2) + dli' ()

with undefined coeflicients co, do, c1, d1, obtain u$(z) from the corresponding
recurrence formula of our algorithm and choose co, do, ¢1,d; so that u§(z) sat-
isfies the resonant differential equation. We get dg = 0,d; =0 and ¢; = 1+ ¢p.
Now one can verify that

ufi () = —L2(x) In(z) + P11 (35)

(L-a
where the polynomials p%(z) satisfy the recurrence equation

nt+a+1—=x n+ao

P (@) = T @) - TS )+ y
e A B k0 S P S 0
(n+1)2 " (n+1) Ln- o
with the initial conditions
a—1 _
o) = 3 e e
P=0 3 (37)

Example 2. Now, let us consider the Laguerre resonant equation of the second
kind

d? d

dl;f? -l-(l—i—oz—x)i;f:)—l—nu(x) = 1%(x) (38)

whith the Laguerre function of the second kind [%(x). Due to Theorem 1 the
formula

unw) =~ 122 | (39)

defines a particular solution of (38), so that its general solution is given by
u(z) = a1 Ly (z) + calyy () + up (). (40)

The use of formula (39) for arbitrary n is rather burdensome, therefore we use
Algorithm 1, where we for the sake of simplicity set o = 0. Solving differential
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equation (38) with Maple for n =0, n = 1 we get

(@ =- | 22O [ iy () exp(-€)deat

t 1
xi(z) = [(1 — z) Ei1(—2z) — exp(z)] x

< [T+ (14 exp(-€)(-1 + e+

+ [ exp(- QB (-O)(~1+ &) + exp(~€)Pd(~1 + ).
1
As the ansatzes for initial values of our algorithm we use
ug(x) = xo(z) + coBir(—x) + do, ui(x) = x1(z) + e1lf(2) + di L{(z)  (42)

with undefined constants cg, dg, c1,d;. Differentiating the recurrence equation
for the Laguerre functions of the second kind by n and in regard of (39) we
obtain the following recurrence relation for particular solutions

_2n+1l—2x g n

0 mrl-T _ 0 _
un—i—l (x) - n+ 1 un(x) n+ lun—l(x)
(43)
_ ilo(x) Ly p (x)
(n4+1)2" (n+1)2 17
We substitute (42) into this equation with n = 1 and demand that the obtained

function uJ(w) satisfies the resonant differential equation (38) with n = 2, then

we obtain
co = —Eij(—1)exp(—1) — 1,
do = —[Ei1(—1) exp(—1/2) + exp(1/2)]?, (44)
Cl1 = 0, d1 =0.

It can be verified by substitution into (43) that the following representation

holds true

up () = po(x)x1(2) + gy (€)x0(x) + vy (2)Bir (—2)+
0 0 (45)
+ w,, (z) exp(x) + ¢, ()dy,

where the polynomials p? (z), ¢%(x) satisfy the recurrence relation for the La-
guerre polynomials with the initial conditions

po(z) =0, pl(@)=1, g¢z)=1, ¢l(z)=0.
The polynomials w? (z) satisfy the inhomogeneous recurrence relation for the
Laguerre polynomials

_2n+l-2 n 0 1+z

why1(z) = ?wn(ﬁ) i 1wn71(~’0) - mpn(l’)‘i‘
1 (46)
—|—mp2_1(aj), n=12,..

with the initial conditions
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The polynomials v2(z) solve the following discrete initial value problem

2n+1—x n 1+2x
Ug+1($) = ﬁ”g(@ - m”g—ﬂx} - ng(Jﬂ)+
1 0
—'—an_l(iﬁ), n —= 1,2,..., (47)
% — 2¢o

@) =0, (@) ="

Below we give some particular solutions of the Laguerre resonant equation of
the second kind obtained by our algorithm:

ug(x) = xo(x) + coEir (—z) + do, uf(x) = x1(x),

r—3 1
up(z) = — 5 X1(2) = 5xo(x)+
22 21 1
+ z 1 COEil(—x) — exp(z) ido’
1 4 11 1 5 48
) = (o= 3o+ 5 ) a@ + (o= 2 ) )+ (48)

1, 11, 23 1 1 5
Sy By S “r—2)d
o0’ Tt Tt 72) eXp(xH( v ) 0

where ¢g, dy are given by (44) and xo(z), x1(x) — by (41).
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