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REPLACEMENTS IN THE FINITE ELEMENT
METHOD FOR THE PROBLEM OF
ADVECTION-DIFFUSION-REACTION
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PE3IOME. ¥ maniit po60oTi 3aIrpOIOHOBAH0 HOBHMIA ITi/IX1/T IO 9MCIOBOTO PO3B’ -
3yBaHHS CHHTYJIAPHO-30ypeHnx 3amad aasekmii-mudysii-peaxmii (AP). eit
miaxim 6a3yeThCs Ha €KCIIOHEHIT A TbHIX IPAMIilt i 3BOPOTHIH 3aMiHax /10 1 mcirs
Bapiamniitnoro dbopmysmoBanus, Bianosiano. Omep:KaHO TEOPETUIHI Pe3ysIbTa-
TH icHyBaHHH PO3B’3Ky Ta OpAaKy 30ixkuocTi. IIpoBemeno yncosi ekcepu-
MEHTH JUIsi CUHTYJIsipHO-30ypennx 3ama4 AJIP. Haseneno rpadiku ogepxkanux
PO3B’SI3KIB y CTAIIIOHAPHOMY T, HECTAIIIOHAPHOMY BHITAIKAX, TAOIUI TOXUOOK
Ta eKCIIEPUMEHTATHHUN TOPAI0K 301KHOCTL 3aITPOTIOHOBAHOTO METOY.
ABSTRACT. In this work, a new approach for the numerical approximation of
the solution for the initial-boundary problem of advection-diffusion-reaction
(ADR) is proposed. This approach is based on exponential direct and inverse
replacements, before and after variation formulations, respectively. Theoreti-
cal results of the existence of the solution and of the order of convergence are
obtained. Numerical experiments are conducted for singularly perturbed ADR
problems. Graphs of the obtained results for stationary and non-stationary
problems, table of errors and experimental orders of convergence are pre-
sented.

1. INTRODUCTION

The mathematical modeling of processes of advection-diffusion-reac-
tion (ADR) is the relevant area of research. However, in the case of large
advantage of advection coefficients over diffusion coefficients, the standard ap-
proach based on the finite element method (FEM) leads to the loss of stability
of the approximation. Nowadays, many approaches to solving singularly per-
turbed ADR problems might be found in works of M. Ainsworth, N. Bahvalov,
1. Babuska, G.Marchuk, Ya.Savula, G.Shynkarenko, S. Wang and others. In
particular, among the approaches well known are an application of the expo-
nential basis and exponential weights [6], [9], functions bubbles basis [5] in the
FEM. Among the well-known approaches, there are also adaptive schemes of
FEM [1], [10].

The problem of improving the stability of FEM to solve the problem of ADR,
despite a large number of publications, is still opened. Among a large number
of existing methods, there is a question of choosing the optimal method for
improving sustainability. This fact may be the subject of another review pub-
lication. The authors propose a new approach to solving this actual problem,
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ON THE NON-LINEAR INTEGRAL EQUATION APPROACHES ...

which does not require the use of irregular grids, h-p adaptive grids, counter-
flow schemes, etc., which might greatly complicate the programming of the
method.

Let there € is a bounded limited area in R? with a Lipschitz boundary I'. The
problem is to find ¢ — an unknown concentration, which satisfies a differential
equation

%+v-(Vc)—v-(K-vc)+ac:f(a:,t>; reQ, te(0,7] (1)

an initial condition
c(r,0)=0; z€Q (2)
and a boundary condition
v-(K-Ve)+Xe=1v; zel, te(0,T). (3)

In (1),(3) V = (V1, V) is a velocity vector of constant values Vi > 0, Vo > 0,
K is a diffusivity coefficient, o is a coefficient of reaction, X is a constant value,
f is a function of external sources, ¥ is a function defined on the boundary I'
and v = (I3, l2) is a directed vector to I'. Coefficients are positive, constant and
dimensionless and, because V1, Vo are constant, environment is incompressible
V-(V)=0.

An operator of the problem was considered

Ac=V-(V-¢)=V-(K-Vc)+oc.
Therefore, the following equation has been considered

dc
a-FAC—f

with initial and boundary conditions (2), (3), respectively.

2. FEM WITH EXPONENTIAL REPLACEMENT
Previously, using a numerical experiment, it was found that the solution
obtained by the standard FEM with linear and quadratic basis functions [1,5—
10] is unstable in the case of a singular perturbed problem. In this paper, a
new alternative approach to solving the singular perturbed ADR problems is
proposed.
In (1)-(3) the following replacement |4| was applied

o= u exp [ V1FLE Va2 (4)
P 2K ‘
Therefore, the problem (1)-(3) will be equivalent to the following problem

du_ g Ou + Ou + Vit Vy +o)u=
ot 81’12 6.%22 4K -

()

B Vizy + Vowo .
= fexp <2K>’ x €
du Vi Va B Vizy + Voxg ,
Kalj+<<2l1+2l2>+)\>U—wexp <_2[()’ rel; (6)
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u(z,0) =0; z €.
The next step is a variation formulation of the resulting problem. To do this,

space W = W2(1)(Q) was introduced. Then, equation (5) was multiplied on
arbitrary function w € W and integrated over the area 2

au V12+‘/22 .
5 wd) — K/AuwdQ+(M+0 /uwdQ—

/ ( Vizy + V2I2> @)
= [ fwexp | —————— | dL.
Q

2K

To the first term of the equation (7) the Green’s formula for Laplacian 2| was
applied. Thus, the following expression was obtained

ou

ot
Q

VE+ V3 B Vizy + Vo
+ (4K —i—a) /uwdQ = /fwexp <_2K dsQ.
Q Q

According to the algorithm, the discretization of the problem based on the
division of the area €2 by finite elements and then on the construction of ap-
proximations using a linear combination of basic functions might be the next
step. However, after direct applying of the discretization, the initial system of
linear algebraic equations (SLAE) will have different orders of the coefficients
of right and left parts. That is due to the last integrant multiplier on the right
side of (8). Therefore, an approximation of the solution might be unstable.

That is the main reason why a reverse replacement was proposed to be
applied in (8)

wdQ+K/VqudQ K/de+
(8)

Vizy + Vﬂz) (9)

u:cexp<— ¥

Then, because

ou  dc o Nz +Vaxa\ W, ox Wiz + Vowo
dr;  Ox; P oK 2K C P 2K

the following expression was obtained

K/VqudQ = K/VcheXp <— Ve

< Vixy —H@m) a0,

Vizy + V21U2> dO—

2K

1=1,2

The formula is known [2]

op | 0 _
/ <ax1 + ({m> dQ) = / (g0l1 +7,/1l2) dar’
r

Q

86
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then, taking: ¢ = wv, ¥ = 0 and vice versa, it is easy to make sure that

au ov
a% dQ) = —/ oz, /uvlidf.

Q Q r

Therefore, the following transformation was applied to the last two terms in
expression (10)

V 8w exp <_Vv1£l?1 + VQ.TQ) a0 —

31:1 2K
_ Vi [ oc N+ Vewa g
~ 2 ) g 0P oK
Q
11
[ty (i Vo) "
; €Xp T
T
V2 Vizy + Voxo
4K cwexp<2K dQQ.

According to the boundary condition (6)

—K/&%ﬂ:/<%h+%b%mﬂ+/Mmﬂ—
ov 2
r

T

/¢6 ( V15E1+V2$2>wdp

Further, taking into account the inverse replacement (9), the following expres-
sion was obtained

ou i V1 V V13}1 + V2$2
K/ %wdf‘ = / <l1 + l2> cw exp <2K> dl'+
r r

Vizy + Voxo Vizy + Voxo
r r

Finally, after combining expressions (7) - (12), the variation formulation of
problem was obtained. To find such ¢ (z,t) € L2 (0,T; W) that satisfies the
following equation Yw € W

V V; V
%we Xp <—1x1+2$2> dQ + K/VcheXp (—M> dQ+
Q

(12)

ot 2K 2K

V1 Oc < Vl.’L'l—i-VQI'Q
- exp | ———+—=

— Q
(%clw 2K )d +

Q
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Va Oc Vizr + Vazo
2 [ 9 _ a2 g
2 awaeXp< 2K >d *
Vizy + Voo Vizy + Voo _
—l—/)\cwexp (_2K> dr + U/cwexp <_2K> dQ = (13)
B Vizy + Voxo Vizy + Voxo
Q T

It is important to notify that variation formulation (13) is significantly different
from the formulation obtained by using the classical approach for obtaining
variation formulation. Coefficients Vi and V, at advection integral expressions
are divided by 2. Integral expressions on the left and the right sides have the
same order.

According to the procedure of FEM, the triangulation of the area 2 by finite

N M
elements ) ~ ‘Uo Q; with boundary elements I' ~ ‘U1 I'; was obtained. Then,
1= 1=
on the each finite element 2, with vertices numbering 4, j, k an approximation

of the solution was built by using linear basic functions [8]:

en = ol (@1, 20) + o\ (w1, 32) + el (@1, 2), (14)

Z(e) (acgi),xg)) = % (a; + bjx1 + cize) and a; = xgj)xgm) — :L‘gm)xgj) b =

o9 — 2, = 2™ 2, 5 — 28,
Then the following bilinear forms were introduced

Jdc Vizl + Voo
/ _ et Al T T ara .
m(c,w) = 5 W OXP < 5 ds;
Q

where ¢

a(c,w) = K/Vch exp (—M> a2+
Q

2K
V; Oc Vixzy + Voxo
— -1 dQ
25 /axiweXp< 2K > *
i=1,2 Q
+//\cwexp <—‘/19512+szx2) dF+a/cweXp (—W) ds2;

l(w) = /fwexp (—W) dQ) + /wwexp (—W) ar.
Q r

Therefore, by application semi-discrete Galerkin’s method with
N
h
en(a,t) =Y ¢ () &) ()
j=1
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the following Cauchy problem was formulated
N

> {misC) (1) + ayCi (O} =1 (1), te (0,T), i =T, N

N (15)
Z mijCj (0) = Pi, 7= 1,N

j=1

where m;; = m (go?,cp?); ai; =a (go?,cp?); I (t) =1 ( ) P = (co,go?) .

To discretize the problem (15) by time variable the Euler’s method (8] was
applied. Mesh partitioning step § was introduced. Thus, the following recur-
rence scheme was obtained

Z {m;Cj (te+1)} = Z {mi;C; (te) +

- Z%’Cj (tr) p,i=1,N; (16)

Zm” =p;, 1t =1, N;

where k = 1, Ny, N; is a number of subintervals by time variable.

It should be noted that, according to the specifics of the proposed approach,
FEM ultimately leads to solving the SLAE with the specific coefficients. These
coefficients are the sum of integrals, which will include exponential function.
It is known that for such integrals using classic quadrature in practice gives a
high error of the approximation. Therefore, we propose to use special IOST
quadrature [3|, which is an extended Gaussian quadrature. The proposed in [3]
formula completely avoids the crowding of Gaussian points and allows to obtain
approximate values of the integrals determined with the high accuracy. The
last is shown in |3| for exponential integrant functions.

3. CONVERGENCE ANALYSIS AND ERROR ESTIMATE
For the purpose of theoretical study, a stationary problem with homogeneous
Dirichlet boundary conditions was considered

V-(Ve)=V-(K-Ve¢)+oc= f(x); z€Q,
c=0, zel.

3.1. Classical approach FEM (linear basis). According to the classical
approach, the following variation formulation was obtained: find ¢ € W that

K/VchdQ—i—Vl/86wdQ+V2/acwdQ+
81‘1 81‘2
! (17)
—I-J/cwdQ:/fwdQ, Yw € W.
Q
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Bilinear form was defined

0 0
a(c,w) = K/VchdQ +W a—cwdQ + V5 6—de(2 +0 / cwdf).
x1 )
Q

Theorem 1. The bilinear form a(c,w) 15 contmuous, s.e. AM >0

a <M .
a(e,w) < Mlefl o llwlly,o
M = max {\/gK, \/gmax{vl, Va}, V30, 1} .

Proof. Norm in Sobolev’s space is ||uH o = =/ <u2 + (Vu)2> dS). Expres-
Q

sion for (@(c,w))? was considered and evaluated by using elementary inequality

(g—p)°>0 = 2qp<g+p*
2

(a(c,w))* = / (KVch + Z 1% 8xzw + acw> <

Q

< / (3(KVch)2 + 3(max {V1, Va} Vew)? + 3(ocw)2> ds.
Q
Let’s reinforce inequality by adding an integral term

/c2(Vw)2dQ >0

Q

(a(c,w))? < /(3(KVch)2 + 3(max {Vi, Va} Vew)? +
Q

+3(ocw)? + (cvw)Z)dQ << M2|lell? o ]l 0
2 2
Obviously, in the case Vi >> K and(or) Vo >> K, M = v/3max {V;,V5}.

Theorem 2. The bilinear form a(c,w) is V-elliptic, i.e. Im > 0 : a(c,c) >
2

m el -
m =min{K,o}.

Proof. Tt is known [8] that a bilinear form b(c, w) = [ (V1 o W T Vo 2o Feg W ) dQ
Q

is skew-symmetric, i.e. b(c,w) = —b(w, c) . Therefore, b(c,c) = 0. Then
(a(c,c)) = / (KVCVC + Z Va%c + ac2> =
@ m
_ / (K(Ve? +0¢) = mlel2
W2
Q

Thus, the following two-sided estimate of bilinear form was obtained
m|lell?, m <alec) <M HCII
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Consequences If the function f (z) € L2(Q2), then, according to the Lax-
Milgram’s theorem [8], there is a single weak solution of the variation problem
(17). In addition, by using Cea’s lemma and theorem about the order of con-
vergence proved in [8], applying the FEM with linear basis functions (14), a
priori estimation of the error of approximate solution ¢p, to an exact solution ¢
was obtained

le = cally, m < Clh*HCH

3.2. Method of exponential replacements. According to the approach pro-
posed in this paper, taking into account the homogeneous boundary condition

\%
a(c,w —K/Vchexp _71351—1—‘/2362 dQ+
2K
Wiz + Vomg
\%
—i—a/cwexp <—W> dsd.

Theorem 3. The bilinear form a(c,w) is continuous, i.e. 3Q > 0 :
< .
a(e,w) < Qllellyymllwlly,m

Proof. An expression for (a(c,w))?* was considered and Cauchy-Schwarz’s
inequality was applied

(ale,w))* =

2

[/11‘1 + ‘/2.%'2
— _ <
/ (KVch + E 5 Gwzw + acw) exp < ¥oe > ds2 19)
Q

2 2
/(KVch+Z 55 w—l—acw) dQ/exp (—W) dQQ.
Ty

Q Q

Let’s evaluate the last multiplier

[/11,‘1 + ‘/2332 [/151,‘1 + 92132
< et LRt =
/exp < > dQ) {méix exp < > } Sa
Q

= nin exp ((V1FLE V272 | g
- Q p K Q)

where Sg is a square of the area €. Let’s evaluate the first multiplier of the right
side of (19) by introducing notation L = %maX{Vl, Vo} and using elementary
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inequality 2¢qp < ¢® + p°.

2
(KVch + Z ‘;88;11) + acw) dQ) <

D

< / (KVeVw 4 LV ew + ocw)?dQ <

Q
< / (3(KVch)2 +3(LVew)? + 3(Ucw)2) ds.

Q

Let’s reinforce inequality by adding an integral term

/CQ(Vw)QdQ >0
Q

2
Vi Oc
— <
/(KVCV’U)+Z 5 6$iw+acw> dQ2 <
Q T

< / (3(KVch)2 + 3(LVew)? + (cVw)? + 3(Ucw)2> a0 <

Q

< 3K? / (Ve)?dQ / (Vw)?dQ + 3L2 / (Ve)2d / (w)*dQ+

Q Q Q Q

+/(C)2dQ/(Vw)QdSH-S(;?/(0)2619/(11])%[Q <

Q Q Q Q

§P2/<02+(Vc)2>d9/(w2+(Vw)2)dQ,

Q Q

P = max{\/gK, V/3L,\/30, 1}. Obviously, in the case of the singularly per-

turbed problem P = § max {V1, Va}.
Therefore, the following evaluation was obtained

2 2 2 2
(ale;w))? < @ il o ol

Q= \/{mén exp <V13:1[—i(—"/m> }SQP. O

Theorem 4. The bilinear form a(c,w) is V-elliptic, i.e. 3¢ > 0 : a(c,c) >
2
q el -
2

and
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Proof. Let’s investigate the bilinear form

Vi [ Oc Vizy + Vowo
b(C, w) = ? Txlw €xXp 7T

dc Vizy + Vaxo
— - | dQ2.
Ty /8$2wexp( 2K
Q
Taking into account the homogeneous boundary conditions

Vizy + Voxo _
Z / oz <_2K> dfr =
Vizr + Vazo
= — dQd
Y3 ./ cex ( - ) ;

f Vizr + Vox
—i—zm/cwexp <_112K22> dsd.
’ Q

)dQ+

Then
Vi? Vizy + Voxg
b(e,w) = —b(w,c) + ‘ K/cwexp <_2K .
¢ Q
Therefore,
Vizy + Vomo
a2
=Y g [ o (-5
and
Vizr + Vazo
/ VC exp (-2},(> dQ+
Q
‘/i + V2 2 ‘/13?1 + VQ(L’Q
1 - "2 et et >
+< SK —|—0)/c exp Ve dQ) >
Q

> ,u/ ((Vc)2 + 62) exp (—W) s,
Q

4 = min {K , (V il ) } . Obviously, in the case of the singularly perturbed

8K
problem p = K.

Viz) + Vox
2 2 141 2442

- - - @@ = >
/((VC) —|—c)exp< Y )dQ
Q

. Vizy + Vaxo 2, 2 _
> min exp <_2K> / ((Vc) +c ) dQ =
Q
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B Vizy + Voxo 2, 2
= max exp ( ¥ ) / ((Vc) +c ) dQQ.
Q

Therefore,

lel + VQlL’Q) O

2K

Consequences If the function f(z) € Lo(2), then, according to the Lax-
Milgram theorem [8], there is a single weak solution of the variation problem
(19). In addition, by using Cea’s lemma and theorem about the order of conver-
gence proved in [8], applying the FEM with linear basis functions (14), a priori
estimation of the error of the approximate solution c¢;, to the exact solution c
was obtained

¢ = pmax exp (

Q
lle = enllyyo < ClhEHCHWQ@)-

In the case that V3 >> K and(or) Vo >> K classical approach of FEM
gives an error

V3max {V;, V5}
. 2

And method of exponential replacements gives an error

max{‘/la VQ} \/{mén exp (W) }SQ

Vizi+Voxo )
2K

lle = enlly0 < Cih

V3

— < Crh—
lle = enlly,o < Crh=

el @ -
K w.
mgx exp( 2

Considering that the region €2 is in the first quarter of the coordinate system

i exp [ VEFLEV2z2\ 1
Q P K o

V3 max {V1, Va} Sq
< Cih— : c )
wit =1 ngz;x exp (7‘/1“2}‘/”2) | ”W2(2)

Therefore,

le = cnll

(21)

On the right sight of evaluation (20), a maximum of advection coefficients
appears, which in the case of singularly perturbed problems might be a high
number. This is the main reason for the loss of stability by using the classical
FEM approach. On the other hand, in the evaluation (21) the value in the
denominator of the corresponding constant value is much higher than in the
numerator and balances this issue.

Thus, the order of the convergence is preserved in both methods, but the con-
stant at h in the method of exponential replacements is much smaller. There-
fore, at the same value of step, an estimate of the error of the proposed method
is much better than without replacements.

4. NUMERICAL RESULTS
Numerical experiments were conducted for different ADR problems. In this
paper stationary and non-stationary cases were considered.
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4.1. Sationary problem. For the purpose of study of experimental order of
convergence, a stationary one-dimensional problem on [0, 1] with homogeneous
Dirichlet boundary conditions was considered. In this case, the exact solution
is known

f e2b _ 1 1 —exb
@) =T\ e e ) ¢ T\ G gam )
-V +VV2+4Ko
—2K '
The relative error of the method was calculated by the following formula
c(zli])
In the Table 1 we show relative errors with different advection coefficients and

numbers of mesh points. For the rest of input parameters the following values
were set K =1.0; o =1.0; f = 1.0. As can be seen from Table 1 relative

(22)

Q1.2

Rp, = max
(2

TABL. 1. Relative errors

N V=10 V =100 V =150

16 | 0.045904065 | 0.033463525 | 0.012854694
32 | 0.035734439 | 0.044157740 | 0.042586510
64 | 0.018337116 | 0.026518133 | 0.037617746
128 | 0.014365357 | 0.017101069 | 0.022781162

error of the exact and approximate solution is extremely small and decreases
with an increase in the number of mesh points.

To calculate the experimental order of the convergence, the following scheme
was applied. Approximations cy,,cp, were calculated on 2 grids for hi, hy =
0.5h1, respectively.

Denotation e; = ||¢ — ¢p, ||, @ = 1,2 was introduced. Then, orders of conver-

gence in the output spaces W2(1)(Q) and L9(€2) were calculated according to

the formula
N Ine; —Iney

P —nhy

Corresponding orders of convergence are not presented for N =20, V =1
and N = 80, V = 100 because results on 2 grids are needed to calculate
the orders. From the results obtained, the experimental order of convergence
coincides with the theoretical one obtained in the preceding paragraph of the
article.

4.2. Non-stationary problem. The same area and boundary conditions as
in the previous example were considered. The scheme (16) was applied. On
the (Fig. 1) an exact solution and approximations of the solution of problem
(1)-(3) in different moments of time are presented. The number of mesh points
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TABL. 2. Orders of convergence

V| N ||ew— CHW2(1) len —¢ll, | order pin W2(1) order p in Lo
1 10 | 0,02764197 0,00081619 - —
20 | 0,01375605 0,00020139 1,0067934 2,0189291
40 | 0,00681524 | 5,16259 - 107 1,0132307 1,9638124
100 | 20 | 0,0547536 0,0007214 — —
40 | 0,0398390 0,0002793 0,4587726 1, 3689093
80 | 0,0231478 | 8,26024-107° 0, 7833058 1,7576934
160 | 0,0116643 | 1,95351-107° 0,9887709 2,0801149
320 | 0,0053174 | 3,88396 1076 1,1332922 2,330465

N = 128,mesh partitioning step by time variable 6 = 0.05. Input parameters
were set into the following values

V =100; K =1.0; f=1—¢t

It is obviously that solution coincides with an exact solution (22) at t — oo.
Graphs 1, 2, 3 are approximated concentrations ¢ in moments of time ¢ =
0.1, = 0.2,¢t = 0.3, respectively; Graphs 4, 5, 6 are approximated concentra-
tions ¢ in moments t = 0.8,¢t = 1.0,f = 2, respectively; Graphs 7, 8, 9 are
approximated concentrations cp in moments t = 3,¢t = 4.5,t = 5, respectively;
Graph 10 is an exact solution (22) of the problem (1)-(3) at ¢ — oo.

o =1.0;

0.0098
0.0084
0.0072

0.006
0.0048

0.0038

0.0024

0.0012

2]

0.1 02 0.3 04 05 0.6 0.7 0.8 0.9 1
Fic. 1. Approximations in different moments of time and an

exact solution

As can be seen from (Fig. 1), approximations of the unknown solution exactly
coincide with the solution of a stationary problem with increasing moments of
time.
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The concentration closer to the end of interval [0,1] in the fixed point = =
0.875 is shown on the (Fig.2). This is a point where, in fact, there is a prob-
lem in the case of significant advection coefficients, overcome by the method
proposed in this paper. Coefficients of diffusion, reaction, right part f and the
number of mesh points are the same as in the previous example.

On the graph 1 coefficient of advection V' = 70, on graph 2 coefficient of
advection V = 100, on graph 3 coefficient of advection V' = 150.

0.01441C

0.012

0.0098

0.0072

0.0048

0.0024

0 0.85 17 255 34 4.25 5.1 5.95 6.3 7.65

FiG. 2. Approximations in the fixed point = 0.875

As can be seen from obtained results, the solution coincides with the solution
of the stationary problem, that is, the process becomes stationary. It is also
worth noting that the value of the desired concentration c at the fixed point z =
0.875 decreases with an increase in the advection coefficient, which corresponds
to the nature of the phenomenon, as well as the fact that with an increase of
V', obtained approximation reaches stationary behavior faster.

5. CONCLUSIONS

Thus, in this paper, a singular perturbed initial-boundary problem of ADR
has been considered. A new alternative method based on exponential direct
and reverse replacement in FEM for resolving singular-perturbed problems of
ADR has been proposed.

The sequence of theorems have been proved and the existence of the solution
and order of convergence of the proposed method have been shown.

Numerical experiments have been conducted and results have been compared
with an exact solution, known in partial case. Obtained results have proved
the effectiveness of the proposed method.

In the long term, it is planned to apply the proposed method to the mathe-
matical models of the distribution of drugs and others in which the aforemen-
tioned specificity of the coefficients arises.
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