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REPLACEMENTS IN THE FINITE ELEMENT
METHOD FOR THE PROBLEM OF

ADVECTION-DIFFUSION-REACTION

Ya.H. Savula, Y. I. Turchyn

Ðåçþìå. Ó äàíié ðîáîòi çàïðîïîíîâàíî íîâèé ïiäõiä äî ÷èñëîâîãî ðîçâ'ÿ-
çóâàííÿ ñèíãóëÿðíî-çáóðåíèõ çàäà÷ àäâåêöi¨-äèôóçi¨-ðåàêöi¨ (ÀÄÐ). Öåé
ïiäõiä áàçó¹òüñÿ íà åêñïîíåíöiàëüíèõ ïðÿìié i çâîðîòíié çàìiíàõ äî i ïiñëÿ
âàðiàöiéíîãî ôîðìóëþâàííÿ, âiäïîâiäíî. Îäåðæàíî òåîðåòè÷íi ðåçóëüòà-
òè iñíóâàííÿ ðîçâ'ÿçêó òà ïîðÿäêó çáiæíîñòi. Ïðîâåäåíî ÷èñëîâi åêñïåðè-
ìåíòè äëÿ ñèíãóëÿðíî-çáóðåíèõ çàäà÷ ÀÄÐ. Íàâåäåíî ãðàôiêè îäåðæàíèõ
ðîçâ'ÿçêiâ ó ñòàöiîíàðíîìó òà íåñòàöiîíàðíîìó âèïàäêàõ, òàáëèöi ïîõèáîê
òà åêñïåðèìåíòàëüíèé ïîðÿäîê çáiæíîñòi çàïðîïîíîâàíîãî ìåòîäó.

Abstract. In this work, a new approach for the numerical approximation of
the solution for the initial-boundary problem of advection-di�usion-reaction
(ADR) is proposed. This approach is based on exponential direct and inverse
replacements, before and after variation formulations, respectively. Theoreti-
cal results of the existence of the solution and of the order of convergence are
obtained. Numerical experiments are conducted for singularly perturbed ADR
problems. Graphs of the obtained results for stationary and non-stationary
problems, table of errors and experimental orders of convergence are pre-
sented.

1. Introduction
The mathematical modeling of processes of advection-di�usion-reac-

tion (ADR) is the relevant area of research. However, in the case of large
advantage of advection coe�cients over di�usion coe�cients, the standard ap-
proach based on the �nite element method (FEM) leads to the loss of stability
of the approximation. Nowadays, many approaches to solving singularly per-
turbed ADR problems might be found in works of M.Ainsworth, N.Bahvalov,
I. Babuska, G.Marchuk, Ya. Savula, G. Shynkarenko, S.Wang and others. In
particular, among the approaches well known are an application of the expo-
nential basis and exponential weights [6], [9], functions bubbles basis [5] in the
FEM. Among the well-known approaches, there are also adaptive schemes of
FEM [1], [10].

The problem of improving the stability of FEM to solve the problem of ADR,
despite a large number of publications, is still opened. Among a large number
of existing methods, there is a question of choosing the optimal method for
improving sustainability. This fact may be the subject of another review pub-
lication. The authors propose a new approach to solving this actual problem,
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which does not require the use of irregular grids, h-p adaptive grids, counter-
�ow schemes, etc., which might greatly complicate the programming of the
method.

Let there Ω is a bounded limited area in R2 with a Lipschitz boundary Γ. The
problem is to �nd c � an unknown concentration, which satis�es a di�erential
equation

∂c

∂t
+∇ · (V c)−∇ · (K · ∇c) + σc = f(x, t); x ∈ Ω, t ∈ (0, T ] (1)

an initial condition

c(x, 0) = 0; x ∈ Ω̄ (2)

and a boundary condition

ν · (K · ∇c) + λc = ψ; x ∈ Γ, t ∈ (0, T ]. (3)

In (1),(3) V = (V1, V2) is a velocity vector of constant values V1 > 0, V2 > 0,
K is a di�usivity coe�cient, σ is a coe�cient of reaction, λ is a constant value,
f is a function of external sources, ψ is a function de�ned on the boundary Γ
and ν = (l1, l2) is a directed vector to Γ. Coe�cients are positive, constant and
dimensionless and, because V1, V2 are constant, environment is incompressible
∇ · (V ) = 0.

An operator of the problem was considered

Ac = ∇ · (V · c)−∇ · (K · ∇c) + σc.

Therefore, the following equation has been considered

∂c

∂t
+Ac = f

with initial and boundary conditions (2), (3), respectively.

2. FEM with exponential replacement

Previously, using a numerical experiment, it was found that the solution
obtained by the standard FEM with linear and quadratic basis functions [1,5�
10] is unstable in the case of a singular perturbed problem. In this paper, a
new alternative approach to solving the singular perturbed ADR problems is
proposed.

In (1)-(3) the following replacement [4] was applied

c = u exp

(
V1x1 + V2x2

2K

)
. (4)

Therefore, the problem (1)-(3) will be equivalent to the following problem

∂u

∂t
−K

(
∂2u

∂x12
+

∂2u

∂x22

)
+

(
V 2
1 + V 2

2

4K
+ σ

)
u =

= f exp

(
−V1x1 + V2x2

2K

)
, x ∈ Ω;

(5)

K
∂u

∂ν
+

((
V1
2
l1 +

V2
2
l2

)
+ λ

)
u = ψ exp

(
−V1x1 + V2x2

2K

)
, x ∈ Γ; (6)

85



YA.H. SAVULA, Y. I. TURCHYN

u(x, 0) = 0; x ∈ Ω̄.

The next step is a variation formulation of the resulting problem. To do this,

space W = W
(1)
2 (Ω) was introduced. Then, equation (5) was multiplied on

arbitrary function w ∈W and integrated over the area Ω∫
Ω

∂u

∂t
wdΩ−K

∫
Ω

∆uwdΩ+

(
V 2
1 + V 2

2

4K
+ σ

)∫
Ω

uwdΩ =

=

∫
Ω

fw exp

(
−V1x1 + V2x2

2K

)
dΩ.

(7)

To the �rst term of the equation (7) the Green's formula for Laplacian [2] was
applied. Thus, the following expression was obtained∫

Ω

∂u

∂t
wdΩ+K

∫
Ω

∇u∇wdΩ−K

∫
Γ

∂u

∂ν
wdΓ+

+

(
V 2
1 + V 2

2

4K
+ σ

)∫
Ω

uwdΩ =

∫
Ω

fw exp

(
−V1x1 + V2x2

2K

)
dΩ.

(8)

According to the algorithm, the discretization of the problem based on the
division of the area Ω by �nite elements and then on the construction of ap-
proximations using a linear combination of basic functions might be the next
step. However, after direct applying of the discretization, the initial system of
linear algebraic equations (SLAE) will have di�erent orders of the coe�cients
of right and left parts. That is due to the last integrant multiplier on the right
side of (8). Therefore, an approximation of the solution might be unstable.

That is the main reason why a reverse replacement was proposed to be
applied in (8)

u = c exp

(
−V1x1 + V2x2

2K

)
. (9)

Then, because

∂u

∂xi
=

∂c

∂xi
exp

(
−V1x1 + V2x2

2K

)
− Vi

2K
c exp

(
−V1x1 + V2x2

2K

)
the following expression was obtained

K

∫
Ω

∇u∇wdΩ = K

∫
Ω

∇c∇w exp

(
−V1x1 + V2x2

2K

)
dΩ−

−
∑
i=1,2

Vi
2

∫
Ω

c
∂w

∂xi
exp

(
−V1x1 + V2x2

2K

)
dΩ.

(10)

The formula is known [2]∫
Ω

(
∂φ

∂x1
+
∂ψ

∂x2

)
dΩ =

∫
Γ

(φl1 + ψl2) dΓ,
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then, taking: φ = uv, ψ = 0 and vice versa, it is easy to make sure that∫
Ω

v
∂u

∂xi
dΩ = −

∫
Ω

u
∂v

∂xi
dΩ+

∫
Γ

uvlidΓ.

Therefore, the following transformation was applied to the last two terms in
expression (10)

−Vi
2

∫
Ω

c
∂w

∂xi
exp

(
−V1x1 + V2x2

2K

)
dΩ =

=
Vi
2

∫
Ω

∂c

∂xi
w exp

(
−V1x1 + V2x2

2K

)
dΩ−

−
∫
Γ

cwli exp

(
−V1x1 + V2x2

2K

)
−

− V 2
i

4K

∫
Ω

cw exp

(
−V1x1 + V2x2

2K

)
dΩ.

(11)

According to the boundary condition (6)

−K
∫
Γ

∂u

∂ν
wdΓ =

∫
Γ

(
V1
2
l1 +

V2
2
l2

)
uwdΓ +

∫
Γ

λuwdΓ−

−
∫
Γ

ψ exp

(
−V1x1 + V2x2

2K

)
wdΓ.

Further, taking into account the inverse replacement (9), the following expres-
sion was obtained

−K
∫
Γ

∂u

∂ν
wdΓ =

∫
Γ

(
V1
2
l1 +

V2
2
l2

)
cw exp

(
−V1x1 + V2x2

2K

)
dΓ+

+

∫
Γ

λcw exp

(
−V1x1 + V2x2

2K

)
dΓ−

∫
Γ

ψ exp

(
−V1x1 + V2x2

2K

)
wdΓ.

(12)

Finally, after combining expressions (7) - (12), the variation formulation of
problem was obtained. To �nd such c (x, t) ∈ L2 (0, T ;W ) that satis�es the
following equation ∀w ∈W∫

Ω

∂c

∂t
w exp

(
−V1x1 + V2x2

2K

)
dΩ+K

∫
Ω

∇c∇w exp

(
−V1x1 + V2x2

2K

)
dΩ+

+
V1
2

∫
Ω

∂c

∂x1
w exp

(
−V1x1 + V2x2

2K

)
dΩ+
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+
V2
2

∫
Ω

∂c

∂x2
w exp

(
−V1x1 + V2x2

2K

)
dΩ+

+

∫
Γ

λcw exp

(
−V1x1 + V2x2

2K

)
dΓ + σ

∫
Ω

cw exp

(
−V1x1 + V2x2

2K

)
dΩ =

=

∫
Ω

fw exp

(
−V1x1 + V2x2

2K

)
dΩ+

∫
Γ

ψw exp

(
−V1x1 + V2x2

2K

)
dΓ.

(13)

It is important to notify that variation formulation (13) is signi�cantly di�erent
from the formulation obtained by using the classical approach for obtaining
variation formulation. Coe�cients V1 and V2 at advection integral expressions
are divided by 2. Integral expressions on the left and the right sides have the
same order.

According to the procedure of FEM, the triangulation of the area Ω by �nite

elements Ω ≈
N
∪
i=0

Ωi with boundary elements Γ ≈
M
∪
i=1

Γi was obtained. Then,

on the each �nite element Ωe with vertices numbering i, j, k an approximation
of the solution was built by using linear basic functions [8]:

ch = chi φ
(e)
i (x1, x2) + chjφ

(e)
j (x1, x2) + chmφ

(e)
m (x1, x2), (14)

where φ
(e)
i (x

(i)
1 , x

(i)
2 ) = 1

δ (ai + bix1 + cix2) and ai = x
(j)
1 x

(m)
2 − x

(m)
1 x

(j)
2 , bi =

x
(j)
2 − x

(m)
2 , ci = x

(m)
1 − x

(j)
1 , δ = 2Sijm.

Then the following bilinear forms were introduced

m(c′, w) =

∫
Ω

∂c

∂t
w exp

(
−V1x1 + V2x2

2K

)
dΩ;

a(c, w) = K

∫
Ω

∇c∇w exp

(
−V1x1 + V2x2

2K

)
dΩ+

+
∑
i=1,2

Vi
2

∫
Ω

∂c

∂xi
w exp

(
−V1x1 + V2x2

2K

)
dΩ+

+

∫
Γ

λcw exp

(
−V1x1 + V2x2

2K

)
dΓ + σ

∫
Ω

cw exp

(
−V1x1 + V2x2

2K

)
dΩ;

l(w) =

∫
Ω

fw exp

(
−V1x1 + V2x2

2K

)
dΩ+

∫
Γ

ψw exp

(
−V1x1 + V2x2

2K

)
dΓ.

Therefore, by application semi-discrete Galerkin's method with

ch(x, t) =
N∑
j=1

cj (t)φ
h
j (x)
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the following Cauchy problem was formulated
N∑
j=1

{
mijC

′
j (t) + aijCj (t)

}
= li (t) , t ∈ (0, T ] , i = 1, N ;

N∑
j=1

mijCj (0) = pi, i = 1, N

(15)

where mij = m
(
φh
i , φ

h
j

)
; aij = a

(
φh
i , φ

h
j

)
; li (t) = l

(
φh
i

)
; pi = m

(
c0, φ

h
i

)
.

To discretize the problem (15) by time variable the Euler's method [8] was
applied. Mesh partitioning step δ was introduced. Thus, the following recur-
rence scheme was obtained

N∑
j=1

{mijCj (tk+1)} =
N∑
j=1

{mijCj (tk)}+

+δ

li (tk)−
N∑
j=1

aijCj (tk)

 , i = 1, N ;

N∑
j=1

mijCj (t0) = pi, i = 1, N ;

(16)

where k = 1, Nt, Nt is a number of subintervals by time variable.
It should be noted that, according to the speci�cs of the proposed approach,

FEM ultimately leads to solving the SLAE with the speci�c coe�cients. These
coe�cients are the sum of integrals, which will include exponential function.
It is known that for such integrals using classic quadrature in practice gives a
high error of the approximation. Therefore, we propose to use special IOST
quadrature [3], which is an extended Gaussian quadrature. The proposed in [3]
formula completely avoids the crowding of Gaussian points and allows to obtain
approximate values of the integrals determined with the high accuracy. The
last is shown in [3] for exponential integrant functions.

3. Convergence analysis and error estimate

For the purpose of theoretical study, a stationary problem with homogeneous
Dirichlet boundary conditions was considered

∇ · (V c)−∇ · (K · ∇c) + σc = f(x); x ∈ Ω,

c = 0, x ∈ Γ.

3.1. Classical approach FEM (linear basis). According to the classical
approach, the following variation formulation was obtained: �nd c ∈W that

K

∫
Ω

∇c∇wdΩ+ V1

∫
Ω

∂c

∂x1
wdΩ+ V2

∫
Ω

∂c

∂x2
wdΩ+

+ σ

∫
Ω

cwdΩ =

∫
Ω

fwdΩ, ∀w ∈W.

(17)
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Bilinear form was de�ned

ã(c, w) = K

∫
Ω

∇c∇wdΩ+ V1

∫
Ω

∂c

∂x1
wdΩ+ V2

∫
Ω

∂c

∂x2
wdΩ+ σ

∫
Ω

cwdΩ.

Theorem 1. The bilinear form ã(c, w) is continuous, i.e. ∃M > 0 :

ã(c, w) ≤M∥c∥
W

(1)
2

∥w∥
W

(1)
2

.

M = max
{√

3K,
√
3max {V1, V2} ,

√
3σ, 1

}
.

Proof. Norm in Sobolev's space is ∥u∥2
W

(1)
2

=
∫
Ω

(
u2 + (∇u)2

)
dΩ. Expres-

sion for (ã(c, w))2 was considered and evaluated by using elementary inequality

(q − p)2 ≥ 0 ⇒ 2qp ≤ q2 + p2.

(ã(c, w))2 =

∫
Ω

(
K∇c∇w +

∑
i

Vi
∂c

∂xi
w + σcw

)2

≤

≤
∫
Ω

(
3(K∇c∇w)2 + 3(max {V1, V2}∇cw)2 + 3(σcw)2

)
dΩ.

Let's reinforce inequality by adding an integral term∫
Ω

c2(∇w)2dΩ ≥ 0

(ã(c, w))2 ≤
∫
Ω

(
3(K∇c∇w)2 + 3(max {V1, V2}∇cw)2+

+3(σcw)2 + (c∇w)2
)
dΩ ≤≤M2∥c∥2

W
(1)
2

∥w∥2
W

(1)
2

.

2

Obviously, in the case V1 >> K and(or) V2 >> K, M =
√
3max {V1, V2} .

Theorem 2. The bilinear form ã(c, w) is V-elliptic, i.e. ∃m > 0 : ã(c, c) ≥
m ∥c∥2

W
(1)
2

.

m = min {K,σ} .

Proof. It is known [8] that a bilinear form b(c, w) =
∫
Ω

(
V1

∂c
∂x1

w + V2
∂c
∂x2

w
)
dΩ

is skew-symmetric, i.e. b(c, w) = −b(w, c) . Therefore, b(c, c) = 0. Then

(ã(c, c)) =

∫
Ω

(
K∇c∇c+

∑
i

Vi
∂c

∂xi
c+ σc2

)
=

=

∫
Ω

(
K(∇c)2 + σc2

)
≥ m ∥c∥2

W
(1)
2

.

2

Thus, the following two-sided estimate of bilinear form was obtained

m ∥c∥2
W

(1)
2

≤ ã(c, c) ≤M ∥c∥2
W

(1)
2

.
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Consequences If the function f (x) ∈ L2(Ω), then, according to the Lax-
Milgram's theorem [8], there is a single weak solution of the variation problem
(17). In addition, by using Cea's lemma and theorem about the order of con-
vergence proved in [8], applying the FEM with linear basis functions (14), a
priori estimation of the error of approximate solution ch to an exact solution c
was obtained

∥c− ch∥W (1)
2

≤ C1h
M

m
∥c∥

W
(2)
2

.

3.2. Method of exponential replacements. According to the approach pro-
posed in this paper, taking into account the homogeneous boundary condition

a(c, w) = K

∫
Ω

∇c∇w exp

(
−V1x1 + V2x2

2K

)
dΩ+

+
∑
i

Vi
2

∫
Ω

∂c

∂xi
w exp

(
−V1x1 + V2x2

2K

)
dΩ+

+σ

∫
Ω

cw exp

(
−V1x1 + V2x2

2K

)
dΩ.

(18)

Theorem 3. The bilinear form a(c, w) is continuous, i.e. ∃Q > 0 :

a(c, w) ≤ Q∥c∥
W

(1)
2

∥w∥
W

(1)
2

.

Proof. An expression for (a(c, w))2 was considered and Cauchy-Schwarz's
inequality was applied

(a(c, w))2 =

=

∫
Ω

(
K∇c∇w +

∑
i

Vi
2

∂c

∂xi
w + σcw

)
exp

(
−V1x1 + V2x2

2K

)
dΩ

2

≤

≤
∫
Ω

(
K∇c∇w +

∑
i

Vi
2

∂c

∂xi
w + σcw

)2

dΩ

∫
Ω

exp

(
−V1x1 + V2x2

2K

)2

dΩ.

(19)

Let's evaluate the last multiplier∫
Ω

exp

(
−V1x1 + V2x2

K

)
dΩ ≤

{
max
Ω

exp

(
−V1x1 + V2x2

K

)}
SΩ =

=

{
min
Ω

exp

(
V1x1 + V2x2

K

)}
SΩ,

where SΩ is a square of the area Ω. Let's evaluate the �rst multiplier of the right
side of (19) by introducing notation L = 1

2 max{V1, V2} and using elementary
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inequality 2qp ≤ q2 + p2.

∫
Ω

(
K∇c∇w +

∑
i

Vi
2

∂c

∂xi
w + σcw

)2

dΩ ≤

≤
∫
Ω

(K∇c∇w + L∇cw + σcw)2dΩ ≤

≤
∫
Ω

(
3(K∇c∇w)2 + 3(L∇cw)2 + 3(σcw)2

)
dΩ.

Let's reinforce inequality by adding an integral term∫
Ω

c2(∇w)2dΩ ≥ 0

∫
Ω

(
K∇c∇w +

∑
i

Vi
2

∂c

∂xi
w + σcw

)2

dΩ ≤

≤
∫
Ω

(
3(K∇c∇w)2 + 3(L∇cw)2 + (c∇w)2 + 3(σcw)2

)
dΩ ≤

≤ 3K2

∫
Ω

(∇c)2dΩ
∫
Ω

(∇w)2dΩ+ 3L2

∫
Ω

(∇c)2dΩ
∫
Ω

(w)2dΩ+

+

∫
Ω

(c)2dΩ

∫
Ω

(∇w)2dΩ+ 3σ2
∫
Ω

(c)2dΩ

∫
Ω

(w)2dΩ ≤

≤ P 2

∫
Ω

(
c2 + (∇c)2

)
dΩ

∫
Ω

(
w2 + (∇w)2

)
dΩ,

P = max
{√

3K,
√
3L,

√
3σ, 1

}
. Obviously, in the case of the singularly per-

turbed problem P =
√
3
2 max {V1, V2} .

Therefore, the following evaluation was obtained

(a(c, w))2 ≤ Q2 ∥c∥2
W

(1)
2

∥w∥2
W

(1)
2

and

Q =

√{
min
Ω

exp

(
V1x1 + V2x2

K

)}
SΩP. 2

Theorem 4. The bilinear form a(c, w) is V-elliptic, i.e. ∃q > 0 : a(c, c) ≥
q ∥c∥2

W
(1)
2

.
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Proof. Let's investigate the bilinear form

b(c, w) =
V1
2

∫
Ω

∂c

∂x1
w exp

(
−V1x1 + V2x2

2K

)
dΩ+

+
V2
2

∫
Ω

∂c

∂x2
w exp

(
−V1x1 + V2x2

2K

)
dΩ.

Taking into account the homogeneous boundary conditions∑
i

Vi

2

∫
Ω

∂c

∂xi
w exp

(
−V1x1 + V2x2

2K

)
dΩ =

=
∑
i

Vi
2

∫
Ω

∂w

∂xi
c exp

(
−V1x1 + V2x2

2K

)
dΩ+

+
∑
i

Vi
2

4K

∫
Ω

cw exp

(
−V1x1 + V2x2

2K

)
dΩ.

Then

b(c, w) = −b(w, c) +
∑
i

Vi
2

4K

∫
Ω

cw exp

(
−V1x1 + V2x2

2K

)
dΩ.

Therefore,

b(c, c) =
∑
i

Vi
2

8K

∫
Ω

c2 exp

(
−V1x1 + V2x2

2K

)
dΩ

and

a(c, c) = K

∫
Ω

(∇c)2 exp
(
−V1x1 + V2x2

2K

)
dΩ+

+

(
V 2
1 + V 2

2

8K
+ σ

)∫
Ω

c2 exp

(
−V1x1 + V2x2

2K

)
dΩ ≥

≥ µ

∫
Ω

(
(∇c)2 + c2

)
exp

(
−V1x1 + V2x2

2K

)
dΩ,

µ = min
{
K,
(
V 2
1 +V 2

2
8K + σ

)}
. Obviously, in the case of the singularly perturbed

problem µ = K. ∫
Ω

(
(∇c)2 + c2

)
exp

(
−V1x1 + V2x2

2K

)
dΩ ≥

≥ min
Ω

exp

(
−V1x1 + V2x2

2K

)∫
Ω

(
(∇c)2 + c2

)
dΩ =
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= max
Ω

exp

(
V1x1 + V2x2

2K

)∫
Ω

(
(∇c)2 + c2

)
dΩ.

Therefore,

q = µmax
Ω

exp

(
V1x1 + V2x2

2K

)
. 2

Consequences If the function f (x) ∈ L2(Ω), then, according to the Lax-
Milgram theorem [8], there is a single weak solution of the variation problem
(19). In addition, by using Cea's lemma and theorem about the order of conver-
gence proved in [8], applying the FEM with linear basis functions (14), a priori
estimation of the error of the approximate solution ch to the exact solution c
was obtained

∥c− ch∥W (1)
2

≤ C1h
Q

q
∥c∥

W
(2)
2

.

In the case that V1 >> K and(or) V2 >> K classical approach of FEM
gives an error

∥c− ch∥W (1)
2

≤ C1h

√
3max {V1, V2}
min {K,σ}

∥c∥
W

(2)
2

. (20)

And method of exponential replacements gives an error

∥c− ch∥W (1)
2

≤ C1h

√
3

2

max {V1, V2}

√{
min
Ω

exp
(
V1x1+V2x2

K

)}
SΩ

Kmax
Ω

exp
(
V1x1+V2x2

2K

) ∥c∥
W

(2)
2

.

Considering that the region Ω is in the �rst quarter of the coordinate system{
min
Ω

exp

(
V1x1 + V2x2

K

)}
= 1.

Therefore,

∥c− ch∥W (1)
2

≤ C1h

√
3

2

max {V1, V2}SΩ
Kmax

Ω
exp

(
V1x1+V2x2

2K

)∥c∥
W

(2)
2

. (21)

On the right sight of evaluation (20), a maximum of advection coe�cients
appears, which in the case of singularly perturbed problems might be a high
number. This is the main reason for the loss of stability by using the classical
FEM approach. On the other hand, in the evaluation (21) the value in the
denominator of the corresponding constant value is much higher than in the
numerator and balances this issue.

Thus, the order of the convergence is preserved in both methods, but the con-
stant at h in the method of exponential replacements is much smaller. There-
fore, at the same value of step, an estimate of the error of the proposed method
is much better than without replacements.

4. Numerical Results
Numerical experiments were conducted for di�erent ADR problems. In this

paper stationary and non-stationary cases were considered.
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4.1. Sationary problem. For the purpose of study of experimental order of
convergence, a stationary one-dimensional problem on [0, 1] with homogeneous
Dirichlet boundary conditions was considered. In this case, the exact solution
is known

c(x) =
f

σ

{(
eα2b − 1

eα1b − eα2b

)
eα1x +

(
1− eα1b

eα1b − eα2b

)
eα2x + 1

}
,

α1,2 =
−V ±

√
V 2 + 4Kσ

−2K
.

(22)

The relative error of the method was calculated by the following formula

Rh = max
i

|c(x[i])− ch(x[i])|
c(x[i])

∗ 100%.

In the Table 1 we show relative errors with di�erent advection coe�cients and
numbers of mesh points. For the rest of input parameters the following values
were set K = 1.0; σ = 1.0; f = 1.0. As can be seen from Table 1 relative

Tabl. 1. Relative errors

N V = 70 V = 100 V = 150

16 0.045904065 0.033463525 0.012854694

32 0.035734439 0.044157740 0.042586510

64 0.018337116 0.026518133 0.037617746

128 0.014365357 0.017101069 0.022781162

error of the exact and approximate solution is extremely small and decreases
with an increase in the number of mesh points.

To calculate the experimental order of the convergence, the following scheme
was applied. Approximations ch1 , ch2 were calculated on 2 grids for h1, h2 =
0.5h1, respectively.

Denotation ei = ∥c− chi
∥ , i = 1, 2 was introduced. Then, orders of conver-

gence in the output spaces W
(1)
2 (Ω) and L2(Ω) were calculated according to

the formula

p ≈ ln e1 − ln e2
lnh1 − lnh2

.

Corresponding orders of convergence are not presented for N = 20, V = 1
and N = 80, V = 100 because results on 2 grids are needed to calculate
the orders. From the results obtained, the experimental order of convergence
coincides with the theoretical one obtained in the preceding paragraph of the
article.

4.2. Non-stationary problem. The same area and boundary conditions as
in the previous example were considered. The scheme (16) was applied. On
the (Fig. 1) an exact solution and approximations of the solution of problem
(1)-(3) in di�erent moments of time are presented. The number of mesh points
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Tabl. 2. Orders of convergence

V N ∥ch − c∥
W

(1)
2

∥ch − c∥L2
order p in W

(1)
2 order p in L2

1 10 0, 02764197 0, 00081619 − −
20 0, 01375605 0, 00020139 1, 0067934 2, 0189291

40 0, 00681524 5, 16259 · 10−5 1, 0132307 1, 9638124

100 20 0, 0547536 0, 0007214 − −
40 0, 0398390 0, 0002793 0, 4587726 1, 3689093

80 0, 0231478 8, 26024 · 10−5 0, 7833058 1, 7576934

160 0, 0116643 1, 95351 · 10−5 0, 9887709 2, 0801149

320 0, 0053174 3, 88396 · 10−6 1, 1332922 2, 330465

N = 128,mesh partitioning step by time variable δ = 0.05. Input parameters
were set into the following values

V = 100; K = 1.0; σ = 1.0; f = 1− e−t.

It is obviously that solution coincides with an exact solution (22) at t → ∞.
Graphs 1, 2, 3 are approximated concentrations ch in moments of time t =
0.1, t = 0.2, t = 0.3, respectively; Graphs 4, 5, 6 are approximated concentra-
tions ch in moments t = 0.8, t = 1.0, t = 2, respectively; Graphs 7, 8, 9 are
approximated concentrations ch in moments t = 3, t = 4.5, t = 5, respectively;
Graph 10 is an exact solution (22) of the problem (1)-(3) at t→ ∞.

Fig. 1. Approximations in di�erent moments of time and an
exact solution

As can be seen from (Fig. 1), approximations of the unknown solution exactly
coincide with the solution of a stationary problem with increasing moments of
time.
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The concentration closer to the end of interval [0, 1] in the �xed point x =
0.875 is shown on the (Fig. 2). This is a point where, in fact, there is a prob-
lem in the case of signi�cant advection coe�cients, overcome by the method
proposed in this paper. Coe�cients of di�usion, reaction, right part f and the
number of mesh points are the same as in the previous example.

On the graph 1 coe�cient of advection V = 70, on graph 2 coe�cient of
advection V = 100, on graph 3 coe�cient of advection V = 150.

Fig. 2. Approximations in the �xed point x = 0.875

As can be seen from obtained results, the solution coincides with the solution
of the stationary problem, that is, the process becomes stationary. It is also
worth noting that the value of the desired concentration c at the �xed point x =
0.875 decreases with an increase in the advection coe�cient, which corresponds
to the nature of the phenomenon, as well as the fact that with an increase of
V , obtained approximation reaches stationary behavior faster.

5. Conclusions

Thus, in this paper, a singular perturbed initial-boundary problem of ADR
has been considered. A new alternative method based on exponential direct
and reverse replacement in FEM for resolving singular-perturbed problems of
ADR has been proposed.

The sequence of theorems have been proved and the existence of the solution
and order of convergence of the proposed method have been shown.

Numerical experiments have been conducted and results have been compared
with an exact solution, known in partial case. Obtained results have proved
the e�ectiveness of the proposed method.

In the long term, it is planned to apply the proposed method to the mathe-
matical models of the distribution of drugs and others in which the aforemen-
tioned speci�city of the coe�cients arises.
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