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THE CLASSICAL ORTHOGONAL POLYNOMIALS

IN RESONANT EQUATIONS

I. Gavrilyuk, V.Makarov

Ðåçþìå. Ó ñòàòòi çàïðîïîíîâàíî òåîðiþ òà àëãîðèòì äëÿ çíàõîäæåí-
íÿ ÷àñòêîâèõ ðîçâ'ÿçêiâ ðåçîíàíñíèõ ðiâíÿíü, ïîâ'ÿçàíèõ iç êëàñè÷íèìè
îðòîãîíàëüíèìè ïîëiíîìàìè. Öå äà¹ ìîæëèâiñòü îòðèìàòè çàãàëüíèé
ðîçâ'ÿçîê ó ÿâíîìó âèãëÿäi. Àëãîðèòì ïiäõîäèòü çîêðåìà äëÿ ñèñòåì
êîìï'þòåðíî¨ àëãåáðè, íàïðèêëàä, Maple. Ðåçîíàíñíi ðiâíÿííÿ ¹ íåâiä'¹ì-
íîþ ÷àñòèíîþ ðiçíèõ çàñòîñóâàíü, íàïðèêëàä, åôåêòèâíîãî ôóíêöiîíàëü-
íî-äèñêðåòíîãî ìåòîäó (FD-ìåòîä) äëÿ ðîçâ'ÿçóâàííÿ îïåðàòîðíèõ ðiâ-
íÿíü i ïðîáëåìè âëàñíèõ çíà÷åíü íà îñíîâi çáóðåíü i iäå¨ ãîìîòîïi¨. Öi
ðiâíÿííÿ âèíèêàþòü òàêîæ i â êîíòåêñòi ñóïåðñèìåòðè÷íèõ îïåðàòîðiâ
Êàçiìiðà äëÿ äi-ñïiíîâî¨ àëãåáðè, à òàêîæ ðiâíÿíü òèïó A2u = f ç çàäàíèì
îïåðàòîðîì A â äåÿêîìó áàíàõîâîìó ïðîñòîði, íàïðèêëàä, áiãàðìîíi÷íîãî
ðiâíÿííÿ.

Abstract. In the present paper we propose a theory and an algorithm for
particular solutions of resonant equations related to the classical orthogonal
polynomials. This enable us to obtain the general solution in explicit form.
The algorithm is particulary suitable for computer algebra tools like Maple.
The resonant equations are an essential part of various applications e.g. of the
e�cient functional-discrete method (FD-method) for solving operator equa-
tions and of eigenvalue problems based on the perturbation and the homotopy
ideas. These equations arose also in the context of supersymmetric Casimir
operators for the di-spin algebra as well as of the equations of type A2u = f
with a given operator A in some Banach space, for example, of the biharmonic
equation.

1. Introduction
There are various de�nitions of resonant equations, see e.g. [1, 2], where

a boundary value problem is called resonant, when the operator, de�ned by
the di�erential equation and by the boundary conditions does not possess the
inverse. In the present paper we follow the de�nition from [7, 16, 19] and call
an equation of the form Lf = g with Lg = 0 resonant. In other words, the
right-hand side of the resonant equation belongs to the kernel K(L) of the
operator L. These equations are interesting both from theoretical point of view
and from the practical side in various applications. For example, in [16] was
proposed the so called functional-discrete method (FD-method) for solving of
operator equations and of eigenvalue problems. The method is based on the

Key words. FD-method; Casimir operators; di-spin algebra; Banach space; biharmonic
equation.
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ideas of perturbation of the operator involved and on the homotopy idea. This
approach was applied to various problems in particulary to eigenvalue problems
in [9�13] and has been proven to possess a super exponential convergence rate.
An essential part of the algorithm are some inhomogeneous equations with a
resonant component in the sense of the de�nition above. Resonant equations
arise in the theory of supersymmetric Casimir operators and of di-spin algebra
[7]. They can be used to study the equations of the type A2u = 0 with some
given operator A. Substituting Au = v we reduce this equation to the pair
Av = 0, Au = v where the second equation is resonant.

Their importance for praxis can be explained by the following example. Let
the mathematical model of some system be the operator equation

Au− λu = f

in some Hilbert space H, where the system is characterized by the operator
A and the parameter λ. The element f describes external perturbation. The
operator A is completely de�ned by its eigenvalues λ1, λ2, ... and by the corre-
sponding eigenvectors u1, u2, ... If the perturbation is of the kind f = αuk for
some �xed α, k, i.e, the equation is resonant, then the solution of the mathe-
matical model is u = α

λk−λuk. One can see that the norm ∥u∥, which can be

interpreted as �amplitude�, tends to in�nity as the system parameter λ tends
to the so called resonant frequency λk. This phenomenon is called resonance
and can be observed in the nature and many technical applications, e.g. in
magnetic resonance imaging or nuclear spin tomography etc.

The present article deals with the resonant equations associated with the or-
dinary di�erential operators of the hypergeometric or con�uent hypergeometric
type, de�ning the classical orthogonal polynomials, i.e.

An = σ(x)
d 2

dx2
+ τ(x)

d

dx
+ λn (1)

where σ(x) = a2x
2 + a1x + a0 is a polynomial of the degree not greater then

two, τ(x) = b1x + b0 - a polynomial of the degree not greater then one and
λn = λ(n) = −nb1 − n(n − 1)a2 depends on the integer parameter n ≥ 0
but not on the variable x. We consider the di�erential operators de�ning the
classical orthogonal polynomials (as the �rst linear independent solution of
the corresponding homogeneous di�erential equation) and the corresponding
functions of the second kind (the second linear independent solution) and the
resonant equations of the �rst and of the second kind with the corresponding
right hand side. We propose a theory describing particular solutions of the
inhomogeneous resonant equations. We propose a theory and an algorithm to
compute such solutions, which is especially convenient for the computer algebra
tools like Maple and prove that the functions generated by this algorithm satisfy
the resonant di�erential equation. Incidently we prove a new di�erentiation
formula which represents the derivative of a classical orthogonal polynomial
through the linear combination of the same and of a neighboring polynomial
and which is uni�ed for all classical orthogonal polynomials. Its coe�cients
are expressed through the coe�cients of σ(x), τ(x) and the coe�cients of the
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recurrence relation. Such formulas are well known in the literature (see e.g.
[5, 5, 24,28]), but for each concrete orthogonal polynomial only.

2. Representation of particular solutions of

resonant equations

A classical orthogonal polynomial (Jacobi, Laguerre or Hermite) P̂n(x) (see
e.g. [6, 24, 28]) satis�es the homogeneous di�erential equation

Anu(x) = 0 (2)

and is called also the function of the �rst kind. Let Q̂n(x) be the second linear
independent solution of the homogeneous di�erential equation, which is called
the function of the second kind. Then the general solution of the homogeneous
di�erential equation (2) is given by

u(x) = c1P̂n(x) + c2Q̂n(x), (3)

where c1, c2 are arbitrary constants.
Let us consider the resonant equations of the type

Anun(x) = Rn(x). (4)

In the case when Rn(x) is a classical orthogonal polynomial P̂n(x) (the function
of the �rst kind), the inhomogeneous di�erential equation (4) is called the res-
onant equation of the �rst kind. The inhomogeneous di�erential equation (4)

with the right-hand side Q̂n(x) instead of Rn(x) is called the resonant di�eren-

tial equation of the second kind. Both functions P̂n(x) and Q̂n(x) satisfy the
same homogeneous di�erential equation (2) and the same recurrence relation

Rn+1(x) = (α(n)x+ β(n))Rn(x)− γ(n)Rn−1(x), n = 1, 2, ... (5)

with some coe�cients α(n) = αn, β(n) = βn, γ(n) = γn (see e.g. [6, 23, 24, 28]).
If we change in the di�erential operator An the integer n ≥ 0 to a real ν
then the corresponding solutions P̂ν(x), Q̂ν(x) become the hypergeometric or
con�uent hypergeometric functions [5,6]. SinceRn(x) satis�es the homogeneous
di�erential equation (2), then we can di�erentiate this equation by n in the
following way: 1) switch from the integer n ≥ 0 to a real ν, 2)di�erentiate
by ν and 3)replace the real ν by the integer n. In regard of (1) we obtain

An
dRn
dn = −λ′(n)Rn or An

(
− 1

λ′(n)
dRn
dn

)
= Rn, which means that the function

un(x) = − 1

λ′(n)

dRn

dn
(6)

is a particular solution of the resonant equation. Using this relation and di�er-
entiating (5) by n we obtain

un+1(x) = − 1

λ′(n+ 1)

[
−λ′(n)(α(n)x+ β(n))un(x)+

+ λ′(n− 1) γ(n)un−1(x)+

+
(
α′(n)x+ β′(n)

)
Rn(x)− γ′(n)Rn−1(x)

]
, n = 1, 2, ...

(7)
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The general solution of the resonant equation (4) is given by

u(x) = c1P̂n(x) + c2Q̂n(x) + u(k)n (x), (8)

where u
(k)
n (x), k = 1, 2 is a particular solution of the corresponding inhomoge-

neous resonant equation. Below we propose an algorithm to �nd the particular
solutions, which is especially suitable for computer algebra tools like Maple etc.
Since our algorithm below for particular solutions of the resonant di�erential
equations of the �rst and of the second kind (3) is based on the same recurrence
relation (5) it is valid for the resonant equations of both types and we use the

notation Rn(x) below for both P̂n(x) and Q̂n(x). The following general result
on the particular solutions of the resonant equations has been proven in [19].

Theorem 1. Let A : X → X be a linear operator acting in a Banach space X,
the set K(A) ⊂ X be the kernel of A and a connected set Σ(A) in the complex
plane be the spectral set of A. If f(λ) ∈ K(A−λE), λ ∈ Σ(A) is a di�erentiable
function then the solution of the resonant equation

(A− λE)u = f(λ) (9)

can be represented by

u(λ) =
df(λ)

dλ
(10)

The proof of this theorem is based on the equivalent equation

(A− λ0I)
f(λ)− f(λ0)

λ− λ0
= f(λ)

with some �xed λ0 and on passing to the limit λ → λ0.

3. An algorithm for computation of particular solutions.

A general differentiation formula for classical

orthogonal polynomials

Now we are at the position to formulate an algorithm for the particular
solutions of the resonant equations associated with a di�erential operator of the
hypergeometric type, de�ning classical orthogonal polynomials. This algorithm
is especially suitable for computer algebra tools like Maple etc.

Algorithm 1. Problem: Given a resonant equation of the �rst or of the second
kind, return a given number N of particular solutions.

Inputs: The number N and the right hand side Rν(x) of the resonant equa-
tion.

Outputs: The particular solutions u0(x), u1(x), ..., uN (x).
1. Find

χ0(x) = − 1

λ′(ν)

dRν(x)

dν

∣∣∣∣
ν=0

, χ1(x) = − 1

λ′(ν)

dRν(x)

dν

∣∣∣∣
ν=1

. (11)

Due to (6) these are particular solutions.
2. Compute u2(x) in accordance with (7) using the initial conditions

u0(x) = χ0(x) + c0P0(x) + d0Q0(x), u1(x) = χ1(x) + c1P1(x) + d1Q1(x) (12)
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with unde�ned coe�cients c0, c1, d0, d1.
3. Find c0, c1, d0, d1 from the condition that u2(x) satis�es the resonant dif-

ferential equation (3).
4. For n = 2 step 1 until n = N compute un(x) by (7) and return un(x).

Using Theorem 1 we prove below that the sequence un(x) generated by this
algorithm satisfy the resonant equation for all n = 0, 1, 2, ....

Theorem 2. All functions un+1(x) generated by the recursion (7) with the
initial conditions (12) satisfy the resonant di�erential equation (4).

Proof. We use the mathematical induction and, �rst of all, note that the func-
tions up(x), p= 0, 1, 2 satisfy the resonant equation by construction and due
to Theorem 1. Let us assume that all the functions up (x) , p = 0, 1, . . . , n
satisfy the resonant di�erential equation (4) and prove that then the function
un+1 (x) is its solution too.

First of all we notice that

An+1un(x) = σ(x)
d2un
dx2

+ τ(x)
dun
dx

+ λ(n+ 1)un =

= Anun(x) + (λ(n+ 1)− λ(n))un = Rn(x) + (λ(n+ 1)− λ(n))un,

An+1un−1(x) = An−1un−1(x) + (λ(n+ 1)− λ(n− 1))un−1 =

= Rn−1(x) + (λ(n+ 1)− λ(n− 1))un−1,

d

dx

[
(α′(n)x+ β′(n))Rn(x)− γ′(n)Rn−1(x)

]
=

= α′(n)Rn(x) + (α′(n)x+ β′(n))
dRn(x)

dx
− γ′(n)

dRn−1(x)

dx
,

(13)

Further we use the di�erentiation formula for the classical orthogonal poly-
nomials (which is the same for the functions of the second kind too) and which
represents the derivative of these functions through the same functions of index
n and the function of the index n − 1 with some coe�cients independent of x
(see, e.g. [23, �4, (12)] or [6, p.171,(15); p.189, (12); p.193, (14)] for concrete
classical orthogonal polynomials):

σ(x)
dRn

dx
= [q1(n)x+ q2(n)]Rn(x) + s(n)Rn−1(x) =

= [q1,nx+ q2,n]Rn(x) + snRn−1(x).
(14)

Substituting this expression as well as (13)into the formula for An+1un+1(x),
we obtain

An+1un+1(x) =
λ′(n)

λ′(n+ 1)
(α(n)x+ β(n))(λ(n+ 1)− λ(n))un(x)

1

λ′(n+ 1)
(α′(n)x+ β′(n))(λ(n+ 1)− λ(n))Rn(x)+

+
λ′(n)

λ′(n+ 1)
(α(n)x+ β(n))Rn(x)−

(15)
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− 2σ(x)

λ′(n+ 1)

[
−λ′(n)α(n)

dun(x)

dx
+ α′(n)

dRn(x)

dx

]
−

− τ(x)

λ′(n+ 1)

[
−λ′(n)α(n)un(x)− α′(n)Rn(x)

]
−

− 1

λ′(n+ 1)
(λ′(n− 1)γ(n)(λ(n+ 1)− λ(n− 1))un−1(x)+

+ λ′(n− 1)γ(n)Rn−1(x)−
− γ′(n)(λ(n+ 1)− λ(n− 1))Rn−1(x)) =

=
λ′(n)

λ′(n+ 1)
{ (α(n)x+ β(n))(λ(n+ 1)− λ(n))+

+ 2α(n) [q1 (n)x+ q2 (n)] + λτ(x) }un(x)+

+
λ′(n− 1)

λ′(n+ 1)
{ γ(n)(λ(n+ 1)− λ(n)) + 2α(n)s (n) }un−1(x) +R(x),

where R(x) contains the functions Rn−1(x), Rn(x) and its derivatives but not
un−1(x), un(x). Setting the coe�cients in front of un−1(x), un(x) equal to zero,
we obtain

s(n) = −γ(n)

α(n)
[b1 + (2n− 1)a2] ,

q1(n) = −1

2
[b1 + λ(n+ 1)− λ(n)] = na2,

q2(n) = −b0
2

− β(n)

2α(n)
[λ(n+ 1)− λ(n)] = −b0

2
+

β(n)

2α(n)
[b1 + 2na2] .

(16)

It is easy to check that the coe�cients of the di�erentiation formulas for all
classical orthogonal polynomials satisfy (16). For example, the Laguerre poly-
nomials are de�ned by the con�uent hypergeometric di�erential equation with
σ(x) = a2x

2 + a1x + a0 = x, τ(x) = b1x + b0 = α + 1 − x, λn = λ(n) =
−nb1 − n(n − 1)a2 = n; i.e. a2 = 0, a1 = −1, a0 = 0, b1 = −1, b0 = α + 1.
Besides they satisfy the recurrence relation [6, �10.2]

(n+ 1)Lα
n+1(x)− (2n+ α+ 1− x)Lα

n(x) + (n+ α)Lα
n−1(x) = 0, (17)

i.e. α(n) = − 1
n+1 , β(n) =

2n+α+1
n+1 , γ(n) = −n+α

n+1 . Due to (16) we obtain s(n) =

n+ α, q1(n) = 0, q2(n) = −α+1
2 + 2n+α+1

2 = n and (14) implies the well known
di�erentiation formula (see e.g. [6, �10.2])

x
dLα

n(x)

dx
= nLα

n(x) + (n+ α)Lα
n−1(x). (18)

Now, using the recurrent relation (5) we obtain from (15) the equality

An+1un+1(x) = Rn+1(x), (19)

which proves the assertion. �

Remark 1. At once with (16) we have obtained the coe�cients of the general
di�erentiation formula (14) which is valid for the general classical orthogonal
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polynomials and contains all particular cases of the polynomials by Jacobi, La-
guerre, Hermite known from the literature [6, 24, 28]. This formula is much
more convenient for use then the corresponding formula from [23,24].

4. Examples

Example 1. This example demonstrates the use of Algorithm 1 for the repre-
sentation of the general solution of the following Laguerre resonant equation of
the �rst kind

x
d2u(x)

dx2
+ (1 + α− x)

du(x)

dx
+ nu(x) = Lα

n(x) (20)

where

Lα
n(x) =

(α+ 1)n
n!

Φ(−n, α+ 1, x) =

=
Γ(α+ 1 + n)

Γ(α+ 1)Γ(n+ 1)
Φ(−n, α+ 1, x) =

n∑
k=0

(
n+ α
n− k

)
(−x)k

k!

(21)

is the Laguerre polynomial satisfying the corresponding homogeneous di�er-
ential equation and Φ(−n, α + 1, x) is the con�uent hypergeometric function
satisfying a degenerate form of the hypergeometric di�erential equation when
two of the three regular singularities merge into an irregular singularity [5, p.
189, formula (14)] and (a)0 = 1, (a)n = a(a + 1)(a + 2) · · · (a + n − 1) is the
Pochhammer-Symbol.

The second linear independent solution of the homogeneous di�erential equa-
tion is the Laguerre function of the second kind lαn(x) (see e.g. [25, pp.16,20]).
The general solution of the homogeneous Laguerre di�erential equation is given
by

u(x) = c1L
α
n(x) + c2l

α
n(x) (22)

with arbitrary constants c1, c2. The general solution of the Laguerre resonant
(inhomogeneous) equation is given by

u(x) = c1L
α
n(x) + c2l

α
n(x) + un(x) (23)

where c1, c2 are arbitrary constants and un(x) is a particular solution of the
inhomogeneous (resonant) equation.

Solving the corresponding di�erential equation for the Laguerre function of
the second kind [25, pp.16,20] by Maple we obtain the following representation
of this function for non-integer α:

lαn(x) = Γ(1− α)Lα
n(x)− (−x)−α

1F1(−n− α,−α+ 1;x) =

= Γ(1− α,−x)Lα
n(x)− (−x)−αpαn(x) exp(x),

pαn+1(x) =
1

n+ 1

[
(2n+ α+ 1− x)pαn(x)− (n+ α) pαn−1(x)

]
,

n = 1, 2, ...,

pα0 (x) = 1, pα1 (x) = 1− x.

(24)
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For non-negative natural α ∈ N we have

lαn(x) = Ei1(−x)Lα
n(x)− (−x)−αpαn(x) exp(x),

pα−1(x) = (α− 1)!,

pα0 (x) = xα−1 + xα [U (2, 2,−x) + (−1)αα! U(1 + α, 1 + α,−x)] ,

(25)

where

Ei1(x) =

∫ ∞

z

e−t

t
dt, |Arg(z)| < π (26)

is the exponential integral and U(a, b, z) is the Kummer's function of the second
kind. The last one is a solution of the Kummer's di�erential equation

z
d2w

dz2
+ (b− z)

dw

dz
− aw = 0. (27)

The other linear independent solution of this di�erential equation is the Kum-
mer's function of the �rst kind M de�ned e.g. by the hypergeometric series:

M(a, b, z) =
∞∑
n=0

(a)nz
n

(b)nn!
= 1F1(a; b; z). (28)

The Kummer's function of the second kind can be represented also as

U(a, b, z) =
Γ(1− b)

Γ(a+ 1− b)
M(a, b, z)+

+
Γ(b− 1)

Γ(a)
z1−bM(a+ 1− b, 2− b, z).

(29)

Note that the function at the second initial condition in (25) solves the following
di�erence initial value problem

pα0 (x) = x pα−1
0 (x) + (α− 1)!, α = 1, 2, ...,

p00(x) = 0.
(30)

Using Theorem 1 we can represent the particular solutions of the Laguerre
resonant equation of the �rst kind also by

un(x) =
∂

∂ν

Γ(α+ 1 + n)

Γ(α+ 1)Γ(n+ 1)
Φ(−n, α+ 1, x)

∣∣∣∣
n=ν

, n = 0, 1, ... (31)

From this expression we extract the following particular solutions containing
the elementary functions only

χα
0 (x) = u0(x) = − ln(x) +

α−1∑
p=0

(α− p)p+1

(p+ 1)xp+1
,

χα
1 (x) = u1(x) = −Lα

1 (x) ln(x) +

α∑
p=0

kp(α)

xp
,

(32)
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where

kp+1(α) = p
α−1∑
i=1

kp(i), p = 1, 2, ..., α− 1,

k1(α) =
α(α+ 1)

2
, k0(α) = −α− 2, α = 2, 3, ...,

(33)

At the �rst step of our Algorithm 1 we use the ansates

uα0 (x) = χα
0 (x) + c0L

α
0 (x) + d0l

α
0 (x),

uα1 (x) = χα
1 (x) + c1L

α
1 (x) + d1l

α
1 (x)

(34)

with unde�ned coe�cients c0, d0, c1, d1, obtain uα2 (x) from the corresponding
recurrence formula of our algorithm and choose c0, d0, c1, d1 so that uα2 (x) sat-
is�es the resonant di�erential equation. We get d0 = 0, d1 = 0 and c1 = 1+ c0.
Now one can verify that

uαn(x) = −Lα
n(x) ln(x) +

pαn(x)

xα
, (35)

where the polynomials pαn(x) satisfy the recurrence equation

pαn+1(x) =
2n+ α+ 1− x

n+ 1
pαn(x)−

n+ α

n+ 1
pαn−1(x)+

+
(α− 1− x)

(n+ 1)2
Lα
n(x)−

α− 1

(n+ 1)2
Lα
n−1(x), n = 1, 2, ...

(36)

with the initial conditions

pα0 (x) =
α−1∑
p=0

xα−p−1(α− p)p+1

p+ 1
+ c0x

α,

pα1 (x) =
α∑

p=0

xα−pkp(α) + (1 + c0)x
αLα

1 (x).

(37)

Example 2. Now, let us consider the Laguerre resonant equation of the second
kind

x
d2u(x)

dx2
+ (1 + α− x)

du(x)

dx
+ nu(x) = lαn(x) (38)

whith the Laguerre function of the second kind lαn(x). Due to Theorem 1 the
formula

un(x) = − d

dν
lαν (x) |ν=n

(39)

de�nes a particular solution of (38), so that its general solution is given by

u(x) = c1L
α
n(x) + c2l

α
n(x) + un(x). (40)

The use of formula (39) for arbitrary n is rather burdensome, therefore we use
Algorithm 1, where we for the sake of simplicity set α = 0. Solving di�erential
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equation (38) with Maple for n = 0, n = 1 we get

χ0(x) = −
∫ x

1

exp(t)

t

∫ t

1
Ei1(−ξ) exp(−ξ)dξdt,

χ1(x) = [(1− x) Ei1(−x)− exp(x)]×

×
∫ x

1
[1 + Ei1(−ξ)(−1 + ξ) exp(−ξ)](−1 + ξ)dξ+

+

∫ x

1
exp(−ξ)[Ei1(−ξ)(−1 + ξ) + exp(−ξ)]2dξ(−1 + x).

(41)

As the ansatzes for initial values of our algorithm we use

u00(x) = χ0(x) + c0Ei1(−x) + d0, u01(x) = χ1(x) + c1l
0
1(x) + d1L

0
1(x) (42)

with unde�ned constants c0, d0, c1, d1. Di�erentiating the recurrence equation
for the Laguerre functions of the second kind by n and in regard of (39) we
obtain the following recurrence relation for particular solutions

u0n+1(x) =
2n+ 1− x

n+ 1
u0n(x)−

n

n+ 1
u0n−1(x)−

− 1 + x

(n+ 1)2
l0n(x) +

1

(n+ 1)2
l0n−1(x).

(43)

We substitute (42) into this equation with n = 1 and demand that the obtained
function u02(x) satis�es the resonant di�erential equation (38) with n = 2, then
we obtain

c0 = −Ei1(−1) exp(−1)− 1,

d0 = −[Ei1(−1) exp(−1/2) + exp(1/2)]2,

c1 = 0, d1 = 0.

(44)

It can be veri�ed by substitution into (43) that the following representation
holds true

u0n(x) = p0n(x)χ1(x) + q0n(x)χ0(x) + v0n(x)Ei1(−x)+

+ w0
n(x) exp(x) + q0n(x)d0,

(45)

where the polynomials p0n(x), q
0
n(x) satisfy the recurrence relation for the La-

guerre polynomials with the initial conditions

p00(x) = 0, p01(x) = 1, q00(x) = 1, q01(x) = 0.

The polynomials w0
n(x) satisfy the inhomogeneous recurrence relation for the

Laguerre polynomials

w0
n+1(x) =

2n+ 1− x

n+ 1
w0
n(x)−

n

n+ 1
w0
n−1(x)−

1 + x

(n+ 1)2
p0n(x)+

+
1

(n+ 1)2
p0n−1(x), n = 1, 2, ...

(46)

with the initial conditions

w0
1(x) = 0, w0

2(x) =
x+ 1

4
.
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The polynomials v0n(x) solve the following discrete initial value problem

v0n+1(x) =
2n+ 1− x

n+ 1
v0n(x)−

n

n+ 1
v0n−1(x)−

1 + x

(n+ 1)2
L0
n(x)+

+
1

(n+ 1)2
L0
n−1(x), n = 1, 2, ...,

v01(x) = 0, v02(x) =
x2 − 2c0

4
.

(47)

Below we give some particular solutions of the Laguerre resonant equation of
the second kind obtained by our algorithm:

u00(x) = χ0(x) + c0Ei1(−x) + d0, u
0
1(x) = χ1(x),

u02(x) = −x− 3

2
χ1(x)−

1

2
χ0(x)+

+
x2 − 2c0

4
Ei1(−x)− x2 − 1

8
exp(x)− 1

2
d0,

u03(x) =

(
1

6
x2 − 4

3
x+

11

6

)
χ1(x) +

(
1

6
x− 5

6

)
χ0(x)+

+

(
− 5

36
x3 +

7

12
x2 +

c0
6
x− 5c0

6

)
Ei1(−x)+

+

(
1

24
x3 − 11

72
x2 − 23

72
x− 1

72

)
exp(x) +

(
1

6
x− 5

6

)
d0,

(48)

where c0, d0 are given by (44) and χ0(x), χ1(x) � by (41).
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